Properties

Label 224.3.s.b.33.3
Level 224
Weight 3
Character 224.33
Analytic conductor 6.104
Analytic rank 0
Dimension 16
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 33.3
Root \(1.20279 + 1.51093i\) of \(x^{16} - 26 x^{14} - 16 x^{13} + 469 x^{12} + 144 x^{11} - 4526 x^{10} + 4440 x^{9} + 32608 x^{8} - 33728 x^{7} - 49760 x^{6} + 203528 x^{5} + 27401 x^{4} - 156928 x^{3} + 114964 x^{2} - 248608 x + 208849\)
Character \(\chi\) \(=\) 224.33
Dual form 224.3.s.b.129.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.20101 + 1.27075i) q^{3} +(3.56697 + 2.05939i) q^{5} +(-6.98814 + 0.407289i) q^{7} +(-1.27038 + 2.20036i) q^{9} +O(q^{10})\) \(q+(-2.20101 + 1.27075i) q^{3} +(3.56697 + 2.05939i) q^{5} +(-6.98814 + 0.407289i) q^{7} +(-1.27038 + 2.20036i) q^{9} +(-1.63392 - 2.83003i) q^{11} -5.88759i q^{13} -10.4679 q^{15} +(-12.0204 + 6.93999i) q^{17} +(-13.7058 - 7.91304i) q^{19} +(14.8634 - 9.77664i) q^{21} +(-18.2518 + 31.6131i) q^{23} +(-4.01784 - 6.95910i) q^{25} -29.3309i q^{27} -28.4655 q^{29} +(-36.2014 + 20.9009i) q^{31} +(7.19253 + 4.15261i) q^{33} +(-25.7652 - 12.9385i) q^{35} +(-7.14285 + 12.3718i) q^{37} +(7.48167 + 12.9586i) q^{39} -21.3515i q^{41} +55.3992 q^{43} +(-9.06280 + 5.23241i) q^{45} +(29.3178 + 16.9266i) q^{47} +(48.6682 - 5.69238i) q^{49} +(17.6380 - 30.5499i) q^{51} +(42.4271 + 73.4859i) q^{53} -13.4595i q^{55} +40.2220 q^{57} +(58.5062 - 33.7786i) q^{59} +(-25.6135 - 14.7879i) q^{61} +(7.98140 - 15.8938i) q^{63} +(12.1248 - 21.0008i) q^{65} +(27.4789 + 47.5949i) q^{67} -92.7741i q^{69} +83.8102 q^{71} +(-108.784 + 62.8065i) q^{73} +(17.6866 + 10.2113i) q^{75} +(12.5707 + 19.1112i) q^{77} +(-35.1955 + 60.9604i) q^{79} +(25.8389 + 44.7542i) q^{81} -27.1264i q^{83} -57.1685 q^{85} +(62.6527 - 36.1726i) q^{87} +(-126.553 - 73.0654i) q^{89} +(2.39795 + 41.1433i) q^{91} +(53.1196 - 92.0059i) q^{93} +(-32.5920 - 56.4511i) q^{95} +11.3574i q^{97} +8.30278 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 40q^{9} + O(q^{10}) \) \( 16q + 40q^{9} - 48q^{17} - 136q^{21} + 80q^{25} - 16q^{29} - 264q^{33} + 72q^{37} + 312q^{45} + 128q^{49} + 40q^{53} + 368q^{57} + 216q^{61} - 168q^{65} - 312q^{73} + 64q^{77} - 384q^{81} - 1072q^{85} + 24q^{89} - 168q^{93} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.20101 + 1.27075i −0.733669 + 0.423584i −0.819763 0.572703i \(-0.805895\pi\)
0.0860939 + 0.996287i \(0.472561\pi\)
\(4\) 0 0
\(5\) 3.56697 + 2.05939i 0.713393 + 0.411878i 0.812316 0.583217i \(-0.198206\pi\)
−0.0989230 + 0.995095i \(0.531540\pi\)
\(6\) 0 0
\(7\) −6.98814 + 0.407289i −0.998306 + 0.0581841i
\(8\) 0 0
\(9\) −1.27038 + 2.20036i −0.141153 + 0.244485i
\(10\) 0 0
\(11\) −1.63392 2.83003i −0.148538 0.257275i 0.782149 0.623091i \(-0.214123\pi\)
−0.930687 + 0.365816i \(0.880790\pi\)
\(12\) 0 0
\(13\) 5.88759i 0.452892i −0.974024 0.226446i \(-0.927289\pi\)
0.974024 0.226446i \(-0.0727107\pi\)
\(14\) 0 0
\(15\) −10.4679 −0.697859
\(16\) 0 0
\(17\) −12.0204 + 6.93999i −0.707083 + 0.408234i −0.809980 0.586458i \(-0.800522\pi\)
0.102897 + 0.994692i \(0.467189\pi\)
\(18\) 0 0
\(19\) −13.7058 7.91304i −0.721357 0.416476i 0.0938951 0.995582i \(-0.470068\pi\)
−0.815252 + 0.579107i \(0.803402\pi\)
\(20\) 0 0
\(21\) 14.8634 9.77664i 0.707780 0.465554i
\(22\) 0 0
\(23\) −18.2518 + 31.6131i −0.793557 + 1.37448i 0.130194 + 0.991488i \(0.458440\pi\)
−0.923751 + 0.382993i \(0.874894\pi\)
\(24\) 0 0
\(25\) −4.01784 6.95910i −0.160713 0.278364i
\(26\) 0 0
\(27\) 29.3309i 1.08633i
\(28\) 0 0
\(29\) −28.4655 −0.981568 −0.490784 0.871281i \(-0.663290\pi\)
−0.490784 + 0.871281i \(0.663290\pi\)
\(30\) 0 0
\(31\) −36.2014 + 20.9009i −1.16779 + 0.674222i −0.953158 0.302474i \(-0.902187\pi\)
−0.214629 + 0.976696i \(0.568854\pi\)
\(32\) 0 0
\(33\) 7.19253 + 4.15261i 0.217955 + 0.125837i
\(34\) 0 0
\(35\) −25.7652 12.9385i −0.736149 0.369672i
\(36\) 0 0
\(37\) −7.14285 + 12.3718i −0.193050 + 0.334372i −0.946260 0.323408i \(-0.895171\pi\)
0.753210 + 0.657781i \(0.228505\pi\)
\(38\) 0 0
\(39\) 7.48167 + 12.9586i 0.191838 + 0.332273i
\(40\) 0 0
\(41\) 21.3515i 0.520769i −0.965505 0.260385i \(-0.916151\pi\)
0.965505 0.260385i \(-0.0838493\pi\)
\(42\) 0 0
\(43\) 55.3992 1.28835 0.644177 0.764877i \(-0.277200\pi\)
0.644177 + 0.764877i \(0.277200\pi\)
\(44\) 0 0
\(45\) −9.06280 + 5.23241i −0.201395 + 0.116276i
\(46\) 0 0
\(47\) 29.3178 + 16.9266i 0.623783 + 0.360141i 0.778340 0.627843i \(-0.216062\pi\)
−0.154558 + 0.987984i \(0.549395\pi\)
\(48\) 0 0
\(49\) 48.6682 5.69238i 0.993229 0.116171i
\(50\) 0 0
\(51\) 17.6380 30.5499i 0.345843 0.599018i
\(52\) 0 0
\(53\) 42.4271 + 73.4859i 0.800512 + 1.38653i 0.919280 + 0.393605i \(0.128772\pi\)
−0.118768 + 0.992922i \(0.537894\pi\)
\(54\) 0 0
\(55\) 13.4595i 0.244718i
\(56\) 0 0
\(57\) 40.2220 0.705649
\(58\) 0 0
\(59\) 58.5062 33.7786i 0.991631 0.572518i 0.0858695 0.996306i \(-0.472633\pi\)
0.905761 + 0.423788i \(0.139300\pi\)
\(60\) 0 0
\(61\) −25.6135 14.7879i −0.419893 0.242425i 0.275139 0.961405i \(-0.411276\pi\)
−0.695032 + 0.718979i \(0.744610\pi\)
\(62\) 0 0
\(63\) 7.98140 15.8938i 0.126689 0.252283i
\(64\) 0 0
\(65\) 12.1248 21.0008i 0.186536 0.323090i
\(66\) 0 0
\(67\) 27.4789 + 47.5949i 0.410133 + 0.710371i 0.994904 0.100827i \(-0.0321489\pi\)
−0.584771 + 0.811198i \(0.698816\pi\)
\(68\) 0 0
\(69\) 92.7741i 1.34455i
\(70\) 0 0
\(71\) 83.8102 1.18043 0.590213 0.807248i \(-0.299044\pi\)
0.590213 + 0.807248i \(0.299044\pi\)
\(72\) 0 0
\(73\) −108.784 + 62.8065i −1.49019 + 0.860363i −0.999937 0.0112159i \(-0.996430\pi\)
−0.490255 + 0.871579i \(0.663096\pi\)
\(74\) 0 0
\(75\) 17.6866 + 10.2113i 0.235821 + 0.136151i
\(76\) 0 0
\(77\) 12.5707 + 19.1112i 0.163256 + 0.248197i
\(78\) 0 0
\(79\) −35.1955 + 60.9604i −0.445512 + 0.771650i −0.998088 0.0618128i \(-0.980312\pi\)
0.552575 + 0.833463i \(0.313645\pi\)
\(80\) 0 0
\(81\) 25.8389 + 44.7542i 0.318998 + 0.552521i
\(82\) 0 0
\(83\) 27.1264i 0.326824i −0.986558 0.163412i \(-0.947750\pi\)
0.986558 0.163412i \(-0.0522500\pi\)
\(84\) 0 0
\(85\) −57.1685 −0.672571
\(86\) 0 0
\(87\) 62.6527 36.1726i 0.720146 0.415777i
\(88\) 0 0
\(89\) −126.553 73.0654i −1.42194 0.820959i −0.425478 0.904969i \(-0.639894\pi\)
−0.996465 + 0.0840094i \(0.973227\pi\)
\(90\) 0 0
\(91\) 2.39795 + 41.1433i 0.0263511 + 0.452125i
\(92\) 0 0
\(93\) 53.1196 92.0059i 0.571179 0.989311i
\(94\) 0 0
\(95\) −32.5920 56.4511i −0.343074 0.594222i
\(96\) 0 0
\(97\) 11.3574i 0.117086i 0.998285 + 0.0585431i \(0.0186455\pi\)
−0.998285 + 0.0585431i \(0.981354\pi\)
\(98\) 0 0
\(99\) 8.30278 0.0838664
\(100\) 0 0
\(101\) −36.2851 + 20.9492i −0.359258 + 0.207418i −0.668755 0.743482i \(-0.733173\pi\)
0.309497 + 0.950900i \(0.399839\pi\)
\(102\) 0 0
\(103\) 84.1601 + 48.5899i 0.817089 + 0.471746i 0.849412 0.527731i \(-0.176957\pi\)
−0.0323227 + 0.999477i \(0.510290\pi\)
\(104\) 0 0
\(105\) 73.1511 4.26345i 0.696677 0.0406043i
\(106\) 0 0
\(107\) 41.7218 72.2643i 0.389924 0.675368i −0.602515 0.798107i \(-0.705835\pi\)
0.992439 + 0.122740i \(0.0391680\pi\)
\(108\) 0 0
\(109\) 80.9965 + 140.290i 0.743088 + 1.28707i 0.951083 + 0.308936i \(0.0999728\pi\)
−0.207995 + 0.978130i \(0.566694\pi\)
\(110\) 0 0
\(111\) 36.3072i 0.327092i
\(112\) 0 0
\(113\) 27.2503 0.241153 0.120576 0.992704i \(-0.461526\pi\)
0.120576 + 0.992704i \(0.461526\pi\)
\(114\) 0 0
\(115\) −130.207 + 75.1751i −1.13224 + 0.653697i
\(116\) 0 0
\(117\) 12.9548 + 7.47948i 0.110725 + 0.0639271i
\(118\) 0 0
\(119\) 81.1737 53.3934i 0.682132 0.448684i
\(120\) 0 0
\(121\) 55.1606 95.5410i 0.455873 0.789595i
\(122\) 0 0
\(123\) 27.1325 + 46.9949i 0.220589 + 0.382072i
\(124\) 0 0
\(125\) 136.067i 1.08853i
\(126\) 0 0
\(127\) −232.457 −1.83037 −0.915183 0.403038i \(-0.867954\pi\)
−0.915183 + 0.403038i \(0.867954\pi\)
\(128\) 0 0
\(129\) −121.934 + 70.3986i −0.945225 + 0.545726i
\(130\) 0 0
\(131\) −152.509 88.0512i −1.16419 0.672146i −0.211887 0.977294i \(-0.567961\pi\)
−0.952305 + 0.305148i \(0.901294\pi\)
\(132\) 0 0
\(133\) 99.0008 + 49.7152i 0.744367 + 0.373798i
\(134\) 0 0
\(135\) 60.4037 104.622i 0.447435 0.774980i
\(136\) 0 0
\(137\) 132.462 + 229.432i 0.966879 + 1.67468i 0.704479 + 0.709725i \(0.251181\pi\)
0.262400 + 0.964959i \(0.415486\pi\)
\(138\) 0 0
\(139\) 267.680i 1.92576i 0.269935 + 0.962878i \(0.412998\pi\)
−0.269935 + 0.962878i \(0.587002\pi\)
\(140\) 0 0
\(141\) −86.0382 −0.610200
\(142\) 0 0
\(143\) −16.6621 + 9.61984i −0.116518 + 0.0672716i
\(144\) 0 0
\(145\) −101.535 58.6215i −0.700244 0.404286i
\(146\) 0 0
\(147\) −99.8855 + 74.3742i −0.679493 + 0.505947i
\(148\) 0 0
\(149\) 0.972701 1.68477i 0.00652820 0.0113072i −0.862743 0.505643i \(-0.831255\pi\)
0.869271 + 0.494336i \(0.164589\pi\)
\(150\) 0 0
\(151\) −50.1524 86.8665i −0.332135 0.575275i 0.650795 0.759253i \(-0.274436\pi\)
−0.982930 + 0.183978i \(0.941102\pi\)
\(152\) 0 0
\(153\) 35.2656i 0.230494i
\(154\) 0 0
\(155\) −172.172 −1.11079
\(156\) 0 0
\(157\) −117.153 + 67.6386i −0.746200 + 0.430819i −0.824319 0.566125i \(-0.808442\pi\)
0.0781191 + 0.996944i \(0.475109\pi\)
\(158\) 0 0
\(159\) −186.765 107.829i −1.17462 0.678168i
\(160\) 0 0
\(161\) 114.671 228.350i 0.712240 1.41832i
\(162\) 0 0
\(163\) −127.353 + 220.582i −0.781307 + 1.35326i 0.149873 + 0.988705i \(0.452114\pi\)
−0.931180 + 0.364559i \(0.881220\pi\)
\(164\) 0 0
\(165\) 17.1037 + 29.6244i 0.103659 + 0.179542i
\(166\) 0 0
\(167\) 50.9246i 0.304938i −0.988308 0.152469i \(-0.951278\pi\)
0.988308 0.152469i \(-0.0487224\pi\)
\(168\) 0 0
\(169\) 134.336 0.794889
\(170\) 0 0
\(171\) 34.8231 20.1051i 0.203644 0.117574i
\(172\) 0 0
\(173\) 60.9855 + 35.2100i 0.352517 + 0.203526i 0.665793 0.746136i \(-0.268093\pi\)
−0.313276 + 0.949662i \(0.601427\pi\)
\(174\) 0 0
\(175\) 30.9116 + 46.9947i 0.176638 + 0.268541i
\(176\) 0 0
\(177\) −85.8484 + 148.694i −0.485019 + 0.840078i
\(178\) 0 0
\(179\) −73.7202 127.687i −0.411845 0.713336i 0.583247 0.812295i \(-0.301782\pi\)
−0.995092 + 0.0989591i \(0.968449\pi\)
\(180\) 0 0
\(181\) 294.491i 1.62702i −0.581550 0.813511i \(-0.697553\pi\)
0.581550 0.813511i \(-0.302447\pi\)
\(182\) 0 0
\(183\) 75.1672 0.410750
\(184\) 0 0
\(185\) −50.9566 + 29.4198i −0.275441 + 0.159026i
\(186\) 0 0
\(187\) 39.2807 + 22.6787i 0.210057 + 0.121277i
\(188\) 0 0
\(189\) 11.9461 + 204.968i 0.0632071 + 1.08449i
\(190\) 0 0
\(191\) 56.2595 97.4444i 0.294553 0.510180i −0.680328 0.732908i \(-0.738163\pi\)
0.974881 + 0.222728i \(0.0714961\pi\)
\(192\) 0 0
\(193\) −63.7435 110.407i −0.330277 0.572057i 0.652289 0.757970i \(-0.273809\pi\)
−0.982566 + 0.185914i \(0.940475\pi\)
\(194\) 0 0
\(195\) 61.6307i 0.316055i
\(196\) 0 0
\(197\) −293.140 −1.48802 −0.744011 0.668167i \(-0.767079\pi\)
−0.744011 + 0.668167i \(0.767079\pi\)
\(198\) 0 0
\(199\) −8.43677 + 4.87097i −0.0423958 + 0.0244772i −0.521048 0.853527i \(-0.674459\pi\)
0.478652 + 0.878005i \(0.341125\pi\)
\(200\) 0 0
\(201\) −120.963 69.8378i −0.601804 0.347452i
\(202\) 0 0
\(203\) 198.921 11.5937i 0.979905 0.0571117i
\(204\) 0 0
\(205\) 43.9711 76.1602i 0.214493 0.371513i
\(206\) 0 0
\(207\) −46.3734 80.3211i −0.224026 0.388025i
\(208\) 0 0
\(209\) 51.7170i 0.247450i
\(210\) 0 0
\(211\) −139.516 −0.661214 −0.330607 0.943769i \(-0.607253\pi\)
−0.330607 + 0.943769i \(0.607253\pi\)
\(212\) 0 0
\(213\) −184.467 + 106.502i −0.866042 + 0.500009i
\(214\) 0 0
\(215\) 197.607 + 114.088i 0.919102 + 0.530644i
\(216\) 0 0
\(217\) 244.468 160.803i 1.12658 0.741026i
\(218\) 0 0
\(219\) 159.623 276.475i 0.728872 1.26244i
\(220\) 0 0
\(221\) 40.8598 + 70.7713i 0.184886 + 0.320232i
\(222\) 0 0
\(223\) 273.426i 1.22612i 0.790035 + 0.613062i \(0.210062\pi\)
−0.790035 + 0.613062i \(0.789938\pi\)
\(224\) 0 0
\(225\) 20.4167 0.0907409
\(226\) 0 0
\(227\) 58.4952 33.7722i 0.257688 0.148776i −0.365591 0.930775i \(-0.619133\pi\)
0.623279 + 0.781999i \(0.285800\pi\)
\(228\) 0 0
\(229\) 166.765 + 96.2816i 0.728230 + 0.420444i 0.817774 0.575539i \(-0.195208\pi\)
−0.0895442 + 0.995983i \(0.528541\pi\)
\(230\) 0 0
\(231\) −51.9537 26.0896i −0.224908 0.112942i
\(232\) 0 0
\(233\) −40.7024 + 70.4987i −0.174689 + 0.302569i −0.940053 0.341027i \(-0.889225\pi\)
0.765365 + 0.643597i \(0.222559\pi\)
\(234\) 0 0
\(235\) 69.7170 + 120.753i 0.296668 + 0.513844i
\(236\) 0 0
\(237\) 178.899i 0.754848i
\(238\) 0 0
\(239\) 22.6152 0.0946244 0.0473122 0.998880i \(-0.484934\pi\)
0.0473122 + 0.998880i \(0.484934\pi\)
\(240\) 0 0
\(241\) −81.5504 + 47.0832i −0.338384 + 0.195366i −0.659557 0.751655i \(-0.729256\pi\)
0.321173 + 0.947020i \(0.395923\pi\)
\(242\) 0 0
\(243\) 114.869 + 66.3194i 0.472710 + 0.272919i
\(244\) 0 0
\(245\) 185.321 + 79.9223i 0.756411 + 0.326213i
\(246\) 0 0
\(247\) −46.5887 + 80.6941i −0.188618 + 0.326697i
\(248\) 0 0
\(249\) 34.4710 + 59.7054i 0.138438 + 0.239781i
\(250\) 0 0
\(251\) 316.694i 1.26173i −0.775892 0.630865i \(-0.782700\pi\)
0.775892 0.630865i \(-0.217300\pi\)
\(252\) 0 0
\(253\) 119.288 0.471493
\(254\) 0 0
\(255\) 125.828 72.6470i 0.493444 0.284890i
\(256\) 0 0
\(257\) 40.7550 + 23.5299i 0.158580 + 0.0915560i 0.577190 0.816610i \(-0.304149\pi\)
−0.418610 + 0.908166i \(0.637483\pi\)
\(258\) 0 0
\(259\) 44.8764 89.3649i 0.173268 0.345038i
\(260\) 0 0
\(261\) 36.1619 62.6343i 0.138551 0.239978i
\(262\) 0 0
\(263\) 203.252 + 352.043i 0.772822 + 1.33857i 0.936011 + 0.351972i \(0.114489\pi\)
−0.163189 + 0.986595i \(0.552178\pi\)
\(264\) 0 0
\(265\) 349.496i 1.31885i
\(266\) 0 0
\(267\) 371.392 1.39098
\(268\) 0 0
\(269\) 287.957 166.252i 1.07047 0.618038i 0.142162 0.989843i \(-0.454595\pi\)
0.928311 + 0.371806i \(0.121261\pi\)
\(270\) 0 0
\(271\) −61.7686 35.6621i −0.227928 0.131595i 0.381688 0.924291i \(-0.375343\pi\)
−0.609616 + 0.792697i \(0.708676\pi\)
\(272\) 0 0
\(273\) −57.5609 87.5096i −0.210846 0.320548i
\(274\) 0 0
\(275\) −13.1296 + 22.7412i −0.0477441 + 0.0826952i
\(276\) 0 0
\(277\) 14.8574 + 25.7337i 0.0536367 + 0.0929015i 0.891597 0.452829i \(-0.149585\pi\)
−0.837960 + 0.545731i \(0.816252\pi\)
\(278\) 0 0
\(279\) 106.208i 0.380674i
\(280\) 0 0
\(281\) 9.06447 0.0322579 0.0161289 0.999870i \(-0.494866\pi\)
0.0161289 + 0.999870i \(0.494866\pi\)
\(282\) 0 0
\(283\) 159.988 92.3689i 0.565327 0.326392i −0.189954 0.981793i \(-0.560834\pi\)
0.755281 + 0.655401i \(0.227500\pi\)
\(284\) 0 0
\(285\) 143.471 + 82.8328i 0.503406 + 0.290641i
\(286\) 0 0
\(287\) 8.69624 + 149.208i 0.0303005 + 0.519887i
\(288\) 0 0
\(289\) −48.1732 + 83.4384i −0.166689 + 0.288714i
\(290\) 0 0
\(291\) −14.4324 24.9976i −0.0495959 0.0859026i
\(292\) 0 0
\(293\) 300.389i 1.02522i −0.858622 0.512609i \(-0.828679\pi\)
0.858622 0.512609i \(-0.171321\pi\)
\(294\) 0 0
\(295\) 278.253 0.943230
\(296\) 0 0
\(297\) −83.0072 + 47.9242i −0.279486 + 0.161361i
\(298\) 0 0
\(299\) 186.125 + 107.459i 0.622491 + 0.359395i
\(300\) 0 0
\(301\) −387.137 + 22.5635i −1.28617 + 0.0749617i
\(302\) 0 0
\(303\) 53.2425 92.2187i 0.175718 0.304352i
\(304\) 0 0
\(305\) −60.9083 105.496i −0.199699 0.345889i
\(306\) 0 0
\(307\) 390.385i 1.27161i −0.771848 0.635807i \(-0.780667\pi\)
0.771848 0.635807i \(-0.219333\pi\)
\(308\) 0 0
\(309\) −246.983 −0.799297
\(310\) 0 0
\(311\) −83.2050 + 48.0384i −0.267540 + 0.154464i −0.627769 0.778400i \(-0.716032\pi\)
0.360229 + 0.932864i \(0.382699\pi\)
\(312\) 0 0
\(313\) −419.921 242.442i −1.34160 0.774574i −0.354559 0.935034i \(-0.615369\pi\)
−0.987042 + 0.160460i \(0.948702\pi\)
\(314\) 0 0
\(315\) 61.2010 40.2560i 0.194289 0.127797i
\(316\) 0 0
\(317\) −33.9714 + 58.8401i −0.107165 + 0.185616i −0.914621 0.404313i \(-0.867511\pi\)
0.807456 + 0.589928i \(0.200844\pi\)
\(318\) 0 0
\(319\) 46.5102 + 80.5581i 0.145800 + 0.252533i
\(320\) 0 0
\(321\) 212.072i 0.660662i
\(322\) 0 0
\(323\) 219.665 0.680079
\(324\) 0 0
\(325\) −40.9723 + 23.6554i −0.126069 + 0.0727858i
\(326\) 0 0
\(327\) −356.548 205.853i −1.09036 0.629520i
\(328\) 0 0
\(329\) −211.771 106.345i −0.643680 0.323237i
\(330\) 0 0
\(331\) −132.634 + 229.729i −0.400707 + 0.694046i −0.993811 0.111080i \(-0.964569\pi\)
0.593104 + 0.805126i \(0.297902\pi\)
\(332\) 0 0
\(333\) −18.1483 31.4337i −0.0544993 0.0943955i
\(334\) 0 0
\(335\) 226.359i 0.675699i
\(336\) 0 0
\(337\) 549.980 1.63199 0.815993 0.578061i \(-0.196191\pi\)
0.815993 + 0.578061i \(0.196191\pi\)
\(338\) 0 0
\(339\) −59.9780 + 34.6283i −0.176926 + 0.102148i
\(340\) 0 0
\(341\) 118.300 + 68.3006i 0.346921 + 0.200295i
\(342\) 0 0
\(343\) −337.782 + 59.6012i −0.984787 + 0.173764i
\(344\) 0 0
\(345\) 191.058 330.922i 0.553791 0.959194i
\(346\) 0 0
\(347\) −339.375 587.815i −0.978026 1.69399i −0.669563 0.742755i \(-0.733519\pi\)
−0.308463 0.951236i \(-0.599815\pi\)
\(348\) 0 0
\(349\) 170.081i 0.487339i 0.969858 + 0.243669i \(0.0783511\pi\)
−0.969858 + 0.243669i \(0.921649\pi\)
\(350\) 0 0
\(351\) −172.688 −0.491990
\(352\) 0 0
\(353\) 204.423 118.024i 0.579102 0.334345i −0.181675 0.983359i \(-0.558152\pi\)
0.760776 + 0.649014i \(0.224818\pi\)
\(354\) 0 0
\(355\) 298.948 + 172.598i 0.842108 + 0.486191i
\(356\) 0 0
\(357\) −110.814 + 220.671i −0.310404 + 0.618126i
\(358\) 0 0
\(359\) −229.058 + 396.740i −0.638044 + 1.10512i 0.347818 + 0.937562i \(0.386923\pi\)
−0.985861 + 0.167562i \(0.946410\pi\)
\(360\) 0 0
\(361\) −55.2677 95.7266i −0.153096 0.265170i
\(362\) 0 0
\(363\) 280.382i 0.772402i
\(364\) 0 0
\(365\) −517.372 −1.41746
\(366\) 0 0
\(367\) −356.315 + 205.718i −0.970885 + 0.560541i −0.899506 0.436909i \(-0.856073\pi\)
−0.0713791 + 0.997449i \(0.522740\pi\)
\(368\) 0 0
\(369\) 46.9811 + 27.1245i 0.127320 + 0.0735082i
\(370\) 0 0
\(371\) −326.417 496.250i −0.879829 1.33760i
\(372\) 0 0
\(373\) −7.89853 + 13.6807i −0.0211757 + 0.0366774i −0.876419 0.481549i \(-0.840074\pi\)
0.855243 + 0.518227i \(0.173408\pi\)
\(374\) 0 0
\(375\) 172.907 + 299.483i 0.461085 + 0.798623i
\(376\) 0 0
\(377\) 167.593i 0.444544i
\(378\) 0 0
\(379\) −455.384 −1.20154 −0.600770 0.799422i \(-0.705139\pi\)
−0.600770 + 0.799422i \(0.705139\pi\)
\(380\) 0 0
\(381\) 511.639 295.395i 1.34288 0.775314i
\(382\) 0 0
\(383\) 158.732 + 91.6439i 0.414443 + 0.239279i 0.692697 0.721229i \(-0.256422\pi\)
−0.278254 + 0.960508i \(0.589756\pi\)
\(384\) 0 0
\(385\) 5.48190 + 94.0568i 0.0142387 + 0.244303i
\(386\) 0 0
\(387\) −70.3780 + 121.898i −0.181855 + 0.314982i
\(388\) 0 0
\(389\) 92.7471 + 160.643i 0.238424 + 0.412963i 0.960262 0.279099i \(-0.0900357\pi\)
−0.721838 + 0.692062i \(0.756702\pi\)
\(390\) 0 0
\(391\) 506.669i 1.29583i
\(392\) 0 0
\(393\) 447.565 1.13884
\(394\) 0 0
\(395\) −251.082 + 144.962i −0.635651 + 0.366993i
\(396\) 0 0
\(397\) −39.5520 22.8353i −0.0996271 0.0575197i 0.449359 0.893351i \(-0.351653\pi\)
−0.548986 + 0.835832i \(0.684986\pi\)
\(398\) 0 0
\(399\) −281.077 + 16.3820i −0.704454 + 0.0410576i
\(400\) 0 0
\(401\) −19.2312 + 33.3094i −0.0479580 + 0.0830657i −0.889008 0.457892i \(-0.848605\pi\)
0.841050 + 0.540958i \(0.181938\pi\)
\(402\) 0 0
\(403\) 123.056 + 213.139i 0.305349 + 0.528881i
\(404\) 0 0
\(405\) 212.849i 0.525553i
\(406\) 0 0
\(407\) 46.6833 0.114701
\(408\) 0 0
\(409\) −145.264 + 83.8684i −0.355169 + 0.205057i −0.666960 0.745094i \(-0.732405\pi\)
0.311790 + 0.950151i \(0.399071\pi\)
\(410\) 0 0
\(411\) −583.102 336.654i −1.41874 0.819109i
\(412\) 0 0
\(413\) −395.092 + 259.878i −0.956640 + 0.629246i
\(414\) 0 0
\(415\) 55.8639 96.7590i 0.134612 0.233154i
\(416\) 0 0
\(417\) −340.155 589.166i −0.815720 1.41287i
\(418\) 0 0
\(419\) 300.318i 0.716751i −0.933578 0.358375i \(-0.883331\pi\)
0.933578 0.358375i \(-0.116669\pi\)
\(420\) 0 0
\(421\) 280.567 0.666430 0.333215 0.942851i \(-0.391867\pi\)
0.333215 + 0.942851i \(0.391867\pi\)
\(422\) 0 0
\(423\) −74.4894 + 43.0065i −0.176098 + 0.101670i
\(424\) 0 0
\(425\) 96.5920 + 55.7674i 0.227275 + 0.131218i
\(426\) 0 0
\(427\) 185.014 + 92.9082i 0.433287 + 0.217584i
\(428\) 0 0
\(429\) 24.4489 42.3467i 0.0569904 0.0987102i
\(430\) 0 0
\(431\) −112.382 194.651i −0.260747 0.451627i 0.705693 0.708517i \(-0.250636\pi\)
−0.966441 + 0.256890i \(0.917302\pi\)
\(432\) 0 0
\(433\) 731.236i 1.68877i 0.535739 + 0.844383i \(0.320033\pi\)
−0.535739 + 0.844383i \(0.679967\pi\)
\(434\) 0 0
\(435\) 297.973 0.684996
\(436\) 0 0
\(437\) 500.311 288.854i 1.14488 0.660994i
\(438\) 0 0
\(439\) −259.322 149.720i −0.590711 0.341047i 0.174668 0.984627i \(-0.444115\pi\)
−0.765379 + 0.643580i \(0.777448\pi\)
\(440\) 0 0
\(441\) −49.3018 + 114.319i −0.111795 + 0.259227i
\(442\) 0 0
\(443\) −198.077 + 343.080i −0.447127 + 0.774447i −0.998198 0.0600116i \(-0.980886\pi\)
0.551070 + 0.834459i \(0.314220\pi\)
\(444\) 0 0
\(445\) −300.940 521.243i −0.676270 1.17133i
\(446\) 0 0
\(447\) 4.94425i 0.0110610i
\(448\) 0 0
\(449\) 128.183 0.285486 0.142743 0.989760i \(-0.454408\pi\)
0.142743 + 0.989760i \(0.454408\pi\)
\(450\) 0 0
\(451\) −60.4254 + 34.8866i −0.133981 + 0.0773540i
\(452\) 0 0
\(453\) 220.772 + 127.463i 0.487354 + 0.281374i
\(454\) 0 0
\(455\) −76.1767 + 151.695i −0.167421 + 0.333396i
\(456\) 0 0
\(457\) −202.574 + 350.868i −0.443268 + 0.767763i −0.997930 0.0643128i \(-0.979514\pi\)
0.554661 + 0.832076i \(0.312848\pi\)
\(458\) 0 0
\(459\) 203.556 + 352.569i 0.443477 + 0.768124i
\(460\) 0 0
\(461\) 312.620i 0.678134i 0.940762 + 0.339067i \(0.110111\pi\)
−0.940762 + 0.339067i \(0.889889\pi\)
\(462\) 0 0
\(463\) 246.396 0.532173 0.266087 0.963949i \(-0.414269\pi\)
0.266087 + 0.963949i \(0.414269\pi\)
\(464\) 0 0
\(465\) 378.952 218.788i 0.814950 0.470512i
\(466\) 0 0
\(467\) 18.8539 + 10.8853i 0.0403723 + 0.0233090i 0.520050 0.854136i \(-0.325913\pi\)
−0.479678 + 0.877445i \(0.659247\pi\)
\(468\) 0 0
\(469\) −211.411 321.408i −0.450770 0.685304i
\(470\) 0 0
\(471\) 171.904 297.746i 0.364976 0.632157i
\(472\) 0 0
\(473\) −90.5177 156.781i −0.191369 0.331461i
\(474\) 0 0
\(475\) 127.173i 0.267733i
\(476\) 0 0
\(477\) −215.594 −0.451979
\(478\) 0 0
\(479\) 452.490 261.245i 0.944656 0.545397i 0.0532389 0.998582i \(-0.483046\pi\)
0.891417 + 0.453185i \(0.149712\pi\)
\(480\) 0 0
\(481\) 72.8400 + 42.0542i 0.151435 + 0.0874308i
\(482\) 0 0
\(483\) 37.7858 + 648.318i 0.0782316 + 1.34227i
\(484\) 0 0
\(485\) −23.3892 + 40.5113i −0.0482252 + 0.0835285i
\(486\) 0 0
\(487\) −409.067 708.525i −0.839974 1.45488i −0.889916 0.456125i \(-0.849237\pi\)
0.0499421 0.998752i \(-0.484096\pi\)
\(488\) 0 0
\(489\) 647.337i 1.32380i
\(490\) 0 0
\(491\) −762.002 −1.55194 −0.775969 0.630771i \(-0.782739\pi\)
−0.775969 + 0.630771i \(0.782739\pi\)
\(492\) 0 0
\(493\) 342.167 197.550i 0.694050 0.400710i
\(494\) 0 0
\(495\) 29.6157 + 17.0986i 0.0598297 + 0.0345427i
\(496\) 0 0
\(497\) −585.678 + 34.1350i −1.17843 + 0.0686820i
\(498\) 0 0
\(499\) 25.4935 44.1560i 0.0510891 0.0884889i −0.839350 0.543592i \(-0.817064\pi\)
0.890439 + 0.455103i \(0.150397\pi\)
\(500\) 0 0
\(501\) 64.7126 + 112.086i 0.129167 + 0.223724i
\(502\) 0 0
\(503\) 305.233i 0.606825i 0.952859 + 0.303413i \(0.0981260\pi\)
−0.952859 + 0.303413i \(0.901874\pi\)
\(504\) 0 0
\(505\) −172.570 −0.341723
\(506\) 0 0
\(507\) −295.675 + 170.708i −0.583185 + 0.336702i
\(508\) 0 0
\(509\) 156.536 + 90.3761i 0.307536 + 0.177556i 0.645823 0.763487i \(-0.276514\pi\)
−0.338287 + 0.941043i \(0.609848\pi\)
\(510\) 0 0
\(511\) 734.618 483.207i 1.43761 0.945611i
\(512\) 0 0
\(513\) −232.096 + 402.003i −0.452429 + 0.783631i
\(514\) 0 0
\(515\) 200.131 + 346.637i 0.388604 + 0.673081i
\(516\) 0 0
\(517\) 110.627i 0.213978i
\(518\) 0 0
\(519\) −178.973 −0.344841
\(520\) 0 0
\(521\) −312.767 + 180.576i −0.600321 + 0.346595i −0.769168 0.639047i \(-0.779329\pi\)
0.168847 + 0.985642i \(0.445996\pi\)
\(522\) 0 0
\(523\) 566.506 + 327.072i 1.08318 + 0.625377i 0.931754 0.363091i \(-0.118279\pi\)
0.151431 + 0.988468i \(0.451612\pi\)
\(524\) 0 0
\(525\) −127.755 64.1548i −0.243343 0.122200i
\(526\) 0 0
\(527\) 290.103 502.474i 0.550481 0.953461i
\(528\) 0 0
\(529\) −401.757 695.864i −0.759465 1.31543i
\(530\) 0 0
\(531\) 171.646i 0.323251i
\(532\) 0 0
\(533\) −125.709 −0.235852
\(534\) 0 0
\(535\) 297.641 171.843i 0.556338 0.321202i
\(536\) 0 0
\(537\) 324.517 + 187.360i 0.604315 + 0.348902i
\(538\) 0 0
\(539\) −95.6295 128.432i −0.177420 0.238277i
\(540\) 0 0
\(541\) −301.642 + 522.459i −0.557564 + 0.965729i 0.440135 + 0.897931i \(0.354930\pi\)
−0.997699 + 0.0677973i \(0.978403\pi\)
\(542\) 0 0
\(543\) 374.225 + 648.177i 0.689180 + 1.19370i
\(544\) 0 0
\(545\) 667.214i 1.22424i
\(546\) 0 0
\(547\) 686.167 1.25442 0.627209 0.778851i \(-0.284197\pi\)
0.627209 + 0.778851i \(0.284197\pi\)
\(548\) 0 0
\(549\) 65.0776 37.5726i 0.118538 0.0684382i
\(550\) 0 0
\(551\) 390.142 + 225.248i 0.708061 + 0.408799i
\(552\) 0 0
\(553\) 221.123 440.334i 0.399860 0.796265i
\(554\) 0 0
\(555\) 74.7706 129.506i 0.134722 0.233345i
\(556\) 0 0
\(557\) −392.661 680.108i −0.704956 1.22102i −0.966707 0.255885i \(-0.917633\pi\)
0.261751 0.965135i \(-0.415700\pi\)
\(558\) 0 0
\(559\) 326.168i 0.583485i
\(560\) 0 0
\(561\) −115.276 −0.205483
\(562\) 0 0
\(563\) 393.226 227.029i 0.698447 0.403249i −0.108321 0.994116i \(-0.534548\pi\)
0.806769 + 0.590867i \(0.201214\pi\)
\(564\) 0 0
\(565\) 97.2007 + 56.1189i 0.172037 + 0.0993254i
\(566\) 0 0
\(567\) −198.794 302.225i −0.350606 0.533025i
\(568\) 0 0
\(569\) 35.7137 61.8580i 0.0627658 0.108713i −0.832935 0.553371i \(-0.813341\pi\)
0.895701 + 0.444657i \(0.146675\pi\)
\(570\) 0 0
\(571\) −359.033 621.864i −0.628780 1.08908i −0.987797 0.155748i \(-0.950221\pi\)
0.359017 0.933331i \(-0.383112\pi\)
\(572\) 0 0
\(573\) 285.968i 0.499071i
\(574\) 0 0
\(575\) 293.331 0.510141
\(576\) 0 0
\(577\) 786.338 453.993i 1.36280 0.786815i 0.372808 0.927909i \(-0.378395\pi\)
0.989996 + 0.141093i \(0.0450617\pi\)
\(578\) 0 0
\(579\) 280.600 + 162.004i 0.484628 + 0.279800i
\(580\) 0 0
\(581\) 11.0483 + 189.563i 0.0190160 + 0.326271i
\(582\) 0 0
\(583\) 138.645 240.140i 0.237813 0.411904i
\(584\) 0 0
\(585\) 30.8063 + 53.3581i 0.0526603 + 0.0912104i
\(586\) 0 0
\(587\) 862.870i 1.46997i 0.678086 + 0.734983i \(0.262810\pi\)
−0.678086 + 0.734983i \(0.737190\pi\)
\(588\) 0 0
\(589\) 661.557 1.12319
\(590\) 0 0
\(591\) 645.204 372.509i 1.09172 0.630302i
\(592\) 0 0
\(593\) 470.127 + 271.428i 0.792794 + 0.457720i 0.840945 0.541120i \(-0.182000\pi\)
−0.0481510 + 0.998840i \(0.515333\pi\)
\(594\) 0 0
\(595\) 399.502 23.2841i 0.671431 0.0391329i
\(596\) 0 0
\(597\) 12.3796 21.4421i 0.0207363 0.0359164i
\(598\) 0 0
\(599\) −39.3074 68.0824i −0.0656216 0.113660i 0.831348 0.555752i \(-0.187570\pi\)
−0.896970 + 0.442092i \(0.854236\pi\)
\(600\) 0 0
\(601\) 851.603i 1.41698i 0.705722 + 0.708489i \(0.250623\pi\)
−0.705722 + 0.708489i \(0.749377\pi\)
\(602\) 0 0
\(603\) −139.635 −0.231566
\(604\) 0 0
\(605\) 393.512 227.194i 0.650433 0.375528i
\(606\) 0 0
\(607\) 202.282 + 116.788i 0.333249 + 0.192401i 0.657282 0.753644i \(-0.271706\pi\)
−0.324034 + 0.946045i \(0.605039\pi\)
\(608\) 0 0
\(609\) −423.093 + 278.297i −0.694734 + 0.456973i
\(610\) 0 0
\(611\) 99.6571 172.611i 0.163105 0.282506i
\(612\) 0 0
\(613\) −40.5620 70.2555i −0.0661697 0.114609i 0.831043 0.556209i \(-0.187745\pi\)
−0.897212 + 0.441600i \(0.854411\pi\)
\(614\) 0 0
\(615\) 223.505i 0.363424i
\(616\) 0 0
\(617\) 47.2962 0.0766552 0.0383276 0.999265i \(-0.487797\pi\)
0.0383276 + 0.999265i \(0.487797\pi\)
\(618\) 0 0
\(619\) 569.331 328.703i 0.919759 0.531023i 0.0362006 0.999345i \(-0.488474\pi\)
0.883558 + 0.468322i \(0.155141\pi\)
\(620\) 0 0
\(621\) 927.239 + 535.342i 1.49314 + 0.862064i
\(622\) 0 0
\(623\) 914.129 + 459.048i 1.46730 + 0.736834i
\(624\) 0 0
\(625\) 179.768 311.367i 0.287629 0.498188i
\(626\) 0 0
\(627\) −65.7194 113.829i −0.104816 0.181546i
\(628\) 0 0
\(629\) 198.285i 0.315239i
\(630\) 0 0
\(631\) −270.276 −0.428330 −0.214165 0.976797i \(-0.568703\pi\)
−0.214165 + 0.976797i \(0.568703\pi\)
\(632\) 0 0
\(633\) 307.076 177.290i 0.485112 0.280079i
\(634\) 0 0
\(635\) −829.165 478.718i −1.30577 0.753887i
\(636\) 0 0
\(637\) −33.5144 286.539i −0.0526129 0.449825i
\(638\) 0 0
\(639\) −106.471 + 184.413i −0.166621 + 0.288596i
\(640\) 0 0
\(641\) −122.305 211.838i −0.190803 0.330481i 0.754713 0.656055i \(-0.227776\pi\)
−0.945517 + 0.325574i \(0.894443\pi\)
\(642\) 0 0
\(643\) 358.233i 0.557128i 0.960418 + 0.278564i \(0.0898584\pi\)
−0.960418 + 0.278564i \(0.910142\pi\)
\(644\) 0 0
\(645\) −579.913 −0.899089
\(646\) 0 0
\(647\) −1024.30 + 591.377i −1.58315 + 0.914030i −0.588750 + 0.808315i \(0.700380\pi\)
−0.994397 + 0.105715i \(0.966287\pi\)
\(648\) 0 0
\(649\) −191.189 110.383i −0.294590 0.170081i
\(650\) 0 0
\(651\) −333.735 + 664.585i −0.512649 + 1.02087i
\(652\) 0 0
\(653\) −107.647 + 186.451i −0.164850 + 0.285529i −0.936602 0.350395i \(-0.886047\pi\)
0.771752 + 0.635924i \(0.219381\pi\)
\(654\) 0 0
\(655\) −362.663 628.151i −0.553684 0.959009i
\(656\) 0 0
\(657\) 319.152i 0.485772i
\(658\) 0 0
\(659\) −254.983 −0.386925 −0.193462 0.981108i \(-0.561972\pi\)
−0.193462 + 0.981108i \(0.561972\pi\)
\(660\) 0 0
\(661\) −1077.04 + 621.830i −1.62941 + 0.940741i −0.645142 + 0.764062i \(0.723202\pi\)
−0.984269 + 0.176679i \(0.943465\pi\)
\(662\) 0 0
\(663\) −179.865 103.845i −0.271290 0.156630i
\(664\) 0 0
\(665\) 250.750 + 381.214i 0.377067 + 0.573253i
\(666\) 0 0
\(667\) 519.546 899.881i 0.778930 1.34915i
\(668\) 0 0
\(669\) −347.456 601.812i −0.519367 0.899569i
\(670\) 0 0
\(671\) 96.6491i 0.144037i
\(672\) 0 0
\(673\) −63.0354 −0.0936633 −0.0468317 0.998903i \(-0.514912\pi\)
−0.0468317 + 0.998903i \(0.514912\pi\)
\(674\) 0 0
\(675\) −204.116 + 117.847i −0.302395 + 0.174588i
\(676\) 0 0
\(677\) −855.162 493.728i −1.26316 0.729288i −0.289479 0.957184i \(-0.593482\pi\)
−0.973685 + 0.227896i \(0.926815\pi\)
\(678\) 0 0
\(679\) −4.62573 79.3669i −0.00681256 0.116888i
\(680\) 0 0
\(681\) −85.8322 + 148.666i −0.126038 + 0.218305i
\(682\) 0 0
\(683\) 467.447 + 809.642i 0.684403 + 1.18542i 0.973624 + 0.228159i \(0.0732705\pi\)
−0.289221 + 0.957262i \(0.593396\pi\)
\(684\) 0 0
\(685\) 1091.17i 1.59294i
\(686\) 0 0
\(687\) −489.400 −0.712373
\(688\) 0 0
\(689\) 432.655 249.794i 0.627947 0.362545i
\(690\) 0 0
\(691\) −842.192 486.240i −1.21880 0.703676i −0.254140 0.967167i \(-0.581793\pi\)
−0.964662 + 0.263492i \(0.915126\pi\)
\(692\) 0 0
\(693\) −58.0210 + 3.38163i −0.0837243 + 0.00487969i
\(694\) 0 0
\(695\) −551.258 + 954.806i −0.793176 + 1.37382i
\(696\) 0 0
\(697\) 148.179 + 256.654i 0.212596 + 0.368227i
\(698\) 0 0
\(699\) 206.891i 0.295981i
\(700\) 0 0
\(701\) 695.549 0.992224 0.496112 0.868259i \(-0.334761\pi\)
0.496112 + 0.868259i \(0.334761\pi\)
\(702\) 0 0
\(703\) 195.797 113.043i 0.278516 0.160801i
\(704\) 0 0
\(705\) −306.895 177.186i −0.435312 0.251328i
\(706\) 0 0
\(707\) 245.033 161.175i 0.346581 0.227970i
\(708\) 0 0
\(709\) 78.6320 136.195i 0.110905 0.192094i −0.805230 0.592962i \(-0.797958\pi\)
0.916136 + 0.400869i \(0.131292\pi\)
\(710\) 0 0
\(711\) −89.4232 154.886i −0.125771 0.217842i
\(712\) 0 0
\(713\) 1525.91i 2.14013i
\(714\) 0 0
\(715\) −79.2440 −0.110831
\(716\) 0 0
\(717\) −49.7763 + 28.7384i −0.0694230 + 0.0400814i
\(718\) 0 0
\(719\) 183.553 + 105.975i 0.255290 + 0.147392i 0.622184 0.782871i \(-0.286246\pi\)
−0.366894 + 0.930263i \(0.619579\pi\)
\(720\) 0 0
\(721\) −607.913 305.275i −0.843153 0.423406i
\(722\) 0 0
\(723\) 119.662 207.261i 0.165508 0.286668i
\(724\) 0 0
\(725\) 114.370 + 198.094i 0.157751 + 0.273233i
\(726\) 0 0
\(727\) 271.507i 0.373462i −0.982411 0.186731i \(-0.940211\pi\)
0.982411 0.186731i \(-0.0597893\pi\)
\(728\) 0 0
\(729\) −802.202 −1.10041
\(730\) 0 0
\(731\) −665.921 + 384.470i −0.910972 + 0.525950i
\(732\) 0 0
\(733\) −442.045 255.215i −0.603062 0.348178i 0.167183 0.985926i \(-0.446533\pi\)
−0.770245 + 0.637748i \(0.779866\pi\)
\(734\) 0 0
\(735\) −509.454 + 59.5872i −0.693134 + 0.0810711i
\(736\) 0 0
\(737\) 89.7965 155.532i 0.121841 0.211034i
\(738\) 0 0
\(739\) 187.084 + 324.039i 0.253158 + 0.438483i 0.964394 0.264471i \(-0.0851973\pi\)
−0.711235 + 0.702954i \(0.751864\pi\)
\(740\) 0 0
\(741\) 236.811i 0.319583i
\(742\) 0 0
\(743\) −792.307 −1.06636 −0.533181 0.846001i \(-0.679004\pi\)
−0.533181 + 0.846001i \(0.679004\pi\)
\(744\) 0 0
\(745\) 6.93919 4.00634i 0.00931434 0.00537764i
\(746\) 0 0
\(747\) 59.6879 + 34.4608i 0.0799035 + 0.0461323i
\(748\) 0 0
\(749\) −262.126 + 521.986i −0.349967 + 0.696911i
\(750\) 0 0
\(751\) 13.1482 22.7733i 0.0175076 0.0303240i −0.857139 0.515085i \(-0.827760\pi\)
0.874646 + 0.484761i \(0.161094\pi\)
\(752\) 0 0
\(753\) 402.440 + 697.046i 0.534449 + 0.925692i
\(754\) 0 0
\(755\) 413.133i 0.547196i
\(756\) 0 0
\(757\) 1287.30 1.70053 0.850264 0.526356i \(-0.176442\pi\)
0.850264 + 0.526356i \(0.176442\pi\)
\(758\) 0 0
\(759\) −262.553 + 151.585i −0.345920 + 0.199717i
\(760\) 0 0
\(761\) 839.569 + 484.726i 1.10324 + 0.636959i 0.937071 0.349138i \(-0.113525\pi\)
0.166174 + 0.986097i \(0.446859\pi\)
\(762\) 0 0
\(763\) −623.154 947.378i −0.816715 1.24165i
\(764\) 0 0
\(765\) 72.6257 125.791i 0.0949355 0.164433i
\(766\) 0 0
\(767\) −198.875 344.461i −0.259289 0.449102i
\(768\) 0 0
\(769\) 499.204i 0.649160i 0.945858 + 0.324580i \(0.105223\pi\)
−0.945858 + 0.324580i \(0.894777\pi\)
\(770\) 0 0
\(771\) −119.603 −0.155127
\(772\) 0 0
\(773\) −125.870 + 72.6713i −0.162834 + 0.0940120i −0.579202 0.815184i \(-0.696636\pi\)
0.416369 + 0.909196i \(0.363303\pi\)
\(774\) 0 0
\(775\) 290.902 + 167.953i 0.375358 + 0.216713i
\(776\) 0 0
\(777\) 14.7875 + 253.720i 0.0190315 + 0.326537i
\(778\) 0 0
\(779\) −168.955 + 292.639i −0.216888 + 0.375660i
\(780\) 0 0
\(781\) −136.939 237.185i −0.175338 0.303694i
\(782\) 0 0
\(783\) 834.918i 1.06631i
\(784\) 0 0
\(785\) −557.176 −0.709779
\(786\) 0 0
\(787\) 333.132 192.334i 0.423294 0.244389i −0.273192 0.961960i \(-0.588079\pi\)
0.696486 + 0.717571i \(0.254746\pi\)
\(788\) 0 0
\(789\) −894.719 516.566i −1.13399 0.654710i
\(790\) 0 0
\(791\) −190.429 +