Properties

Label 224.3.v.b.13.10
Level 224
Weight 3
Character 224.13
Analytic conductor 6.104
Analytic rank 0
Dimension 240
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.v (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(60\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 13.10
Character \(\chi\) \(=\) 224.13
Dual form 224.3.v.b.69.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.84088 + 0.781766i) q^{2} +(3.58432 + 1.48467i) q^{3} +(2.77768 - 2.87828i) q^{4} +(-3.04365 - 7.34802i) q^{5} +(-7.75897 + 0.0689922i) q^{6} +(6.88803 + 1.24702i) q^{7} +(-2.86325 + 7.47006i) q^{8} +(4.27913 + 4.27913i) q^{9} +O(q^{10})\) \(q+(-1.84088 + 0.781766i) q^{2} +(3.58432 + 1.48467i) q^{3} +(2.77768 - 2.87828i) q^{4} +(-3.04365 - 7.34802i) q^{5} +(-7.75897 + 0.0689922i) q^{6} +(6.88803 + 1.24702i) q^{7} +(-2.86325 + 7.47006i) q^{8} +(4.27913 + 4.27913i) q^{9} +(11.3474 + 11.1474i) q^{10} +(-5.50181 - 13.2825i) q^{11} +(14.2294 - 6.19271i) q^{12} +(2.01506 - 4.86479i) q^{13} +(-13.6549 + 3.08922i) q^{14} -30.8565i q^{15} +(-0.568948 - 15.9899i) q^{16} -22.4482 q^{17} +(-11.2227 - 4.53209i) q^{18} +(11.7463 - 28.3582i) q^{19} +(-29.6039 - 11.6500i) q^{20} +(22.8375 + 14.6962i) q^{21} +(20.5120 + 20.1504i) q^{22} +(29.8607 + 29.8607i) q^{23} +(-21.3534 + 22.5241i) q^{24} +(-27.0520 + 27.0520i) q^{25} +(0.0936391 + 10.5308i) q^{26} +(-4.37740 - 10.5680i) q^{27} +(22.7220 - 16.3618i) q^{28} +(-0.784167 + 1.89315i) q^{29} +(24.1226 + 56.8031i) q^{30} +6.89652i q^{31} +(13.5477 + 28.9907i) q^{32} -55.7773i q^{33} +(41.3245 - 17.5493i) q^{34} +(-11.8017 - 54.4089i) q^{35} +(24.2026 - 0.430449i) q^{36} +(40.9734 - 16.9717i) q^{37} +(0.545847 + 61.3869i) q^{38} +(14.4453 - 14.4453i) q^{39} +(63.6049 - 1.69707i) q^{40} +(11.9237 - 11.9237i) q^{41} +(-53.5301 - 9.20034i) q^{42} +(23.7088 + 57.2382i) q^{43} +(-53.5131 - 21.0590i) q^{44} +(18.4190 - 44.4674i) q^{45} +(-78.3139 - 31.6259i) q^{46} +11.6140 q^{47} +(21.7005 - 58.1576i) q^{48} +(45.8899 + 17.1790i) q^{49} +(28.6511 - 70.9478i) q^{50} +(-80.4617 - 33.3283i) q^{51} +(-8.40500 - 19.3127i) q^{52} +(20.4728 + 49.4257i) q^{53} +(16.3200 + 16.0323i) q^{54} +(-80.8548 + 80.8548i) q^{55} +(-29.0374 + 47.8835i) q^{56} +(84.2053 - 84.2053i) q^{57} +(-0.0364399 - 4.09809i) q^{58} +(-18.1434 - 43.8020i) q^{59} +(-88.8135 - 85.7096i) q^{60} +(-13.0968 - 5.42489i) q^{61} +(-5.39147 - 12.6957i) q^{62} +(24.1387 + 34.8109i) q^{63} +(-47.6037 - 42.7772i) q^{64} -41.8797 q^{65} +(43.6048 + 102.679i) q^{66} +(-41.7582 + 100.813i) q^{67} +(-62.3541 + 64.6122i) q^{68} +(62.6968 + 151.363i) q^{69} +(64.2605 + 90.9341i) q^{70} +(36.1637 - 36.1637i) q^{71} +(-44.2176 + 19.7132i) q^{72} +(-36.3327 + 36.3327i) q^{73} +(-62.1592 + 63.2745i) q^{74} +(-137.126 + 56.7996i) q^{75} +(-48.9950 - 112.579i) q^{76} +(-21.3331 - 98.3514i) q^{77} +(-15.2992 + 37.8848i) q^{78} -20.3762i q^{79} +(-115.762 + 52.8483i) q^{80} -98.8425i q^{81} +(-12.6285 + 31.2715i) q^{82} +(-26.5074 + 63.9945i) q^{83} +(105.735 - 24.9113i) q^{84} +(68.3246 + 164.950i) q^{85} +(-88.3920 - 86.8339i) q^{86} +(-5.62141 + 5.62141i) q^{87} +(114.974 - 3.06768i) q^{88} +(-24.1163 - 24.1163i) q^{89} +(0.855923 + 96.2585i) q^{90} +(19.9463 - 30.9960i) q^{91} +(168.891 - 3.00376i) q^{92} +(-10.2391 + 24.7193i) q^{93} +(-21.3799 + 9.07941i) q^{94} -244.128 q^{95} +(5.51763 + 124.026i) q^{96} +24.9304i q^{97} +(-97.9078 + 4.25076i) q^{98} +(33.2948 - 80.3807i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} + O(q^{10}) \) \( 240q - 8q^{2} - 8q^{4} - 4q^{7} - 8q^{8} - 8q^{9} - 8q^{11} + 12q^{14} - 112q^{16} - 176q^{18} - 4q^{21} - 192q^{22} + 128q^{23} - 8q^{25} + 56q^{28} - 8q^{29} - 16q^{30} - 8q^{32} + 92q^{35} + 192q^{36} - 8q^{37} - 8q^{39} - 424q^{42} + 128q^{43} - 16q^{44} - 8q^{46} - 320q^{50} - 80q^{51} - 192q^{53} + 608q^{56} - 8q^{57} - 712q^{58} + 264q^{60} + 496q^{63} - 272q^{64} - 16q^{65} + 304q^{67} + 320q^{70} + 504q^{71} - 8q^{72} + 232q^{74} + 164q^{77} + 560q^{78} - 1000q^{84} - 208q^{85} - 8q^{86} - 800q^{88} + 188q^{91} + 1560q^{92} + 64q^{93} - 16q^{95} - 376q^{98} + 64q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84088 + 0.781766i −0.920440 + 0.390883i
\(3\) 3.58432 + 1.48467i 1.19477 + 0.494891i 0.889307 0.457311i \(-0.151188\pi\)
0.305467 + 0.952203i \(0.401188\pi\)
\(4\) 2.77768 2.87828i 0.694421 0.719569i
\(5\) −3.04365 7.34802i −0.608730 1.46960i −0.864382 0.502836i \(-0.832290\pi\)
0.255652 0.966769i \(1.58229\pi\)
\(6\) −7.75897 + 0.0689922i −1.29316 + 0.0114987i
\(7\) 6.88803 + 1.24702i 0.984004 + 0.178145i
\(8\) −2.86325 + 7.47006i −0.357906 + 0.933758i
\(9\) 4.27913 + 4.27913i 0.475459 + 0.475459i
\(10\) 11.3474 + 11.1474i 1.13474 + 1.11474i
\(11\) −5.50181 13.2825i −0.500164 1.20750i −0.949394 0.314087i \(-0.898302\pi\)
0.449230 0.893416i \(-0.351698\pi\)
\(12\) 14.2294 6.19271i 1.18578 0.516059i
\(13\) 2.01506 4.86479i 0.155005 0.374215i −0.827232 0.561861i \(-0.810086\pi\)
0.982237 + 0.187646i \(0.0600858\pi\)
\(14\) −13.6549 + 3.08922i −0.975351 + 0.220659i
\(15\) 30.8565i 2.05710i
\(16\) −0.568948 15.9899i −0.0355592 0.999368i
\(17\) −22.4482 −1.32048 −0.660242 0.751053i \(-0.729546\pi\)
−0.660242 + 0.751053i \(0.729546\pi\)
\(18\) −11.2227 4.53209i −0.623481 0.251783i
\(19\) 11.7463 28.3582i 0.618228 1.49253i −0.235531 0.971867i \(-0.575683\pi\)
0.853759 0.520668i \(-0.174317\pi\)
\(20\) −29.6039 11.6500i −1.48020 0.582501i
\(21\) 22.8375 + 14.6962i 1.08750 + 0.699818i
\(22\) 20.5120 + 20.1504i 0.932364 + 0.915929i
\(23\) 29.8607 + 29.8607i 1.29829 + 1.29829i 0.929522 + 0.368768i \(0.120220\pi\)
0.368768 + 0.929522i \(0.379780\pi\)
\(24\) −21.3534 + 22.5241i −0.889725 + 0.938505i
\(25\) −27.0520 + 27.0520i −1.08208 + 1.08208i
\(26\) 0.0936391 + 10.5308i 0.00360150 + 0.405031i
\(27\) −4.37740 10.5680i −0.162126 0.391407i
\(28\) 22.7220 16.3618i 0.811501 0.584351i
\(29\) −0.784167 + 1.89315i −0.0270402 + 0.0652809i −0.936823 0.349804i \(-0.886248\pi\)
0.909783 + 0.415085i \(0.136248\pi\)
\(30\) 24.1226 + 56.8031i 0.804086 + 1.89344i
\(31\) 6.89652i 0.222468i 0.993794 + 0.111234i \(0.0354804\pi\)
−0.993794 + 0.111234i \(0.964520\pi\)
\(32\) 13.5477 + 28.9907i 0.423366 + 0.905959i
\(33\) 55.7773i 1.69022i
\(34\) 41.3245 17.5493i 1.21543 0.516155i
\(35\) −11.8017 54.4089i −0.337190 1.55454i
\(36\) 24.2026 0.430449i 0.672295 0.0119569i
\(37\) 40.9734 16.9717i 1.10739 0.458695i 0.247351 0.968926i \(-0.420440\pi\)
0.860038 + 0.510231i \(0.170440\pi\)
\(38\) 0.545847 + 61.3869i 0.0143644 + 1.61544i
\(39\) 14.4453 14.4453i 0.370391 0.370391i
\(40\) 63.6049 1.69707i 1.59012 0.0424267i
\(41\) 11.9237 11.9237i 0.290821 0.290821i −0.546584 0.837405i \(-0.684072\pi\)
0.837405 + 0.546584i \(0.184072\pi\)
\(42\) −53.5301 9.20034i −1.27453 0.219056i
\(43\) 23.7088 + 57.2382i 0.551368 + 1.33112i 0.916452 + 0.400145i \(0.131040\pi\)
−0.365084 + 0.930975i \(0.618960\pi\)
\(44\) −53.5131 21.0590i −1.21621 0.478613i
\(45\) 18.4190 44.4674i 0.409311 0.988164i
\(46\) −78.3139 31.6259i −1.70248 0.687519i
\(47\) 11.6140 0.247106 0.123553 0.992338i \(-0.460571\pi\)
0.123553 + 0.992338i \(0.460571\pi\)
\(48\) 21.7005 58.1576i 0.452093 1.21162i
\(49\) 45.8899 + 17.1790i 0.936529 + 0.350591i
\(50\) 28.6511 70.9478i 0.573023 1.41896i
\(51\) −80.4617 33.3283i −1.57768 0.653497i
\(52\) −8.40500 19.3127i −0.161635 0.371399i
\(53\) 20.4728 + 49.4257i 0.386279 + 0.932561i 0.990721 + 0.135912i \(0.0433963\pi\)
−0.604442 + 0.796650i \(0.706604\pi\)
\(54\) 16.3200 + 16.0323i 0.302221 + 0.296894i
\(55\) −80.8548 + 80.8548i −1.47009 + 1.47009i
\(56\) −29.0374 + 47.8835i −0.518525 + 0.855062i
\(57\) 84.2053 84.2053i 1.47729 1.47729i
\(58\) −0.0364399 4.09809i −0.000628274 0.0706567i
\(59\) −18.1434 43.8020i −0.307515 0.742406i −0.999784 0.0207674i \(-0.993389\pi\)
0.692269 0.721639i \(1.74339\pi\)
\(60\) −88.8135 85.7096i −1.48023 1.42849i
\(61\) −13.0968 5.42489i −0.214702 0.0889326i 0.272740 0.962088i \(-0.412070\pi\)
−0.487442 + 0.873155i \(0.662070\pi\)
\(62\) −5.39147 12.6957i −0.0869592 0.204769i
\(63\) 24.1387 + 34.8109i 0.383153 + 0.552555i
\(64\) −47.6037 42.7772i −0.743807 0.668394i
\(65\) −41.8797 −0.644304
\(66\) 43.6048 + 102.679i 0.660678 + 1.55575i
\(67\) −41.7582 + 100.813i −0.623256 + 1.50467i 0.224602 + 0.974451i \(0.427892\pi\)
−0.847858 + 0.530223i \(0.822108\pi\)
\(68\) −62.3541 + 64.6122i −0.916972 + 0.950180i
\(69\) 62.6968 + 151.363i 0.908649 + 2.19367i
\(70\) 64.2605 + 90.9341i 0.918007 + 1.29906i
\(71\) 36.1637 36.1637i 0.509347 0.509347i −0.404979 0.914326i \(-0.632721\pi\)
0.914326 + 0.404979i \(0.132721\pi\)
\(72\) −44.2176 + 19.7132i −0.614133 + 0.273794i
\(73\) −36.3327 + 36.3327i −0.497708 + 0.497708i −0.910724 0.413016i \(-0.864475\pi\)
0.413016 + 0.910724i \(0.364475\pi\)
\(74\) −62.1592 + 63.2745i −0.839989 + 0.855061i
\(75\) −137.126 + 56.7996i −1.82835 + 0.757328i
\(76\) −48.9950 112.579i −0.644671 1.48131i
\(77\) −21.3331 98.3514i −0.277053 1.27729i
\(78\) −15.2992 + 37.8848i −0.196143 + 0.485703i
\(79\) 20.3762i 0.257927i −0.991649 0.128963i \(-0.958835\pi\)
0.991649 0.128963i \(-0.0411650\pi\)
\(80\) −115.762 + 52.8483i −1.44703 + 0.660603i
\(81\) 98.8425i 1.22028i
\(82\) −12.6285 + 31.2715i −0.154006 + 0.381360i
\(83\) −26.5074 + 63.9945i −0.319366 + 0.771018i 0.679922 + 0.733285i \(0.262014\pi\)
−0.999288 + 0.0377332i \(0.987986\pi\)
\(84\) 105.735 24.9113i 1.25875 0.296563i
\(85\) 68.3246 + 164.950i 0.803819 + 1.94059i
\(86\) −88.3920 86.8339i −1.02781 1.00970i
\(87\) −5.62141 + 5.62141i −0.0646139 + 0.0646139i
\(88\) 114.974 3.06768i 1.30653 0.0348600i
\(89\) −24.1163 24.1163i −0.270969 0.270969i 0.558521 0.829490i \(-0.311369\pi\)
−0.829490 + 0.558521i \(0.811369\pi\)
\(90\) 0.855923 + 96.2585i 0.00951025 + 1.06954i
\(91\) 19.9463 30.9960i 0.219190 0.340615i
\(92\) 168.891 3.00376i 1.83577 0.0326496i
\(93\) −10.2391 + 24.7193i −0.110098 + 0.265799i
\(94\) −21.3799 + 9.07941i −0.227446 + 0.0965895i
\(95\) −244.128 −2.56977
\(96\) 5.51763 + 124.026i 0.0574753 + 1.29194i
\(97\) 24.9304i 0.257014i 0.991709 + 0.128507i \(0.0410185\pi\)
−0.991709 + 0.128507i \(0.958982\pi\)
\(98\) −97.9078 + 4.25076i −0.999059 + 0.0433751i
\(99\) 33.2948 80.3807i 0.336311 0.811927i
\(100\) 2.72123 + 153.005i 0.0272123 + 1.53005i
\(101\) −4.89050 11.8067i −0.0484208 0.116898i 0.897818 0.440366i \(-0.145151\pi\)
−0.946239 + 0.323468i \(0.895151\pi\)
\(102\) 174.175 1.54875i 1.70760 0.0151839i
\(103\) 22.5145 + 22.5145i 0.218587 + 0.218587i 0.807903 0.589316i \(-0.200603\pi\)
−0.589316 + 0.807903i \(0.700603\pi\)
\(104\) 30.5707 + 28.9817i 0.293949 + 0.278670i
\(105\) 38.4785 212.541i 0.366462 2.02420i
\(106\) −76.3274 74.9819i −0.720069 0.707377i
\(107\) −13.6312 32.9087i −0.127395 0.307558i 0.847294 0.531124i \(-0.178230\pi\)
−0.974689 + 0.223566i \(0.928230\pi\)
\(108\) −42.5766 16.7551i −0.394228 0.155140i
\(109\) −33.4117 13.8396i −0.306529 0.126968i 0.224116 0.974562i \(-0.428050\pi\)
−0.530645 + 0.847594i \(0.678050\pi\)
\(110\) 85.6345 212.054i 0.778496 1.92776i
\(111\) 172.059 1.55008
\(112\) 16.0207 110.848i 0.143042 0.989717i
\(113\) 17.8480i 0.157947i −0.996877 0.0789736i \(-0.974836\pi\)
0.996877 0.0789736i \(-0.0251643\pi\)
\(114\) −89.1830 + 220.841i −0.782307 + 1.93720i
\(115\) 128.531 310.302i 1.11766 2.69828i
\(116\) 3.27083 + 7.51561i 0.0281968 + 0.0647897i
\(117\) 29.4398 12.1944i 0.251622 0.104225i
\(118\) 67.6427 + 66.4503i 0.573243 + 0.563139i
\(119\) −154.624 27.9933i −1.29936 0.235238i
\(120\) 230.500 + 88.3497i 1.92083 + 0.736248i
\(121\) −60.5960 + 60.5960i −0.500793 + 0.500793i
\(122\) 28.3507 0.252092i 0.232383 0.00206633i
\(123\) 60.4410 25.0355i 0.491390 0.203540i
\(124\) 19.8501 + 19.1564i 0.160081 + 0.154487i
\(125\) 97.4147 + 40.3505i 0.779318 + 0.322804i
\(126\) −71.6504 45.2120i −0.568654 0.358826i
\(127\) −168.314 −1.32531 −0.662654 0.748926i \(-0.730570\pi\)
−0.662654 + 0.748926i \(0.730570\pi\)
\(128\) 121.074 + 41.5329i 0.945894 + 0.324476i
\(129\) 240.360i 1.86325i
\(130\) 77.0956 32.7402i 0.593043 0.251847i
\(131\) 93.7483 + 38.8318i 0.715636 + 0.296426i 0.710635 0.703561i \(-0.248408\pi\)
0.00500155 + 0.999987i \(0.498408\pi\)
\(132\) −160.542 154.932i −1.21623 1.17372i
\(133\) 116.272 180.684i 0.874227 1.35853i
\(134\) −1.94048 218.230i −0.0144812 1.62858i
\(135\) −64.3305 + 64.3305i −0.476522 + 0.476522i
\(136\) 64.2748 167.690i 0.472609 1.23301i
\(137\) 105.597 + 105.597i 0.770783 + 0.770783i 0.978243 0.207461i \(-0.0665199\pi\)
−0.207461 + 0.978243i \(0.566520\pi\)
\(138\) −233.748 229.628i −1.69383 1.66397i
\(139\) −219.339 + 90.8533i −1.57798 + 0.653621i −0.988092 0.153864i \(-0.950828\pi\)
−0.589888 + 0.807485i \(0.700828\pi\)
\(140\) −189.385 117.162i −1.35275 0.836873i
\(141\) 41.6282 + 17.2430i 0.295236 + 0.122291i
\(142\) −38.3015 + 94.8445i −0.269729 + 0.667919i
\(143\) −75.7032 −0.529393
\(144\) 65.9882 70.8575i 0.458252 0.492066i
\(145\) 16.2976 0.112397
\(146\) 38.4805 95.2878i 0.263565 0.652656i
\(147\) 138.979 + 129.706i 0.945435 + 0.882357i
\(148\) 64.9617 165.075i 0.438931 1.11537i
\(149\) 44.5843 + 107.636i 0.299223 + 0.722389i 0.999960 + 0.00896881i \(0.00285490\pi\)
−0.700736 + 0.713420i \(0.747145\pi\)
\(150\) 208.029 211.762i 1.38686 1.41175i
\(151\) 81.4542 + 81.4542i 0.539432 + 0.539432i 0.923362 0.383930i \(-0.125430\pi\)
−0.383930 + 0.923362i \(0.625430\pi\)
\(152\) 178.205 + 168.942i 1.17240 + 1.11146i
\(153\) −96.0590 96.0590i −0.627837 0.627837i
\(154\) 116.159 + 164.376i 0.754282 + 1.06737i
\(155\) 50.6758 20.9906i 0.326941 0.135423i
\(156\) −1.45309 81.7018i −0.00931465 0.523729i
\(157\) 72.4102 + 29.9933i 0.461212 + 0.191040i 0.601176 0.799116i \(-0.294699\pi\)
−0.139965 + 0.990156i \(0.544699\pi\)
\(158\) 15.9294 + 37.5102i 0.100819 + 0.237406i
\(159\) 207.553i 1.30537i
\(160\) 171.790 187.786i 1.07369 1.17367i
\(161\) 168.444 + 242.918i 1.04624 + 1.50881i
\(162\) 77.2717 + 181.957i 0.476986 + 1.12319i
\(163\) 72.3739 174.726i 0.444012 1.07194i −0.530516 0.847675i \(-0.678002\pi\)
0.974528 0.224265i \(-0.0719981\pi\)
\(164\) −1.19943 67.4397i −0.00731361 0.411218i
\(165\) −409.853 + 169.767i −2.48396 + 1.02889i
\(166\) −1.23179 138.529i −0.00742040 0.834511i
\(167\) −24.4033 24.4033i −0.146128 0.146128i 0.630258 0.776386i \(-0.282949\pi\)
−0.776386 + 0.630258i \(0.782949\pi\)
\(168\) −175.171 + 128.519i −1.04268 + 0.764992i
\(169\) 99.8953 + 99.8953i 0.591097 + 0.591097i
\(170\) −254.730 250.240i −1.49841 1.47200i
\(171\) 171.613 71.0842i 1.00358 0.415697i
\(172\) 230.603 + 90.7490i 1.34071 + 0.527610i
\(173\) 10.3427 24.9694i 0.0597842 0.144332i −0.891165 0.453680i \(-0.850111\pi\)
0.950949 + 0.309348i \(0.100111\pi\)
\(174\) 5.95372 14.7430i 0.0342168 0.0847297i
\(175\) −220.069 + 152.601i −1.25754 + 0.872003i
\(176\) −209.256 + 95.5303i −1.18895 + 0.542786i
\(177\) 183.937i 1.03919i
\(178\) 63.2484 + 25.5419i 0.355328 + 0.143494i
\(179\) 265.173 + 109.838i 1.48141 + 0.613621i 0.969429 0.245373i \(-0.0789106\pi\)
0.511984 + 0.858995i \(0.328911\pi\)
\(180\) −76.8273 176.531i −0.426818 0.980729i
\(181\) 262.342 108.666i 1.44940 0.600362i 0.487345 0.873209i \(-0.337965\pi\)
0.962057 + 0.272847i \(0.0879653\pi\)
\(182\) −12.4871 + 72.6533i −0.0686104 + 0.399194i
\(183\) −38.8891 38.8891i −0.212509 0.212509i
\(184\) −308.559 + 137.563i −1.67695 + 0.747623i
\(185\) −249.417 249.417i −1.34820 1.34820i
\(186\) −0.475806 53.5099i −0.00255810 0.287688i
\(187\) 123.506 + 298.170i 0.660459 + 1.59449i
\(188\) 32.2600 33.4282i 0.171595 0.177810i
\(189\) −16.9732 78.2512i −0.0898054 0.414028i
\(190\) 449.411 190.851i 2.36532 1.00448i
\(191\) −11.0208 −0.0577004 −0.0288502 0.999584i \(-0.509185\pi\)
−0.0288502 + 0.999584i \(0.509185\pi\)
\(192\) −107.116 224.003i −0.557898 1.16668i
\(193\) −137.846 −0.714229 −0.357115 0.934061i \(-0.616239\pi\)
−0.357115 + 0.934061i \(0.616239\pi\)
\(194\) −19.4897 45.8938i −0.100462 0.236566i
\(195\) −150.110 62.1778i −0.769797 0.318860i
\(196\) 176.913 84.3661i 0.902619 0.430439i
\(197\) 7.74205 3.20686i 0.0392998 0.0162785i −0.362947 0.931810i \(-0.618229\pi\)
0.402247 + 0.915531i \(0.368229\pi\)
\(198\) 1.54719 + 174.000i 0.00781411 + 0.878788i
\(199\) 98.4669 + 98.4669i 0.494809 + 0.494809i 0.909817 0.415009i \(-0.136221\pi\)
−0.415009 + 0.909817i \(0.636221\pi\)
\(200\) −124.623 279.536i −0.623117 1.39768i
\(201\) −299.349 + 299.349i −1.48930 + 1.48930i
\(202\) 18.2329 + 17.9115i 0.0902619 + 0.0886709i
\(203\) −7.76214 + 12.0622i −0.0382372 + 0.0594196i
\(204\) −319.425 + 139.015i −1.56581 + 0.681448i
\(205\) −123.907 51.3239i −0.604423 0.250360i
\(206\) −59.0475 23.8454i −0.286638 0.115754i
\(207\) 255.555i 1.23457i
\(208\) −78.9339 29.4528i −0.379490 0.141600i
\(209\) −441.294 −2.11146
\(210\) 95.3226 + 421.343i 0.453917 + 2.00639i
\(211\) −215.375 89.2112i −1.02073 0.422802i −0.191375 0.981517i \(-0.561295\pi\)
−0.829360 + 0.558715i \(0.811295\pi\)
\(212\) 199.128 + 78.3627i 0.939283 + 0.369635i
\(213\) 183.313 75.9309i 0.860626 0.356483i
\(214\) 50.8203 + 49.9245i 0.237478 + 0.233292i
\(215\) 348.426 348.426i 1.62059 1.62059i
\(216\) 91.4770 2.44073i 0.423505 0.0112997i
\(217\) −8.60007 + 47.5035i −0.0396317 + 0.218910i
\(218\) 72.3262 0.643118i 0.331771 0.00295008i
\(219\) −184.170 + 76.2858i −0.840960 + 0.348337i
\(220\) 8.13340 + 457.312i 0.0369700 + 2.07869i
\(221\) −45.2346 + 109.206i −0.204681 + 0.494145i
\(222\) −316.740 + 134.510i −1.42676 + 0.605901i
\(223\) 84.0310i 0.376820i −0.982090 0.188410i \(-0.939667\pi\)
0.982090 0.188410i \(-0.0603335\pi\)
\(224\) 57.1652 + 216.583i 0.255202 + 0.966888i
\(225\) −231.518 −1.02897
\(226\) 13.9530 + 32.8561i 0.0617389 + 0.145381i
\(227\) 238.503 + 98.7913i 1.05068 + 0.435204i 0.840133 0.542381i \(-0.182477\pi\)
0.210543 + 0.977585i \(0.432477\pi\)
\(228\) −8.47043 476.262i −0.0371510 2.08887i
\(229\) 116.883 + 282.179i 0.510404 + 1.23222i 0.943649 + 0.330948i \(0.107369\pi\)
−0.433245 + 0.901276i \(0.642631\pi\)
\(230\) 5.97280 + 671.711i 0.0259687 + 2.92048i
\(231\) 69.5551 384.195i 0.301104 1.66318i
\(232\) −11.8967 11.2783i −0.0512787 0.0486134i
\(233\) −0.576531 0.576531i −0.00247438 0.00247438i 0.705869 0.708343i \(-0.250557\pi\)
−0.708343 + 0.705869i \(0.750557\pi\)
\(234\) −44.6620 + 45.4634i −0.190863 + 0.194288i
\(235\) −35.3489 85.3398i −0.150421 0.363148i
\(236\) −176.471 69.4464i −0.747757 0.294264i
\(237\) 30.2520 73.0349i 0.127646 0.308164i
\(238\) 306.529 69.3476i 1.28794 0.291376i
\(239\) 153.166i 0.640860i 0.947272 + 0.320430i \(0.103827\pi\)
−0.947272 + 0.320430i \(0.896173\pi\)
\(240\) −493.392 + 17.5557i −2.05580 + 0.0731489i
\(241\) −117.727 −0.488492 −0.244246 0.969713i \(-0.578541\pi\)
−0.244246 + 0.969713i \(0.578541\pi\)
\(242\) 64.1781 158.922i 0.265199 0.656702i
\(243\) 107.352 259.171i 0.441779 1.06655i
\(244\) −51.9932 + 22.6277i −0.213087 + 0.0927365i
\(245\) −13.4415 389.487i −0.0548632 1.58974i
\(246\) −91.6927 + 93.3380i −0.372735 + 0.379423i
\(247\) −114.287 114.287i −0.462700 0.462700i
\(248\) −51.5174 19.7464i −0.207732 0.0796227i
\(249\) −190.022 + 190.022i −0.763140 + 0.763140i
\(250\) −210.874 + 1.87507i −0.843494 + 0.00750028i
\(251\) −127.133 306.925i −0.506505 1.22281i −0.945883 0.324508i \(-0.894801\pi\)
0.439378 0.898302i \(1.64480\pi\)
\(252\) 167.245 + 27.2161i 0.663671 + 0.108000i
\(253\) 232.338 560.913i 0.918331 2.21705i
\(254\) 309.846 131.582i 1.21987 0.518040i
\(255\) 692.674i 2.71637i
\(256\) −255.353 + 18.1948i −0.997471 + 0.0710735i
\(257\) 15.5019i 0.0603185i 0.999545 + 0.0301593i \(0.00960145\pi\)
−0.999545 + 0.0301593i \(0.990399\pi\)
\(258\) −187.905 442.474i −0.728314 1.71501i
\(259\) 303.390 65.8073i 1.17139 0.254082i
\(260\) −116.329 + 120.541i −0.447418 + 0.463621i
\(261\) −11.4566 + 4.74547i −0.0438949 + 0.0181819i
\(262\) −202.937 + 1.80450i −0.774568 + 0.00688740i
\(263\) 165.858 165.858i 0.630637 0.630637i −0.317591 0.948228i \(-0.602874\pi\)
0.948228 + 0.317591i \(0.102874\pi\)
\(264\) 416.660 + 159.704i 1.57826 + 0.604939i
\(265\) 300.869 300.869i 1.13536 1.13536i
\(266\) −72.7906 + 423.515i −0.273649 + 1.59216i
\(267\) −50.6356 122.245i −0.189646 0.457847i
\(268\) 174.177 + 400.219i 0.649915 + 1.49335i
\(269\) −82.8421 + 199.999i −0.307963 + 0.743489i 0.691808 + 0.722082i \(0.256815\pi\)
−0.999771 + 0.0214073i \(0.993185\pi\)
\(270\) 68.1333 168.716i 0.252346 0.624874i
\(271\) 180.181 0.664873 0.332437 0.943126i \(-0.392129\pi\)
0.332437 + 0.943126i \(0.392129\pi\)
\(272\) 12.7719 + 358.945i 0.0469554 + 1.31965i
\(273\) 117.513 81.4859i 0.430450 0.298483i
\(274\) −276.944 111.840i −1.01075 0.408174i
\(275\) 508.154 + 210.484i 1.84783 + 0.765397i
\(276\) 609.818 + 239.981i 2.20948 + 0.869497i
\(277\) −49.7249 120.047i −0.179512 0.433381i 0.808352 0.588699i \(-0.200360\pi\)
−0.987865 + 0.155318i \(0.950360\pi\)
\(278\) 332.751 338.722i 1.19695 1.21842i
\(279\) −29.5111 + 29.5111i −0.105775 + 0.105775i
\(280\) 440.229 + 67.6269i 1.57225 + 0.241524i
\(281\) −36.3273 + 36.3273i −0.129279 + 0.129279i −0.768785 0.639507i \(-0.779139\pi\)
0.639507 + 0.768785i \(0.279139\pi\)
\(282\) −90.1125 + 0.801273i −0.319548 + 0.00284139i
\(283\) −190.134 459.023i −0.671851 1.62199i −0.778463 0.627690i \(-0.784000\pi\)
0.106612 0.994301i \(1.53400\pi\)
\(284\) −3.63780 204.540i −0.0128091 0.720212i
\(285\) −875.034 362.451i −3.07029 1.27176i
\(286\) 139.361 59.1822i 0.487275 0.206931i
\(287\) 96.9995 67.2615i 0.337977 0.234361i
\(288\) −66.0825 + 182.027i −0.229453 + 0.632040i
\(289\) 214.924 0.743680
\(290\) −30.0020 + 12.7409i −0.103455 + 0.0439342i
\(291\) −37.0135 + 89.3584i −0.127194 + 0.307074i
\(292\) 3.65480 + 205.496i 0.0125164 + 0.703754i
\(293\) 25.7936 + 62.2711i 0.0880326 + 0.212529i 0.961764 0.273879i \(-0.0883067\pi\)
−0.873732 + 0.486408i \(0.838307\pi\)
\(294\) −357.244 130.125i −1.21511 0.442602i
\(295\) −266.636 + 266.636i −0.903851 + 0.903851i
\(296\) 9.46303 + 354.668i 0.0319697 + 1.19820i
\(297\) −116.286 + 116.286i −0.391535 + 0.391535i
\(298\) −166.220 163.291i −0.557787 0.547955i
\(299\) 205.437 85.0947i 0.687080 0.284598i
\(300\) −217.409 + 552.459i −0.724695 + 1.84153i
\(301\) 91.9302 + 423.823i 0.305416 + 1.40805i
\(302\) −213.626 86.2693i −0.707370 0.285660i
\(303\) 49.5798i 0.163630i
\(304\) −460.127 171.688i −1.51357 0.564764i
\(305\) 112.747i 0.369664i
\(306\) 251.929 + 101.738i 0.823297 + 0.332476i
\(307\) 88.8731 214.559i 0.289489 0.698888i −0.710500 0.703698i \(-0.751531\pi\)
0.999988 + 0.00480961i \(0.00153095\pi\)
\(308\) −342.339 211.786i −1.11149 0.687618i
\(309\) 47.2724 + 114.126i 0.152985 + 0.369339i
\(310\) −76.8784 + 78.2578i −0.247995 + 0.252445i
\(311\) −127.342 + 127.342i −0.409459 + 0.409459i −0.881550 0.472091i \(-0.843499\pi\)
0.472091 + 0.881550i \(0.343499\pi\)
\(312\) 66.5466 + 149.267i 0.213290 + 0.478421i
\(313\) 5.09596 + 5.09596i 0.0162810 + 0.0162810i 0.715200 0.698919i \(-0.246335\pi\)
−0.698919 + 0.715200i \(0.746335\pi\)
\(314\) −156.746 + 1.39378i −0.499192 + 0.00443878i
\(315\) 182.322 283.324i 0.578800 0.899441i
\(316\) −58.6484 56.5987i −0.185596 0.179110i
\(317\) −100.992 + 243.816i −0.318586 + 0.769134i 0.680744 + 0.732522i \(0.261657\pi\)
−0.999330 + 0.0366126i \(0.988343\pi\)
\(318\) −162.258 382.081i −0.510245 1.20151i
\(319\) 29.4601 0.0923514
\(320\) −169.439 + 479.992i −0.529498 + 1.49997i
\(321\) 138.193i 0.430508i
\(322\) −499.991 315.498i −1.55277 0.979809i
\(323\) −263.685 + 636.591i −0.816361 + 1.97087i
\(324\) −284.496 274.553i −0.878074 0.847386i
\(325\) 77.0908 + 186.114i 0.237202 + 0.572657i
\(326\) 3.36319 + 378.230i 0.0103165 + 1.16021i
\(327\) −99.2108 99.2108i −0.303397 0.303397i
\(328\) 54.9301 + 123.211i 0.167470 + 0.375643i
\(329\) 79.9974 + 14.4828i 0.243153 + 0.0440207i
\(330\) 621.772 632.929i 1.88416 1.91797i
\(331\) −146.551 353.806i −0.442753 1.06890i −0.974979 0.222297i \(-0.928644\pi\)
0.532226 0.846602i \(-0.321356\pi\)
\(332\) 110.565 + 254.052i 0.333026 + 0.765217i
\(333\) 247.955 + 102.706i 0.744609 + 0.308427i
\(334\) 64.0012 + 25.8459i 0.191620 + 0.0773829i
\(335\) 867.875 2.59067
\(336\) 221.997 373.530i 0.660705 1.11170i
\(337\) 218.464i 0.648260i 0.946012 + 0.324130i \(0.105072\pi\)
−0.946012 + 0.324130i \(0.894928\pi\)
\(338\) −261.990 105.801i −0.775119 0.313020i
\(339\) 26.4985 63.9731i 0.0781667 0.188711i
\(340\) 664.556 + 261.522i 1.95458 + 0.769183i
\(341\) 91.6033 37.9433i 0.268631 0.111271i
\(342\) −260.347 + 265.018i −0.761248 + 0.774908i
\(343\) 294.669 + 175.555i 0.859092 + 0.511821i
\(344\) −495.457 + 13.2195i −1.44028 + 0.0384287i
\(345\) 921.395 921.395i 2.67071 2.67071i
\(346\) 0.480619 + 54.0512i 0.00138907 + 0.156217i
\(347\) −329.609 + 136.528i −0.949881 + 0.393454i −0.803186 0.595728i \(-0.796864\pi\)
−0.146695 + 0.989182i \(0.546864\pi\)
\(348\) 0.565472 + 31.7945i 0.00162492 + 0.0913634i
\(349\) 609.467 + 252.450i 1.74632 + 0.723351i 0.998212 + 0.0597797i \(0.0190398\pi\)
0.748113 + 0.663572i \(0.230960\pi\)
\(350\) 285.823 452.962i 0.816637 1.29418i
\(351\) −60.2317 −0.171600
\(352\) 310.533 339.449i 0.882196 0.964344i
\(353\) 33.5517i 0.0950472i 0.998870 + 0.0475236i \(0.0151329\pi\)
−0.998870 + 0.0475236i \(0.984867\pi\)
\(354\) 143.796 + 338.607i 0.406203 + 0.956516i
\(355\) −375.801 155.662i −1.05859 0.438484i
\(356\) −136.401 + 2.42592i −0.383148 + 0.00681437i
\(357\) −512.662 329.903i −1.43603 0.924099i
\(358\) −574.020 + 5.10413i −1.60341 + 0.0142574i
\(359\) 58.5826 58.5826i 0.163183 0.163183i −0.620792 0.783975i \(-0.713189\pi\)
0.783975 + 0.620792i \(0.213189\pi\)
\(360\) 279.436 + 264.912i 0.776211 + 0.735867i
\(361\) −410.943 410.943i −1.13835 1.13835i
\(362\) −397.989 + 405.130i −1.09942 + 1.11914i
\(363\) −307.161 + 127.230i −0.846173 + 0.350496i
\(364\) −33.8106 143.508i −0.0928863 0.394253i
\(365\) 377.557 + 156.389i 1.03440 + 0.428464i
\(366\) 101.992 + 41.1880i 0.278668 + 0.112536i
\(367\) −496.455 −1.35274 −0.676369 0.736563i \(-0.736447\pi\)
−0.676369 + 0.736563i \(0.736447\pi\)
\(368\) 460.479 494.457i 1.25130 1.34363i
\(369\) 102.046 0.276547
\(370\) 654.133 + 264.161i 1.76793 + 0.713950i
\(371\) 79.3827 + 365.976i 0.213969 + 0.986458i
\(372\) 42.7082 + 98.1334i 0.114807 + 0.263800i
\(373\) 71.1398 + 171.747i 0.190723 + 0.460447i 0.990097 0.140388i \(-0.0448349\pi\)
−0.799373 + 0.600835i \(0.794835\pi\)
\(374\) −460.459 452.342i −1.23117 1.20947i
\(375\) 289.258 + 289.258i 0.771355 + 0.771355i
\(376\) −33.2537 + 86.7571i −0.0884406 + 0.230737i
\(377\) 7.62961 + 7.62961i 0.0202377 + 0.0202377i
\(378\) 92.4198 + 130.782i 0.244497 + 0.345984i
\(379\) 11.3959 4.72034i 0.0300683 0.0124547i −0.367599 0.929985i \(-0.619820\pi\)
0.397667 + 0.917530i \(0.369820\pi\)
\(380\) −678.111 + 702.668i −1.78450 + 1.84913i
\(381\) −603.291 249.892i −1.58344 0.655883i
\(382\) 20.2879 8.61567i 0.0531098 0.0225541i
\(383\) 714.702i 1.86606i −0.359794 0.933032i \(-0.617153\pi\)
0.359794 0.933032i \(-0.382847\pi\)
\(384\) 372.307 + 328.623i 0.969549 + 0.855790i
\(385\) −657.758 + 456.103i −1.70846 + 1.18468i
\(386\) 253.758 107.764i 0.657405 0.279180i
\(387\) −143.477 + 346.383i −0.370740 + 0.895047i
\(388\) 71.7565 + 69.2487i 0.184939 + 0.178476i
\(389\) 249.801 103.471i 0.642162 0.265992i −0.0377486 0.999287i \(-0.512019\pi\)
0.679911 + 0.733295i \(0.262019\pi\)
\(390\) 324.944 2.88937i 0.833189 0.00740865i
\(391\) −670.319 670.319i −1.71437 1.71437i
\(392\) −259.722 + 293.613i −0.662556 + 0.749012i
\(393\) 278.371 + 278.371i 0.708324 + 0.708324i
\(394\) −11.7452 + 11.9559i −0.0298101 + 0.0303450i
\(395\) −149.725 + 62.0181i −0.379050 + 0.157008i
\(396\) −138.876 319.104i −0.350696 0.805818i
\(397\) −79.2933 + 191.431i −0.199731 + 0.482194i −0.991732 0.128326i \(-0.959040\pi\)
0.792001 + 0.610520i \(0.209040\pi\)
\(398\) −258.244 104.288i −0.648854 0.262030i
\(399\) 685.014 475.003i 1.71683 1.19048i
\(400\) 447.949 + 417.167i 1.11987 + 1.04292i
\(401\) 524.533i 1.30806i −0.756468 0.654031i \(-0.773076\pi\)
0.756468 0.654031i \(-0.226924\pi\)
\(402\) 317.045 785.088i 0.788670 1.95295i
\(403\) 33.5501 + 13.8969i 0.0832509 + 0.0344837i
\(404\) −47.5672 18.7191i −0.117741 0.0463344i
\(405\) −726.297 + 300.842i −1.79333 + 0.742820i
\(406\) 4.85938 28.2732i 0.0119689 0.0696384i
\(407\) −450.855 450.855i −1.10775 1.10775i
\(408\) 479.346 505.627i 1.17487 1.23928i
\(409\) 21.1430 + 21.1430i 0.0516944 + 0.0516944i 0.732481 0.680787i \(-0.238362\pi\)
−0.680787 + 0.732481i \(0.738362\pi\)
\(410\) 268.221 2.38500i 0.654197 0.00581707i
\(411\) 221.717 + 535.272i 0.539457 + 1.30236i
\(412\) 127.341 2.26479i 0.309080 0.00549706i
\(413\) −70.3504 324.334i −0.170340 0.785313i
\(414\) −199.785 470.447i −0.482572 1.13635i
\(415\) 550.912 1.32750
\(416\) 168.333 7.48876i 0.404647 0.0180018i
\(417\) −921.070 −2.20880
\(418\) 812.370 344.989i 1.94347 0.825333i
\(419\) 265.757 + 110.080i 0.634266 + 0.262722i 0.676564 0.736383i \(-0.263468\pi\)
−0.0422985 + 0.999105i \(0.513468\pi\)
\(420\) −504.869 701.122i −1.20207 1.66934i
\(421\) −174.689 + 72.3586i −0.414938 + 0.171873i −0.580379 0.814347i \(-0.697095\pi\)
0.165440 + 0.986220i \(0.447095\pi\)
\(422\) 466.222 4.14561i 1.10479 0.00982371i
\(423\) 49.6978 + 49.6978i 0.117489 + 0.117489i
\(424\) −427.832 + 11.4151i −1.00904 + 0.0269225i
\(425\) 607.269 607.269i 1.42887 1.42887i
\(426\) −278.098 + 283.088i −0.652812 + 0.664526i
\(427\) −83.4465 53.6988i −0.195425 0.125758i
\(428\) −132.583 52.1755i −0.309774 0.121905i
\(429\) −271.345 112.395i −0.632505 0.261992i
\(430\) −369.023 + 913.798i −0.858193 + 2.12511i
\(431\) 631.961i 1.46627i 0.680084 + 0.733134i \(0.261943\pi\)
−0.680084 + 0.733134i \(0.738057\pi\)
\(432\) −166.490 + 76.0067i −0.385394 + 0.175941i
\(433\) −394.290 −0.910599 −0.455300 0.890338i \(-0.650468\pi\)
−0.455300 + 0.890338i \(0.650468\pi\)
\(434\) −21.3049 94.1714i −0.0490896 0.216985i
\(435\) 58.4159 + 24.1966i 0.134289 + 0.0556245i
\(436\) −132.641 + 57.7260i −0.304223 + 0.132399i
\(437\) 1197.55 496.040i 2.74038 1.13510i
\(438\) 279.398 284.411i 0.637894 0.649340i
\(439\) 350.469 350.469i 0.798335 0.798335i −0.184498 0.982833i \(-0.559066\pi\)
0.982833 + 0.184498i \(0.0590659\pi\)
\(440\) −372.483 835.498i −0.846553 1.89886i
\(441\) 122.858 + 269.880i 0.278590 + 0.611973i
\(442\) −2.10203 236.398i −0.00475573 0.534837i
\(443\) 72.8526 30.1765i 0.164453 0.0681186i −0.298938 0.954272i \(-0.596633\pi\)
0.463391 + 0.886154i \(0.346633\pi\)
\(444\) 477.926 495.234i 1.07641 1.11539i
\(445\) −103.805 + 250.608i −0.233270 + 0.563165i
\(446\) 65.6926 + 154.691i 0.147293 + 0.346841i
\(447\) 451.995i 1.01117i
\(448\) −274.551 354.013i −0.612838 0.790208i
\(449\) 424.124 0.944597 0.472299 0.881439i \(-0.343424\pi\)
0.472299 + 0.881439i \(0.343424\pi\)
\(450\) 426.197 180.993i 0.947105 0.402207i
\(451\) −223.978 92.7748i −0.496626 0.205709i
\(452\) −51.3716 49.5762i −0.113654 0.109682i
\(453\) 171.025 + 412.891i 0.377539 + 0.911459i
\(454\) −516.288 + 4.59079i −1.13720 + 0.0101119i
\(455\) −288.469 52.2247i −0.633997 0.114779i
\(456\) 387.918 + 870.119i 0.850698 + 1.90816i
\(457\) 370.363 + 370.363i 0.810422 + 0.810422i 0.984697 0.174275i \(-0.0557582\pi\)
−0.174275 + 0.984697i \(0.555758\pi\)
\(458\) −435.765 428.084i −0.951452 0.934681i
\(459\) 98.2649 + 237.232i 0.214085 + 0.516846i
\(460\) −536.116 1231.87i −1.16547 2.67798i
\(461\) 46.9183 113.271i 0.101775 0.245707i −0.864787 0.502138i \(-0.832547\pi\)
0.966562 + 0.256432i \(0.0825469\pi\)
\(462\) 172.308 + 761.634i 0.372962 + 1.64856i
\(463\) 701.019i 1.51408i −0.653368 0.757040i \(-0.726645\pi\)
0.653368 0.757040i \(-0.273355\pi\)
\(464\) 30.7173 + 11.4616i 0.0662011 + 0.0247018i
\(465\) 212.803 0.457640
\(466\) 1.51204 + 0.610612i 0.00324471 + 0.00131033i
\(467\) 189.504 457.503i 0.405790 0.979664i −0.580443 0.814301i \(-0.697121\pi\)
0.986233 0.165363i \(-0.0528795\pi\)
\(468\) 46.6757 118.608i 0.0997344 0.253436i
\(469\) −413.347 + 642.331i −0.881337 + 1.36958i
\(470\) 131.789 + 129.466i 0.280402 + 0.275459i
\(471\) 215.011 + 215.011i 0.456499 + 0.456499i
\(472\) 379.152 10.1163i 0.803289 0.0214329i
\(473\) 629.827 629.827i 1.33156 1.33156i
\(474\) 1.40580 + 158.098i 0.00296582 + 0.333541i
\(475\) 449.383 + 1084.91i 0.946069 + 2.28401i
\(476\) −510.069 + 367.294i −1.07157 + 0.771627i
\(477\) −123.893 + 299.105i −0.259735 + 0.627055i
\(478\) −119.740 281.959i −0.250501 0.589873i
\(479\) 405.844i 0.847273i 0.905832 + 0.423636i \(0.139247\pi\)
−0.905832 + 0.423636i \(0.860753\pi\)
\(480\) 894.551 418.035i 1.86365 0.870906i
\(481\) 233.526i 0.485501i
\(482\) 216.721 92.0347i 0.449628 0.190943i
\(483\) 243.105 + 1120.78i 0.503323 + 2.32046i
\(484\) 6.09551 + 342.729i 0.0125940 + 0.708117i
\(485\) 183.189 75.8793i 0.377709 0.156452i
\(486\) 4.98862 + 561.028i 0.0102646 + 1.15438i
\(487\) 25.1617 25.1617i 0.0516667 0.0516667i −0.680801 0.732468i \(-0.738368\pi\)
0.732468 + 0.680801i \(0.238368\pi\)
\(488\) 78.0237 82.3014i 0.159885 0.168651i
\(489\) 518.823 518.823i 1.06099 1.06099i
\(490\) 329.232 + 706.491i 0.671902 + 1.44182i
\(491\) −57.5384 138.910i −0.117186 0.282913i 0.854393 0.519628i \(-0.173929\pi\)
−0.971579 + 0.236715i \(0.923929\pi\)
\(492\) 95.8269 243.506i 0.194770 0.494932i
\(493\) 17.6032 42.4978i 0.0357062 0.0862024i
\(494\) 299.734 + 121.043i 0.606749 + 0.245026i
\(495\) −691.977 −1.39793
\(496\) 110.275 3.92376i 0.222328 0.00791081i
\(497\) 294.193 204.000i 0.591938 0.410462i
\(498\) 201.255 498.360i 0.404126 1.00072i
\(499\) −775.974 321.419i −1.55506 0.644126i −0.570836 0.821064i \(-0.693381\pi\)
−0.984222 + 0.176938i \(0.943381\pi\)
\(500\) 386.727 168.306i 0.773455 0.336611i
\(501\) −51.2383 123.700i −0.102272 0.246907i
\(502\) 473.980 + 465.625i 0.944183 + 0.927540i
\(503\) −325.069 + 325.069i −0.646260 + 0.646260i −0.952087 0.305827i \(-0.901067\pi\)
0.305827 + 0.952087i \(0.401067\pi\)
\(504\) −329.155 + 80.6450i −0.653085 + 0.160010i
\(505\) −71.8710 + 71.8710i −0.142319 + 0.142319i
\(506\) 10.7966 + 1214.21i 0.0213372 + 2.39962i
\(507\) 209.745 + 506.369i 0.413698 + 0.998755i
\(508\) −467.523 + 484.454i −0.920321 + 0.953650i
\(509\) −709.684 293.961i −1.39427 0.577526i −0.446013 0.895027i \(-0.647156\pi\)
−0.948258 + 0.317501i \(0.897156\pi\)
\(510\) −541.509 1275.13i −1.06178 2.50026i
\(511\) −295.568 + 204.953i −0.578411 + 0.401083i
\(512\) 455.850 233.120i 0.890331 0.455313i
\(513\) −351.107 −0.684419
\(514\) −12.1188 28.5371i −0.0235775 0.0555196i
\(515\) 96.9106 233.963i 0.188176 0.454297i
\(516\) 691.822 + 667.643i 1.34074 + 1.29388i
\(517\) −63.8979 154.263i −0.123594 0.298381i
\(518\) −507.058 + 358.323i −0.978877 + 0.691744i
\(519\) 74.1429 74.1429i 0.142857 0.142857i
\(520\) 119.912 312.844i 0.230600 0.601623i
\(521\) −89.6979 + 89.6979i −0.172165 + 0.172165i −0.787930 0.615765i \(-0.788847\pi\)
0.615765 + 0.787930i \(0.288847\pi\)
\(522\) 17.3803 17.6922i 0.0332957 0.0338931i
\(523\) −941.398 + 389.940i −1.80000 + 0.745583i −0.813551 + 0.581493i \(0.802469\pi\)
−0.986445 + 0.164090i \(0.947531\pi\)
\(524\) 372.172 161.971i 0.710252 0.309105i
\(525\) −1015.36 + 220.239i −1.93402 + 0.419502i
\(526\) −175.662 + 434.986i −0.333959 + 0.826970i
\(527\) 154.815i 0.293766i
\(528\) −891.872 + 31.7344i −1.68915 + 0.0601029i
\(529\) 1254.32i 2.37111i
\(530\) −318.655 + 789.074i −0.601236 + 1.48882i
\(531\) 109.797 265.073i 0.206773 0.499195i
\(532\) −197.091 836.546i −0.370472 1.57246i
\(533\) −33.9792 82.0330i −0.0637508 0.153908i
\(534\) 188.781 + 185.454i 0.353523 + 0.347291i
\(535\) −200.325 + 200.325i −0.374439 + 0.374439i
\(536\) −633.517 600.589i −1.18193 1.12050i
\(537\) 787.391 + 787.391i 1.46628 + 1.46628i
\(538\) −3.84964 432.937i −0.00715546 0.804715i
\(539\) −24.2973 704.050i −0.0450785 1.30621i
\(540\) 6.47117 + 363.851i 0.0119836 + 0.673797i
\(541\) 338.131 816.322i 0.625012 1.50891i −0.220738 0.975333i \(-0.570847\pi\)
0.845750 0.533579i \(-0.179153\pi\)
\(542\) −331.691 + 140.859i −0.611976 + 0.259888i
\(543\) 1101.65 2.02882
\(544\) −304.122 650.790i −0.559048 1.19630i
\(545\) 287.632i 0.527766i
\(546\) −152.624 + 241.873i −0.279531 + 0.442991i
\(547\) 206.247 497.925i 0.377051 0.910283i −0.615464 0.788165i \(-0.711031\pi\)
0.992516 0.122118i \(-0.0389686\pi\)
\(548\) 597.254 10.6223i 1.08988 0.0193838i
\(549\) −32.8293 79.2570i −0.0597984 0.144366i
\(550\) −1100.00 + 9.78111i −2.00000 + 0.0177838i
\(551\) 44.4750 + 44.4750i 0.0807170 + 0.0807170i
\(552\) −1310.21 + 34.9582i −2.37357 + 0.0633301i
\(553\) 25.4094 140.352i 0.0459484 0.253801i
\(554\) 185.386 + 182.118i 0.334632 + 0.328733i
\(555\) −523.688 1264.29i −0.943582 2.27801i
\(556\) −347.754 + 883.681i −0.625457 + 1.58935i
\(557\) −714.450 295.935i −1.28268 0.531301i −0.365881 0.930662i \(-0.619232\pi\)
−0.916794 + 0.399360i \(0.869232\pi\)
\(558\) 31.2557 77.3973i 0.0560138 0.138705i
\(559\) 326.226 0.583589
\(560\) −863.277 + 219.663i −1.54157 + 0.392255i
\(561\) 1252.10i 2.23191i
\(562\) 38.4748 95.2737i 0.0684605 0.169526i
\(563\) −171.531 + 414.113i −0.304674 + 0.735548i 0.695186 + 0.718830i \(0.255322\pi\)
−0.999860 + 0.0167182i \(0.994678\pi\)
\(564\) 165.260 71.9220i 0.293014 0.127521i
\(565\) −131.148 + 54.3232i −0.232120 + 0.0961473i
\(566\) 708.863 + 696.367i 1.25241 + 1.23033i
\(567\) 123.258 680.830i 0.217386 1.20076i
\(568\) 166.599 + 373.690i 0.293309 + 0.657905i
\(569\) −793.044 + 793.044i −1.39375 + 1.39375i −0.577023 + 0.816728i \(0.695786\pi\)
−0.816728 + 0.577023i \(0.804214\pi\)
\(570\) 1894.18 16.8429i 3.32313 0.0295490i
\(571\) −39.5651 + 16.3884i −0.0692908 + 0.0287012i −0.417060 0.908879i \(-0.636939\pi\)
0.347769 + 0.937580i \(0.386939\pi\)
\(572\) −210.280 + 217.895i −0.367622 + 0.380935i
\(573\) −39.5020 16.3623i −0.0689389 0.0285554i
\(574\) −125.982 + 199.651i −0.219480 + 0.347825i
\(575\) −1615.58 −2.80970
\(576\) −20.6529 386.752i −0.0358557 0.671444i
\(577\) 374.127i 0.648400i −0.945988 0.324200i \(-0.894905\pi\)
0.945988 0.324200i \(-0.105095\pi\)
\(578\) −395.649 + 168.020i −0.684513 + 0.290692i
\(579\) −494.085 204.657i −0.853342 0.353466i
\(580\) 45.2696 46.9090i 0.0780510 0.0808776i
\(581\) −262.386 + 407.741i −0.451610 + 0.701791i
\(582\) −1.72000 193.434i −0.00295533 0.332361i
\(583\) 543.862 543.862i 0.932868 0.932868i
\(584\) −167.378 375.437i −0.286606 0.642871i
\(585\) −179.209 179.209i −0.306340 0.306340i
\(586\) −96.1643 94.4692i −0.164103 0.161210i
\(587\) 780.464 323.279i 1.32958 0.550730i 0.399045 0.916931i \(-0.369342\pi\)
0.930536 + 0.366201i \(0.119342\pi\)
\(588\) 759.371 39.7364i 1.29145 0.0675790i
\(589\) 195.573 + 81.0089i 0.332042 + 0.137536i
\(590\) 282.398 699.292i 0.478641 1.18524i
\(591\) 32.5112 0.0550104
\(592\) −294.688 645.503i −0.497783 1.09038i
\(593\) 478.878 0.807551 0.403776 0.914858i \(-0.367698\pi\)
0.403776 + 0.914858i \(0.367698\pi\)
\(594\) 123.160 304.977i 0.207340 0.513429i
\(595\) 264.927 + 1221.38i 0.445255 + 2.05275i
\(596\) 433.647 + 170.653i 0.727596 + 0.286330i
\(597\) 206.746 + 499.128i 0.346308 + 0.836061i
\(598\) −311.661 + 317.253i −0.521171 + 0.530523i
\(599\) −30.8493 30.8493i −0.0515014 0.0515014i 0.680887 0.732388i \(-0.261594\pi\)
−0.732388 + 0.680887i \(0.761594\pi\)
\(600\) −31.6701 1186.97i −0.0527835 1.97829i
\(601\) 462.584 + 462.584i 0.769691 + 0.769691i 0.978052 0.208361i \(-0.0668128\pi\)
−0.208361 + 0.978052i \(0.566813\pi\)
\(602\) −500.563 708.340i −0.831501 1.17665i
\(603\) −610.082 + 252.704i −1.01174 + 0.419078i
\(604\) 460.702 8.19369i 0.762751 0.0135657i
\(605\) 629.694 + 260.828i 1.04082 + 0.431120i
\(606\) 38.7598 + 91.2705i 0.0639601 + 0.150611i
\(607\) 552.240i 0.909785i 0.890546 + 0.454893i \(0.150322\pi\)
−0.890546 + 0.454893i \(0.849678\pi\)
\(608\) 981.258 43.6540i 1.61391 0.0717993i
\(609\) −45.7304 + 31.7104i −0.0750910 + 0.0520697i
\(610\) −88.1421 207.555i −0.144495 0.340253i
\(611\) 23.4029 56.4995i 0.0383026 0.0924706i
\(612\) −543.306 + 9.66283i −0.887755 + 0.0157889i
\(613\) −911.737 + 377.654i −1.48734 + 0.616075i −0.970735 0.240152i \(-0.922803\pi\)
−0.516601 + 0.856226i \(0.672803\pi\)
\(614\) 4.12989 + 464.455i 0.00672621 + 0.756441i
\(615\) −367.922 367.922i −0.598248 0.598248i
\(616\) 795.773 + 122.245i 1.29184 + 0.198449i
\(617\) −22.0424 22.0424i −0.0357251 0.0357251i 0.689019 0.724744i \(-0.258042\pi\)
−0.724744 + 0.689019i \(0.758042\pi\)
\(618\) −176.242 173.136i −0.285182 0.280155i
\(619\) 19.1061 7.91402i 0.0308661 0.0127852i −0.367197 0.930143i \(-0.619683\pi\)
0.398063 + 0.917358i \(0.369683\pi\)
\(620\) 80.3446 204.164i 0.129588 0.329297i
\(621\) 184.855 446.279i 0.297673 0.718645i
\(622\) 134.870 333.973i 0.216832 0.536933i
\(623\) −136.040 196.187i −0.218363 0.314907i
\(624\) −239.196 222.759i −0.383328 0.356986i
\(625\) 117.813i 0.188501i
\(626\) −13.3649 5.39721i −0.0213497 0.00862174i
\(627\) −1581.74 655.178i −2.52271 1.04494i
\(628\) 287.462 125.105i 0.457741 0.199211i
\(629\) −919.780 + 380.985i −1.46229 + 0.605700i
\(630\) −114.140 + 664.099i −0.181175 + 1.05412i
\(631\) −136.776 136.776i −0.216761 0.216761i 0.590371 0.807132i \(-0.298981\pi\)
−0.807132 + 0.590371i \(0.798981\pi\)
\(632\) 152.212 + 58.3421i 0.240841 + 0.0923134i
\(633\) −639.523 639.523i −1.01031 1.01031i
\(634\) −4.69304 527.787i −0.00740227 0.832472i
\(635\) 512.289 + 1236.78i 0.806755 + 1.94768i
\(636\) 597.395 + 576.517i 0.939301 + 0.906473i
\(637\) 176.043 188.628i 0.276363 0.296119i
\(638\) −54.2325 + 23.0309i −0.0850040 + 0.0360986i
\(639\) 309.498 0.484348
\(640\) −63.3238 1016.07i −0.0989434 1.58761i
\(641\) 1094.21 1.70703 0.853515 0.521069i \(-0.174467\pi\)
0.853515 + 0.521069i \(0.174467\pi\)
\(642\) 108.035 + 254.397i 0.168278 + 0.396257i
\(643\) −399.662 165.545i −0.621558 0.257458i 0.0496032 0.998769i \(-0.484204\pi\)
−0.671162 + 0.741311i \(0.734204\pi\)
\(644\) 1167.07 + 189.919i 1.81222 + 0.294906i
\(645\) 1766.17 731.571i 2.73825 1.13422i
\(646\) −12.2533 1378.03i −0.0189680 2.13317i
\(647\) 21.9517 + 21.9517i 0.0339284 + 0.0339284i 0.723867 0.689939i \(-0.242363\pi\)
−0.689939 + 0.723867i \(0.742363\pi\)
\(648\) 738.360 + 283.010i 1.13944 + 0.436744i
\(649\) −481.980 + 481.980i −0.742650 + 0.742650i
\(650\) −287.412 282.346i −0.442173 0.434378i
\(651\) −101.353 + 157.499i −0.155687 + 0.241934i
\(652\) −301.878 693.646i −0.463003 1.06387i
\(653\) 882.974 + 365.740i 1.35218 + 0.560092i 0.936899 0.349601i \(-0.113683\pi\)
0.415283 + 0.909692i \(0.363683\pi\)
\(654\) 260.195 + 105.076i 0.397852 + 0.160666i
\(655\) 807.056i 1.23215i
\(656\) −197.442 183.874i −0.300978 0.280296i
\(657\) −310.945 −0.473280
\(658\) −158.588 + 35.8781i −0.241015 + 0.0545261i
\(659\) 11.9594 + 4.95374i 0.0181478 + 0.00751706i 0.391739 0.920076i \(-0.371874\pi\)
−0.373591 + 0.927594i \(0.621874\pi\)
\(660\) −649.806 + 1651.23i −0.984555 + 2.50186i
\(661\) 250.933 103.940i 0.379626 0.157246i −0.184707 0.982794i \(-0.559134\pi\)
0.564333 + 0.825547i \(0.309134\pi\)
\(662\) 546.377 + 536.746i 0.825342 + 0.810794i
\(663\) −324.271 + 324.271i −0.489096 + 0.489096i
\(664\) −402.146 381.244i −0.605641 0.574162i
\(665\) −1681.56 304.432i −2.52867 0.457792i
\(666\) −536.747 + 4.77272i −0.805927 + 0.00716624i
\(667\) −79.9463 + 33.1148i −0.119859 + 0.0496474i
\(668\) −138.024 + 2.45479i −0.206623 + 0.00367484i
\(669\) 124.759 301.194i 0.186485 0.450215i
\(670\) −1597.65 + 678.475i −2.38456 + 1.01265i
\(671\) 203.806i 0.303735i
\(672\) −116.656 + 861.174i −0.173596 + 1.28151i
\(673\) 175.371 0.260582 0.130291 0.991476i \(-0.458409\pi\)
0.130291 + 0.991476i \(0.458409\pi\)
\(674\) −170.788 402.166i −0.253394 0.596685i
\(675\) 404.302 + 167.467i 0.598966 + 0.248100i
\(676\) 565.004 10.0487i 0.835805 0.0148650i
\(677\) 138.622 + 334.663i 0.204759 + 0.494332i 0.992583 0.121568i \(-0.0387923\pi\)
−0.787824 + 0.615901i \(0.788792\pi\)
\(678\) 1.23138 + 138.483i 0.00181619 + 0.204251i
\(679\) −31.0885 + 171.721i −0.0457858 + 0.252903i
\(680\) −1427.82 + 38.0962i −2.09973 + 0.0560238i
\(681\) 708.199 + 708.199i 1.03994 + 1.03994i
\(682\) −138.968 + 141.462i −0.203765 + 0.207422i
\(683\) 430.794 + 1040.03i 0.630738 + 1.52274i 0.838697 + 0.544599i \(0.183318\pi\)
−0.207959 + 0.978138i \(0.566682\pi\)
\(684\) 272.085 691.398i 0.397785 1.01082i
\(685\) 454.530 1097.33i 0.663547 1.60194i
\(686\) −679.692 92.8131i −0.990805 0.135296i
\(687\) 1184.95i 1.72482i
\(688\) 901.742 411.667i 1.31067 0.598353i
\(689\) 281.700 0.408853
\(690\) −975.863 + 2416.49i −1.41429 + 3.50217i
\(691\) −241.990 + 584.215i −0.350202 + 0.845462i 0.646393 + 0.763005i \(0.276277\pi\)
−0.996595 + 0.0824574i \(0.973723\pi\)
\(692\) −43.1402 99.1262i −0.0623413 0.143246i
\(693\) 329.572 512.146i 0.475572 0.739027i
\(694\) 500.037 509.009i 0.720515 0.733443i
\(695\) 1335.18 + 1335.18i 1.92113 + 1.92113i
\(696\) −25.8968 58.0877i −0.0372080 0.0834594i
\(697\) −267.665 + 267.665i −0.384025 + 0.384025i
\(698\) −1319.31 + 11.7312i −1.89013 + 0.0168069i
\(699\) −1.21051 2.92243i −0.00173178 0.00418087i
\(700\) −172.056 + 1057.30i −0.245794 + 1.51042i
\(701\) 287.373 693.779i 0.409947 0.989700i −0.575204 0.818010i \(-0.695077\pi\)
0.985151 0.171690i \(-0.0549226\pi\)
\(702\) 110.879 47.0871i 0.157948 0.0670756i
\(703\) 1361.28i 1.93639i
\(704\) −306.284 + 867.649i −0.435063 + 1.23246i
\(705\) 358.367i 0.508322i
\(706\) −26.2296 61.7646i −0.0371524 0.0874853i
\(707\) −18.9628 87.4235i −0.0268214 0.123654i
\(708\) −529.422 510.920i −0.747772 0.721638i
\(709\) −762.733 + 315.934i −1.07579 + 0.445606i −0.849030 0.528345i \(-0.822813\pi\)
−0.226758 + 0.973951i \(0.572813\pi\)
\(710\) 813.496 7.23354i 1.14577 0.0101881i
\(711\) 87.1925 87.1925i 0.122634 0.122634i
\(712\) 249.201 111.099i 0.350001 0.156038i
\(713\) −205.935 + 205.935i −0.288828 + 0.288828i
\(714\) 1201.66 + 206.531i 1.68299 + 0.289260i
\(715\) 230.414 + 556.269i 0.322258 + 0.777999i
\(716\) 1052.71 458.145i 1.47027 0.639867i
\(717\) −227.401 + 548.994i −0.317156 + 0.765682i
\(718\) −62.0457 + 153.642i −0.0864146 + 0.213985i
\(719\) −925.249 −1.28685 −0.643427 0.765507i \(-0.722488\pi\)
−0.643427 + 0.765507i \(0.722488\pi\)
\(720\) −721.507 269.218i −1.00209 0.373914i
\(721\) 127.004 + 183.156i 0.176150 + 0.254031i
\(722\) 1077.76 + 435.236i 1.49274 + 0.602820i
\(723\) −421.970 174.786i −0.583638 0.241751i
\(724\) 415.933 1056.93i 0.574493 1.45985i
\(725\) −30.0001 72.4266i −0.0413794 0.0998987i
\(726\) 465.982 474.344i 0.641849 0.653366i
\(727\) −955.333 + 955.333i −1.31408 + 1.31408i −0.395693 + 0.918383i \(0.629496\pi\)
−0.918383 + 0.395693i \(0.870504\pi\)
\(728\) 174.431 + 237.749i 0.239603 + 0.326578i
\(729\) 140.540 140.540i 0.192785 0.192785i
\(730\) −817.298 + 7.26735i −1.11959 + 0.00995527i
\(731\) −532.221 1284.90i −0.728073 1.75772i
\(732\) −219.955 + 3.91196i −0.300485 + 0.00534420i
\(733\) 1186.84 + 491.607i 1.61916 + 0.670678i 0.993956 0.109782i \(-0.0350154\pi\)
0.625205 + 0.780461i \(0.285015\pi\)
\(734\) 913.914 388.111i 1.24511 0.528762i
\(735\) 530.082 1416.00i 0.721201 1.92653i
\(736\) −461.137 + 1270.22i −0.626545 + 1.72585i
\(737\) 1568.80 2.12863
\(738\) −187.854 + 79.7760i −0.254545 + 0.108098i
\(739\) 453.113 1093.91i 0.613143 1.48026i −0.246386 0.969172i \(-0.579243\pi\)
0.859529 0.511087i \(-0.170757\pi\)
\(740\) −1410.69 + 25.0895i −1.90634 + 0.0339048i
\(741\) −239.962 579.320i −0.323835 0.781808i
\(742\) −432.242 611.659i −0.582536 0.824339i
\(743\) 181.750 181.750i 0.244617 0.244617i −0.574140 0.818757i \(-0.694664\pi\)
0.818757 + 0.574140i \(0.194664\pi\)
\(744\) −155.338 147.264i −0.208788 0.197936i
\(745\) 655.213 655.213i 0.879480 0.879480i
\(746\) −265.226 260.551i −0.355530 0.349263i
\(747\) −387.270 + 160.412i −0.518433 + 0.214742i
\(748\) 1201.27 + 472.737i 1.60598 + 0.632001i
\(749\) −52.8546 243.674i −0.0705669 0.325333i
\(750\) −758.622 306.358i −1.01150 0.408477i
\(751\) 681.170i 0.907017i 0.891252 + 0.453508i \(0.149828\pi\)
−0.891252 + 0.453508i \(0.850172\pi\)
\(752\) −6.60775 185.706i −0.00878690 0.246950i
\(753\) 1288.87i 1.71165i
\(754\) −20.0098 8.08063i −0.0265382 0.0107170i
\(755\) 350.609 846.446i 0.464383 1.12112i
\(756\) −272.375 168.503i −0.360284 0.222888i
\(757\) −410.869