Properties

Label 224.3.o.d.79.1
Level 224
Weight 3
Character 224.79
Analytic conductor 6.104
Analytic rank 0
Dimension 12
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.1
Root \(0.378279 + 0.358951i\) of \(x^{12} - 3 x^{11} - 4 x^{10} + 3 x^{9} + 86 x^{8} - 163 x^{7} + 155 x^{6} - 166 x^{5} + 164 x^{4} - 116 x^{3} + 60 x^{2} - 20 x + 4\)
Character \(\chi\) \(=\) 224.79
Dual form 224.3.o.d.207.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.99052 - 3.44767i) q^{3} +(-1.63031 - 0.941260i) q^{5} +(-5.14749 + 4.74377i) q^{7} +(-3.42430 + 5.93106i) q^{9} +O(q^{10})\) \(q+(-1.99052 - 3.44767i) q^{3} +(-1.63031 - 0.941260i) q^{5} +(-5.14749 + 4.74377i) q^{7} +(-3.42430 + 5.93106i) q^{9} +(-3.93973 - 6.82381i) q^{11} +11.4863i q^{13} +7.49437i q^{15} +(1.44921 + 2.51011i) q^{17} +(-15.0223 + 26.0194i) q^{19} +(26.6011 + 8.30431i) q^{21} +(33.3838 + 19.2741i) q^{23} +(-10.7281 - 18.5815i) q^{25} -8.56478 q^{27} +27.8701i q^{29} +(-19.4709 + 11.2416i) q^{31} +(-15.6842 + 27.1658i) q^{33} +(12.8571 - 2.88869i) q^{35} +(-39.4520 - 22.7776i) q^{37} +(39.6011 - 22.8637i) q^{39} -40.6313 q^{41} +47.2806 q^{43} +(11.1653 - 6.44632i) q^{45} +(-71.5172 - 41.2905i) q^{47} +(3.99327 - 48.8370i) q^{49} +(5.76936 - 9.99283i) q^{51} +(-23.2823 + 13.4420i) q^{53} +14.8332i q^{55} +119.609 q^{57} +(-5.20555 - 9.01627i) q^{59} +(-19.1932 - 11.0812i) q^{61} +(-10.5091 - 46.7742i) q^{63} +(10.8116 - 18.7263i) q^{65} +(-29.6549 - 51.3639i) q^{67} -153.462i q^{69} +38.2541i q^{71} +(-6.98890 - 12.1051i) q^{73} +(-42.7087 + 73.9737i) q^{75} +(52.6503 + 16.4363i) q^{77} +(-44.3314 - 25.5948i) q^{79} +(47.8670 + 82.9081i) q^{81} +89.4458 q^{83} -5.45635i q^{85} +(96.0871 - 55.4759i) q^{87} +(-52.6288 + 91.1558i) q^{89} +(-54.4885 - 59.1258i) q^{91} +(77.5144 + 44.7530i) q^{93} +(48.9821 - 28.2798i) q^{95} +55.3301 q^{97} +53.9633 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 6q^{3} - 40q^{9} + O(q^{10}) \) \( 12q + 6q^{3} - 40q^{9} - 30q^{11} + 30q^{17} - 78q^{19} - 92q^{25} - 156q^{27} - 78q^{33} + 222q^{35} - 232q^{41} + 200q^{43} + 372q^{49} - 10q^{51} + 332q^{57} + 110q^{59} - 32q^{65} - 434q^{67} + 102q^{73} + 60q^{75} - 82q^{81} + 536q^{83} + 214q^{89} + 8q^{91} - 152q^{97} - 504q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.99052 3.44767i −0.663505 1.14922i −0.979688 0.200526i \(-0.935735\pi\)
0.316183 0.948698i \(-0.397599\pi\)
\(4\) 0 0
\(5\) −1.63031 0.941260i −0.326062 0.188252i 0.328029 0.944668i \(-0.393616\pi\)
−0.654091 + 0.756416i \(0.726949\pi\)
\(6\) 0 0
\(7\) −5.14749 + 4.74377i −0.735355 + 0.677682i
\(8\) 0 0
\(9\) −3.42430 + 5.93106i −0.380478 + 0.659007i
\(10\) 0 0
\(11\) −3.93973 6.82381i −0.358157 0.620346i 0.629496 0.777004i \(-0.283261\pi\)
−0.987653 + 0.156658i \(0.949928\pi\)
\(12\) 0 0
\(13\) 11.4863i 0.883564i 0.897122 + 0.441782i \(0.145654\pi\)
−0.897122 + 0.441782i \(0.854346\pi\)
\(14\) 0 0
\(15\) 7.49437i 0.499625i
\(16\) 0 0
\(17\) 1.44921 + 2.51011i 0.0852478 + 0.147654i 0.905497 0.424353i \(-0.139498\pi\)
−0.820249 + 0.572007i \(0.806165\pi\)
\(18\) 0 0
\(19\) −15.0223 + 26.0194i −0.790649 + 1.36944i 0.134916 + 0.990857i \(0.456923\pi\)
−0.925566 + 0.378587i \(0.876410\pi\)
\(20\) 0 0
\(21\) 26.6011 + 8.30431i 1.26672 + 0.395443i
\(22\) 0 0
\(23\) 33.3838 + 19.2741i 1.45147 + 0.838006i 0.998565 0.0535530i \(-0.0170546\pi\)
0.452904 + 0.891559i \(0.350388\pi\)
\(24\) 0 0
\(25\) −10.7281 18.5815i −0.429122 0.743262i
\(26\) 0 0
\(27\) −8.56478 −0.317214
\(28\) 0 0
\(29\) 27.8701i 0.961039i 0.876984 + 0.480519i \(0.159552\pi\)
−0.876984 + 0.480519i \(0.840448\pi\)
\(30\) 0 0
\(31\) −19.4709 + 11.2416i −0.628095 + 0.362631i −0.780014 0.625762i \(-0.784788\pi\)
0.151919 + 0.988393i \(0.451455\pi\)
\(32\) 0 0
\(33\) −15.6842 + 27.1658i −0.475278 + 0.823206i
\(34\) 0 0
\(35\) 12.8571 2.88869i 0.367346 0.0825341i
\(36\) 0 0
\(37\) −39.4520 22.7776i −1.06627 0.615611i −0.139109 0.990277i \(-0.544424\pi\)
−0.927160 + 0.374666i \(0.877757\pi\)
\(38\) 0 0
\(39\) 39.6011 22.8637i 1.01541 0.586249i
\(40\) 0 0
\(41\) −40.6313 −0.991007 −0.495503 0.868606i \(-0.665016\pi\)
−0.495503 + 0.868606i \(0.665016\pi\)
\(42\) 0 0
\(43\) 47.2806 1.09955 0.549774 0.835313i \(-0.314714\pi\)
0.549774 + 0.835313i \(0.314714\pi\)
\(44\) 0 0
\(45\) 11.1653 6.44632i 0.248119 0.143251i
\(46\) 0 0
\(47\) −71.5172 41.2905i −1.52164 0.878520i −0.999673 0.0255554i \(-0.991865\pi\)
−0.521968 0.852965i \(1.32520\pi\)
\(48\) 0 0
\(49\) 3.99327 48.8370i 0.0814954 0.996674i
\(50\) 0 0
\(51\) 5.76936 9.99283i 0.113125 0.195938i
\(52\) 0 0
\(53\) −23.2823 + 13.4420i −0.439288 + 0.253623i −0.703296 0.710897i \(-0.748289\pi\)
0.264007 + 0.964521i \(0.414956\pi\)
\(54\) 0 0
\(55\) 14.8332i 0.269695i
\(56\) 0 0
\(57\) 119.609 2.09840
\(58\) 0 0
\(59\) −5.20555 9.01627i −0.0882296 0.152818i 0.818533 0.574459i \(-0.194788\pi\)
−0.906763 + 0.421641i \(0.861454\pi\)
\(60\) 0 0
\(61\) −19.1932 11.0812i −0.314642 0.181659i 0.334360 0.942446i \(-0.391480\pi\)
−0.649002 + 0.760787i \(0.724813\pi\)
\(62\) 0 0
\(63\) −10.5091 46.7742i −0.166810 0.742447i
\(64\) 0 0
\(65\) 10.8116 18.7263i 0.166333 0.288097i
\(66\) 0 0
\(67\) −29.6549 51.3639i −0.442611 0.766625i 0.555271 0.831669i \(-0.312614\pi\)
−0.997882 + 0.0650444i \(0.979281\pi\)
\(68\) 0 0
\(69\) 153.462i 2.22409i
\(70\) 0 0
\(71\) 38.2541i 0.538791i 0.963030 + 0.269395i \(0.0868238\pi\)
−0.963030 + 0.269395i \(0.913176\pi\)
\(72\) 0 0
\(73\) −6.98890 12.1051i −0.0957383 0.165824i 0.814178 0.580615i \(-0.197188\pi\)
−0.909917 + 0.414791i \(0.863855\pi\)
\(74\) 0 0
\(75\) −42.7087 + 73.9737i −0.569450 + 0.986316i
\(76\) 0 0
\(77\) 52.6503 + 16.4363i 0.683770 + 0.213459i
\(78\) 0 0
\(79\) −44.3314 25.5948i −0.561157 0.323984i 0.192453 0.981306i \(-0.438356\pi\)
−0.753610 + 0.657322i \(0.771689\pi\)
\(80\) 0 0
\(81\) 47.8670 + 82.9081i 0.590951 + 1.02356i
\(82\) 0 0
\(83\) 89.4458 1.07766 0.538830 0.842414i \(-0.318866\pi\)
0.538830 + 0.842414i \(0.318866\pi\)
\(84\) 0 0
\(85\) 5.45635i 0.0641923i
\(86\) 0 0
\(87\) 96.0871 55.4759i 1.10445 0.637654i
\(88\) 0 0
\(89\) −52.6288 + 91.1558i −0.591335 + 1.02422i 0.402718 + 0.915324i \(0.368066\pi\)
−0.994053 + 0.108898i \(0.965268\pi\)
\(90\) 0 0
\(91\) −54.4885 59.1258i −0.598775 0.649734i
\(92\) 0 0
\(93\) 77.5144 + 44.7530i 0.833488 + 0.481215i
\(94\) 0 0
\(95\) 48.9821 28.2798i 0.515601 0.297683i
\(96\) 0 0
\(97\) 55.3301 0.570413 0.285206 0.958466i \(-0.407938\pi\)
0.285206 + 0.958466i \(0.407938\pi\)
\(98\) 0 0
\(99\) 53.9633 0.545084
\(100\) 0 0
\(101\) 27.2216 15.7164i 0.269521 0.155608i −0.359149 0.933280i \(-0.616933\pi\)
0.628670 + 0.777672i \(0.283600\pi\)
\(102\) 0 0
\(103\) −69.2701 39.9931i −0.672525 0.388283i 0.124508 0.992219i \(-0.460265\pi\)
−0.797033 + 0.603936i \(0.793598\pi\)
\(104\) 0 0
\(105\) −35.5516 38.5772i −0.338586 0.367402i
\(106\) 0 0
\(107\) 24.3817 42.2303i 0.227866 0.394676i −0.729309 0.684184i \(-0.760158\pi\)
0.957175 + 0.289508i \(0.0934918\pi\)
\(108\) 0 0
\(109\) −99.6528 + 57.5346i −0.914246 + 0.527840i −0.881795 0.471633i \(-0.843665\pi\)
−0.0324509 + 0.999473i \(0.510331\pi\)
\(110\) 0 0
\(111\) 181.357i 1.63384i
\(112\) 0 0
\(113\) −55.7570 −0.493425 −0.246712 0.969089i \(-0.579350\pi\)
−0.246712 + 0.969089i \(0.579350\pi\)
\(114\) 0 0
\(115\) −36.2840 62.8457i −0.315513 0.546484i
\(116\) 0 0
\(117\) −68.1262 39.3327i −0.582275 0.336177i
\(118\) 0 0
\(119\) −19.3672 6.04603i −0.162750 0.0508070i
\(120\) 0 0
\(121\) 29.4571 51.0212i 0.243447 0.421663i
\(122\) 0 0
\(123\) 80.8772 + 140.083i 0.657538 + 1.13889i
\(124\) 0 0
\(125\) 87.4546i 0.699637i
\(126\) 0 0
\(127\) 35.6964i 0.281074i −0.990075 0.140537i \(-0.955117\pi\)
0.990075 0.140537i \(-0.0448828\pi\)
\(128\) 0 0
\(129\) −94.1127 163.008i −0.729556 1.26363i
\(130\) 0 0
\(131\) −60.6462 + 105.042i −0.462948 + 0.801849i −0.999106 0.0422680i \(-0.986542\pi\)
0.536158 + 0.844117i \(0.319875\pi\)
\(132\) 0 0
\(133\) −46.1030 205.197i −0.346639 1.54284i
\(134\) 0 0
\(135\) 13.9632 + 8.06168i 0.103431 + 0.0597162i
\(136\) 0 0
\(137\) 4.24835 + 7.35836i 0.0310099 + 0.0537107i 0.881114 0.472904i \(-0.156794\pi\)
−0.850104 + 0.526615i \(0.823461\pi\)
\(138\) 0 0
\(139\) 3.05942 0.0220102 0.0110051 0.999939i \(-0.496497\pi\)
0.0110051 + 0.999939i \(0.496497\pi\)
\(140\) 0 0
\(141\) 328.757i 2.33161i
\(142\) 0 0
\(143\) 78.3806 45.2530i 0.548116 0.316455i
\(144\) 0 0
\(145\) 26.2330 45.4370i 0.180918 0.313358i
\(146\) 0 0
\(147\) −176.323 + 83.4433i −1.19947 + 0.567642i
\(148\) 0 0
\(149\) 27.4740 + 15.8621i 0.184389 + 0.106457i 0.589353 0.807876i \(-0.299383\pi\)
−0.404964 + 0.914333i \(0.632716\pi\)
\(150\) 0 0
\(151\) −219.621 + 126.798i −1.45444 + 0.839723i −0.998729 0.0504039i \(-0.983949\pi\)
−0.455713 + 0.890127i \(0.650616\pi\)
\(152\) 0 0
\(153\) −19.8502 −0.129740
\(154\) 0 0
\(155\) 42.3249 0.273064
\(156\) 0 0
\(157\) −42.7187 + 24.6636i −0.272093 + 0.157093i −0.629839 0.776726i \(-0.716879\pi\)
0.357745 + 0.933819i \(0.383546\pi\)
\(158\) 0 0
\(159\) 92.6875 + 53.5132i 0.582940 + 0.336561i
\(160\) 0 0
\(161\) −263.275 + 59.1516i −1.63525 + 0.367402i
\(162\) 0 0
\(163\) 57.8597 100.216i 0.354967 0.614821i −0.632145 0.774850i \(-0.717825\pi\)
0.987112 + 0.160029i \(0.0511587\pi\)
\(164\) 0 0
\(165\) 51.1401 29.5258i 0.309940 0.178944i
\(166\) 0 0
\(167\) 32.3859i 0.193928i −0.995288 0.0969639i \(-0.969087\pi\)
0.995288 0.0969639i \(-0.0309131\pi\)
\(168\) 0 0
\(169\) 37.0641 0.219314
\(170\) 0 0
\(171\) −102.882 178.197i −0.601649 1.04209i
\(172\) 0 0
\(173\) 179.479 + 103.622i 1.03745 + 0.598973i 0.919110 0.394000i \(-0.128909\pi\)
0.118341 + 0.992973i \(0.462242\pi\)
\(174\) 0 0
\(175\) 143.369 + 44.7568i 0.819252 + 0.255753i
\(176\) 0 0
\(177\) −20.7234 + 35.8941i −0.117082 + 0.202791i
\(178\) 0 0
\(179\) 87.0837 + 150.833i 0.486501 + 0.842644i 0.999880 0.0155178i \(-0.00493966\pi\)
−0.513379 + 0.858162i \(0.671606\pi\)
\(180\) 0 0
\(181\) 204.244i 1.12842i 0.825632 + 0.564209i \(0.190819\pi\)
−0.825632 + 0.564209i \(0.809181\pi\)
\(182\) 0 0
\(183\) 88.2291i 0.482126i
\(184\) 0 0
\(185\) 42.8793 + 74.2691i 0.231780 + 0.401455i
\(186\) 0 0
\(187\) 11.4190 19.7783i 0.0610642 0.105766i
\(188\) 0 0
\(189\) 44.0871 40.6293i 0.233265 0.214970i
\(190\) 0 0
\(191\) 258.518 + 149.255i 1.35350 + 0.781442i 0.988737 0.149660i \(-0.0478180\pi\)
0.364759 + 0.931102i \(0.381151\pi\)
\(192\) 0 0
\(193\) 165.381 + 286.448i 0.856896 + 1.48419i 0.874875 + 0.484349i \(0.160943\pi\)
−0.0179791 + 0.999838i \(0.505723\pi\)
\(194\) 0 0
\(195\) −86.0828 −0.441450
\(196\) 0 0
\(197\) 327.309i 1.66146i −0.556672 0.830732i \(-0.687922\pi\)
0.556672 0.830732i \(-0.312078\pi\)
\(198\) 0 0
\(199\) −11.0295 + 6.36789i −0.0554246 + 0.0319994i −0.527456 0.849582i \(-0.676854\pi\)
0.472032 + 0.881582i \(0.343521\pi\)
\(200\) 0 0
\(201\) −118.057 + 204.481i −0.587349 + 1.01732i
\(202\) 0 0
\(203\) −132.210 143.461i −0.651278 0.706705i
\(204\) 0 0
\(205\) 66.2416 + 38.2446i 0.323130 + 0.186559i
\(206\) 0 0
\(207\) −228.632 + 132.001i −1.10450 + 0.637686i
\(208\) 0 0
\(209\) 236.736 1.13271
\(210\) 0 0
\(211\) −120.455 −0.570875 −0.285437 0.958397i \(-0.592139\pi\)
−0.285437 + 0.958397i \(0.592139\pi\)
\(212\) 0 0
\(213\) 131.888 76.1454i 0.619191 0.357490i
\(214\) 0 0
\(215\) −77.0820 44.5033i −0.358521 0.206992i
\(216\) 0 0
\(217\) 46.8991 150.231i 0.216125 0.692311i
\(218\) 0 0
\(219\) −27.8230 + 48.1909i −0.127046 + 0.220050i
\(220\) 0 0
\(221\) −28.8320 + 16.6461i −0.130461 + 0.0753219i
\(222\) 0 0
\(223\) 372.958i 1.67246i −0.548382 0.836228i \(-0.684756\pi\)
0.548382 0.836228i \(-0.315244\pi\)
\(224\) 0 0
\(225\) 146.944 0.653086
\(226\) 0 0
\(227\) 36.7128 + 63.5885i 0.161730 + 0.280125i 0.935489 0.353355i \(-0.114959\pi\)
−0.773759 + 0.633480i \(0.781626\pi\)
\(228\) 0 0
\(229\) −367.587 212.226i −1.60518 0.926752i −0.990428 0.138034i \(-0.955922\pi\)
−0.614755 0.788718i \(1.28926\pi\)
\(230\) 0 0
\(231\) −48.1342 214.238i −0.208373 0.927436i
\(232\) 0 0
\(233\) 41.7070 72.2386i 0.179000 0.310037i −0.762538 0.646943i \(-0.776047\pi\)
0.941538 + 0.336906i \(0.109380\pi\)
\(234\) 0 0
\(235\) 77.7301 + 134.632i 0.330766 + 0.572904i
\(236\) 0 0
\(237\) 203.787i 0.859861i
\(238\) 0 0
\(239\) 112.561i 0.470967i 0.971878 + 0.235484i \(0.0756674\pi\)
−0.971878 + 0.235484i \(0.924333\pi\)
\(240\) 0 0
\(241\) −140.216 242.861i −0.581809 1.00772i −0.995265 0.0971992i \(-0.969012\pi\)
0.413455 0.910524i \(-0.364322\pi\)
\(242\) 0 0
\(243\) 152.019 263.304i 0.625591 1.08356i
\(244\) 0 0
\(245\) −52.4786 + 75.8608i −0.214198 + 0.309636i
\(246\) 0 0
\(247\) −298.868 172.552i −1.20999 0.698589i
\(248\) 0 0
\(249\) −178.043 308.380i −0.715033 1.23847i
\(250\) 0 0
\(251\) 32.9560 0.131299 0.0656493 0.997843i \(-0.479088\pi\)
0.0656493 + 0.997843i \(0.479088\pi\)
\(252\) 0 0
\(253\) 303.740i 1.20055i
\(254\) 0 0
\(255\) −18.8117 + 10.8609i −0.0737714 + 0.0425919i
\(256\) 0 0
\(257\) 112.109 194.179i 0.436223 0.755561i −0.561172 0.827700i \(-0.689649\pi\)
0.997395 + 0.0721390i \(0.0229825\pi\)
\(258\) 0 0
\(259\) 311.130 69.9036i 1.20127 0.269898i
\(260\) 0 0
\(261\) −165.300 95.4357i −0.633332 0.365654i
\(262\) 0 0
\(263\) 147.190 84.9804i 0.559659 0.323119i −0.193350 0.981130i \(-0.561935\pi\)
0.753009 + 0.658011i \(0.228602\pi\)
\(264\) 0 0
\(265\) 50.6098 0.190980
\(266\) 0 0
\(267\) 419.034 1.56942
\(268\) 0 0
\(269\) 93.9863 54.2630i 0.349391 0.201721i −0.315026 0.949083i \(-0.602013\pi\)
0.664417 + 0.747362i \(0.268680\pi\)
\(270\) 0 0
\(271\) −16.7690 9.68157i −0.0618781 0.0357253i 0.468742 0.883335i \(-0.344707\pi\)
−0.530620 + 0.847610i \(0.678041\pi\)
\(272\) 0 0
\(273\) −95.3861 + 305.549i −0.349400 + 1.11923i
\(274\) 0 0
\(275\) −84.5313 + 146.412i −0.307386 + 0.532409i
\(276\) 0 0
\(277\) 112.104 64.7231i 0.404707 0.233658i −0.283806 0.958882i \(-0.591597\pi\)
0.688513 + 0.725224i \(0.258264\pi\)
\(278\) 0 0
\(279\) 153.978i 0.551892i
\(280\) 0 0
\(281\) 83.3608 0.296658 0.148329 0.988938i \(-0.452611\pi\)
0.148329 + 0.988938i \(0.452611\pi\)
\(282\) 0 0
\(283\) 14.4646 + 25.0535i 0.0511118 + 0.0885282i 0.890449 0.455082i \(-0.150390\pi\)
−0.839338 + 0.543611i \(0.817057\pi\)
\(284\) 0 0
\(285\) −194.999 112.583i −0.684208 0.395028i
\(286\) 0 0
\(287\) 209.149 192.746i 0.728742 0.671587i
\(288\) 0 0
\(289\) 140.300 243.006i 0.485466 0.840851i
\(290\) 0 0
\(291\) −110.135 190.760i −0.378472 0.655533i
\(292\) 0 0
\(293\) 214.613i 0.732468i −0.930523 0.366234i \(-0.880647\pi\)
0.930523 0.366234i \(-0.119353\pi\)
\(294\) 0 0
\(295\) 19.5991i 0.0664376i
\(296\) 0 0
\(297\) 33.7429 + 58.4444i 0.113612 + 0.196783i
\(298\) 0 0
\(299\) −221.389 + 383.457i −0.740432 + 1.28247i
\(300\) 0 0
\(301\) −243.376 + 224.288i −0.808559 + 0.745144i
\(302\) 0 0
\(303\) −108.370 62.5675i −0.357657 0.206493i
\(304\) 0 0
\(305\) 20.8606 + 36.1316i 0.0683953 + 0.118464i
\(306\) 0 0
\(307\) 120.542 0.392644 0.196322 0.980539i \(-0.437100\pi\)
0.196322 + 0.980539i \(0.437100\pi\)
\(308\) 0 0
\(309\) 318.427i 1.03051i
\(310\) 0 0
\(311\) −281.771 + 162.681i −0.906016 + 0.523089i −0.879147 0.476550i \(-0.841887\pi\)
−0.0268689 + 0.999639i \(0.508554\pi\)
\(312\) 0 0
\(313\) −228.378 + 395.562i −0.729642 + 1.26378i 0.227392 + 0.973803i \(0.426980\pi\)
−0.957034 + 0.289974i \(0.906353\pi\)
\(314\) 0 0
\(315\) −26.8936 + 86.1482i −0.0853767 + 0.273486i
\(316\) 0 0
\(317\) 104.980 + 60.6102i 0.331167 + 0.191199i 0.656359 0.754449i \(-0.272096\pi\)
−0.325192 + 0.945648i \(0.605429\pi\)
\(318\) 0 0
\(319\) 190.180 109.801i 0.596177 0.344203i
\(320\) 0 0
\(321\) −194.128 −0.604761
\(322\) 0 0
\(323\) −87.0822 −0.269604
\(324\) 0 0
\(325\) 213.434 123.226i 0.656719 0.379157i
\(326\) 0 0
\(327\) 396.721 + 229.047i 1.21321 + 0.700449i
\(328\) 0 0
\(329\) 564.006 126.719i 1.71430 0.385164i
\(330\) 0 0
\(331\) 60.5842 104.935i 0.183034 0.317024i −0.759878 0.650065i \(-0.774742\pi\)
0.942912 + 0.333041i \(0.108075\pi\)
\(332\) 0 0
\(333\) 270.191 155.995i 0.811384 0.468453i
\(334\) 0 0
\(335\) 111.652i 0.333290i
\(336\) 0 0
\(337\) −464.021 −1.37692 −0.688459 0.725275i \(-0.741713\pi\)
−0.688459 + 0.725275i \(0.741713\pi\)
\(338\) 0 0
\(339\) 110.985 + 192.232i 0.327390 + 0.567056i
\(340\) 0 0
\(341\) 153.420 + 88.5773i 0.449913 + 0.259758i
\(342\) 0 0
\(343\) 211.116 + 270.331i 0.615499 + 0.788137i
\(344\) 0 0
\(345\) −144.448 + 250.190i −0.418688 + 0.725190i
\(346\) 0 0
\(347\) −185.593 321.457i −0.534851 0.926388i −0.999171 0.0407208i \(-0.987035\pi\)
0.464320 0.885667i \(-0.346299\pi\)
\(348\) 0 0
\(349\) 207.871i 0.595619i 0.954625 + 0.297809i \(0.0962560\pi\)
−0.954625 + 0.297809i \(0.903744\pi\)
\(350\) 0 0
\(351\) 98.3779i 0.280279i
\(352\) 0 0
\(353\) 307.007 + 531.751i 0.869708 + 1.50638i 0.862296 + 0.506405i \(0.169026\pi\)
0.00741211 + 0.999973i \(0.497641\pi\)
\(354\) 0 0
\(355\) 36.0071 62.3661i 0.101428 0.175679i
\(356\) 0 0
\(357\) 17.7060 + 78.8065i 0.0495965 + 0.220746i
\(358\) 0 0
\(359\) 93.5930 + 54.0359i 0.260705 + 0.150518i 0.624656 0.780900i \(-0.285239\pi\)
−0.363951 + 0.931418i \(0.618573\pi\)
\(360\) 0 0
\(361\) −270.841 469.110i −0.750252 1.29947i
\(362\) 0 0
\(363\) −234.539 −0.646113
\(364\) 0 0
\(365\) 26.3135i 0.0720917i
\(366\) 0 0
\(367\) −393.881 + 227.407i −1.07325 + 0.619639i −0.929067 0.369913i \(-0.879388\pi\)
−0.144179 + 0.989552i \(0.546054\pi\)
\(368\) 0 0
\(369\) 139.134 240.987i 0.377056 0.653081i
\(370\) 0 0
\(371\) 56.0794 179.639i 0.151157 0.484201i
\(372\) 0 0
\(373\) 235.344 + 135.876i 0.630949 + 0.364279i 0.781119 0.624382i \(-0.214649\pi\)
−0.150171 + 0.988660i \(0.547982\pi\)
\(374\) 0 0
\(375\) 301.515 174.080i 0.804039 0.464212i
\(376\) 0 0
\(377\) −320.126 −0.849140
\(378\) 0 0
\(379\) −268.351 −0.708051 −0.354026 0.935236i \(-0.615187\pi\)
−0.354026 + 0.935236i \(0.615187\pi\)
\(380\) 0 0
\(381\) −123.069 + 71.0541i −0.323017 + 0.186494i
\(382\) 0 0
\(383\) −283.718 163.805i −0.740779 0.427689i 0.0815738 0.996667i \(-0.474005\pi\)
−0.822352 + 0.568979i \(0.807339\pi\)
\(384\) 0 0
\(385\) −70.3655 76.3539i −0.182767 0.198322i
\(386\) 0 0
\(387\) −161.903 + 280.424i −0.418354 + 0.724610i
\(388\) 0 0
\(389\) −109.380 + 63.1506i −0.281183 + 0.162341i −0.633959 0.773367i \(-0.718571\pi\)
0.352776 + 0.935708i \(0.385238\pi\)
\(390\) 0 0
\(391\) 111.729i 0.285753i
\(392\) 0 0
\(393\) 482.869 1.22867
\(394\) 0 0
\(395\) 48.1826 + 83.4548i 0.121981 + 0.211278i
\(396\) 0 0
\(397\) −110.110 63.5720i −0.277355 0.160131i 0.354870 0.934916i \(-0.384525\pi\)
−0.632225 + 0.774784i \(0.717858\pi\)
\(398\) 0 0
\(399\) −615.685 + 567.396i −1.54307 + 1.42205i
\(400\) 0 0
\(401\) −30.0751 + 52.0916i −0.0750003 + 0.129904i −0.901086 0.433640i \(-0.857229\pi\)
0.826086 + 0.563544i \(0.190562\pi\)
\(402\) 0 0
\(403\) −129.124 223.650i −0.320408 0.554962i
\(404\) 0 0
\(405\) 180.221i 0.444991i
\(406\) 0 0
\(407\) 358.950i 0.881941i
\(408\) 0 0
\(409\) 34.8873 + 60.4267i 0.0852991 + 0.147742i 0.905519 0.424306i \(-0.139482\pi\)
−0.820220 + 0.572049i \(0.806149\pi\)
\(410\) 0 0
\(411\) 16.9128 29.2939i 0.0411504 0.0712746i
\(412\) 0 0
\(413\) 69.5666 + 21.7172i 0.168442 + 0.0525841i
\(414\) 0 0
\(415\) −145.824 84.1918i −0.351384 0.202872i
\(416\) 0 0
\(417\) −6.08982 10.5479i −0.0146039 0.0252947i
\(418\) 0 0
\(419\) −714.794 −1.70595 −0.852976 0.521950i \(-0.825205\pi\)
−0.852976 + 0.521950i \(0.825205\pi\)
\(420\) 0 0
\(421\) 303.440i 0.720759i 0.932806 + 0.360380i \(0.117353\pi\)
−0.932806 + 0.360380i \(0.882647\pi\)
\(422\) 0 0
\(423\) 489.793 282.782i 1.15790 0.668515i
\(424\) 0 0
\(425\) 31.0945 53.8572i 0.0731635 0.126723i
\(426\) 0 0
\(427\) 151.363 34.0078i 0.354481 0.0796435i
\(428\) 0 0
\(429\) −312.035 180.154i −0.727355 0.419939i
\(430\) 0 0
\(431\) −373.685 + 215.747i −0.867019 + 0.500574i −0.866357 0.499426i \(-0.833544\pi\)
−0.000662591 1.00000i \(0.500211\pi\)
\(432\) 0 0
\(433\) 194.875 0.450057 0.225029 0.974352i \(-0.427752\pi\)
0.225029 + 0.974352i \(0.427752\pi\)
\(434\) 0 0
\(435\) −208.869 −0.480159
\(436\) 0 0
\(437\) −1003.00 + 579.085i −2.29521 + 1.32514i
\(438\) 0 0
\(439\) 264.977 + 152.985i 0.603593 + 0.348485i 0.770454 0.637496i \(-0.220030\pi\)
−0.166861 + 0.985980i \(0.553363\pi\)
\(440\) 0 0
\(441\) 275.981 + 190.917i 0.625808 + 0.432918i
\(442\) 0 0
\(443\) 125.099 216.677i 0.282390 0.489113i −0.689583 0.724206i \(-0.742206\pi\)
0.971973 + 0.235093i \(0.0755396\pi\)
\(444\) 0 0
\(445\) 171.603 99.0748i 0.385624 0.222640i
\(446\) 0 0
\(447\) 126.295i 0.282539i
\(448\) 0 0
\(449\) −688.681 −1.53381 −0.766905 0.641761i \(-0.778204\pi\)
−0.766905 + 0.641761i \(0.778204\pi\)
\(450\) 0 0
\(451\) 160.076 + 277.260i 0.354936 + 0.614768i
\(452\) 0 0
\(453\) 874.317 + 504.787i 1.93006 + 1.11432i
\(454\) 0 0
\(455\) 33.1805 + 147.681i 0.0729242 + 0.324574i
\(456\) 0 0
\(457\) −402.259 + 696.733i −0.880217 + 1.52458i −0.0291166 + 0.999576i \(0.509269\pi\)
−0.851100 + 0.525004i \(0.824064\pi\)
\(458\) 0 0
\(459\) −12.4122 21.4985i −0.0270418 0.0468378i
\(460\) 0 0
\(461\) 693.657i 1.50468i −0.658776 0.752339i \(-0.728926\pi\)
0.658776 0.752339i \(-0.271074\pi\)
\(462\) 0 0
\(463\) 321.194i 0.693724i −0.937916 0.346862i \(-0.887247\pi\)
0.937916 0.346862i \(-0.112753\pi\)
\(464\) 0 0
\(465\) −84.2484 145.922i −0.181179 0.313812i
\(466\) 0 0
\(467\) 375.937 651.142i 0.805005 1.39431i −0.111283 0.993789i \(-0.535496\pi\)
0.916288 0.400521i \(-0.131171\pi\)
\(468\) 0 0
\(469\) 396.307 + 123.719i 0.845004 + 0.263792i
\(470\) 0 0
\(471\) 170.064 + 98.1867i 0.361071 + 0.208464i
\(472\) 0 0
\(473\) −186.273 322.634i −0.393811 0.682101i
\(474\) 0 0
\(475\) 644.642 1.35714
\(476\) 0 0
\(477\) 184.118i 0.385992i
\(478\) 0 0
\(479\) 625.392 361.070i 1.30562 0.753800i 0.324257 0.945969i \(-0.394886\pi\)
0.981362 + 0.192169i \(0.0615523\pi\)
\(480\) 0 0
\(481\) 261.631 453.158i 0.543932 0.942117i
\(482\) 0 0
\(483\) 727.988 + 789.943i 1.50722 + 1.63549i
\(484\) 0 0
\(485\) −90.2052 52.0800i −0.185990 0.107381i
\(486\) 0 0
\(487\) 41.4211 23.9145i 0.0850536 0.0491057i −0.456870 0.889533i \(-0.651030\pi\)
0.541924 + 0.840428i \(0.317696\pi\)
\(488\) 0 0
\(489\) −460.682 −0.942090
\(490\) 0 0
\(491\) −44.4724 −0.0905752 −0.0452876 0.998974i \(-0.514420\pi\)
−0.0452876 + 0.998974i \(0.514420\pi\)
\(492\) 0 0
\(493\) −69.9571 + 40.3898i −0.141901 + 0.0819265i
\(494\) 0 0
\(495\) −87.9769 50.7935i −0.177731 0.102613i
\(496\) 0 0
\(497\) −181.469 196.913i −0.365128 0.396203i
\(498\) 0 0
\(499\) −250.786 + 434.374i −0.502577 + 0.870489i 0.497418 + 0.867511i \(0.334281\pi\)
−0.999996 + 0.00297862i \(0.999052\pi\)
\(500\) 0 0
\(501\) −111.656 + 64.4647i −0.222867 + 0.128672i
\(502\) 0 0
\(503\) 462.733i 0.919946i 0.887933 + 0.459973i \(0.152141\pi\)
−0.887933 + 0.459973i \(0.847859\pi\)
\(504\) 0 0
\(505\) −59.1729 −0.117174
\(506\) 0 0
\(507\) −73.7767 127.785i −0.145516 0.252041i
\(508\) 0 0
\(509\) 408.751 + 235.992i 0.803046 + 0.463639i 0.844535 0.535500i \(-0.179877\pi\)
−0.0414889 + 0.999139i \(0.513210\pi\)
\(510\) 0 0
\(511\) 93.3992 + 29.1573i 0.182777 + 0.0570592i
\(512\) 0 0
\(513\) 128.663 222.851i 0.250805 0.434407i
\(514\) 0 0
\(515\) 75.2878 + 130.402i 0.146190 + 0.253208i
\(516\) 0 0
\(517\) 650.693i 1.25859i
\(518\) 0 0
\(519\) 825.047i 1.58969i
\(520\) 0 0
\(521\) 45.3709 + 78.5848i 0.0870843 + 0.150834i 0.906277 0.422683i \(-0.138912\pi\)
−0.819193 + 0.573518i \(0.805578\pi\)
\(522\) 0 0
\(523\) −180.256 + 312.213i −0.344658 + 0.596965i −0.985292 0.170882i \(-0.945338\pi\)
0.640634 + 0.767847i \(0.278672\pi\)
\(524\) 0 0
\(525\) −131.072 583.379i −0.249660 1.11120i
\(526\) 0 0
\(527\) −56.4351 32.5828i −0.107087 0.0618270i
\(528\) 0 0
\(529\) 478.485 + 828.760i 0.904509 + 1.56665i
\(530\) 0 0
\(531\) 71.3014 0.134278
\(532\) 0 0
\(533\) 466.705i 0.875618i
\(534\) 0 0
\(535\) −79.4994 + 45.8990i −0.148597 + 0.0857925i
\(536\) 0 0
\(537\) 346.683 600.472i 0.645592 1.11820i
\(538\) 0 0
\(539\) −348.987 + 165.155i −0.647471 + 0.306410i
\(540\) 0 0
\(541\) −485.969 280.574i −0.898278 0.518621i −0.0216371 0.999766i \(-0.506888\pi\)
−0.876641 + 0.481145i \(0.840221\pi\)
\(542\) 0 0
\(543\) 704.166 406.550i 1.29681 0.748712i
\(544\) 0 0
\(545\) 216.620 0.397468
\(546\) 0 0
\(547\) −1043.62 −1.90790 −0.953952 0.299960i \(-0.903027\pi\)
−0.953952 + 0.299960i \(0.903027\pi\)
\(548\) 0 0
\(549\) 131.447 75.8907i 0.239429 0.138234i
\(550\) 0 0
\(551\) −725.165 418.674i −1.31609 0.759845i
\(552\) 0 0
\(553\) 349.611 78.5494i 0.632208 0.142042i
\(554\) 0 0
\(555\) 170.704 295.667i 0.307574 0.532734i
\(556\) 0 0
\(557\) 42.1273 24.3222i 0.0756324 0.0436664i −0.461707 0.887033i \(-0.652763\pi\)
0.537339 + 0.843366i \(0.319429\pi\)
\(558\) 0 0
\(559\) 543.081i 0.971522i
\(560\) 0 0
\(561\) −90.9189 −0.162066
\(562\) 0 0
\(563\) 363.015 + 628.761i 0.644787 + 1.11680i 0.984351 + 0.176221i \(0.0563874\pi\)
−0.339563 + 0.940583i \(0.610279\pi\)
\(564\) 0 0
\(565\) 90.9012 + 52.4818i 0.160887 + 0.0928882i
\(566\) 0 0
\(567\) −639.692 199.698i −1.12820 0.352202i
\(568\) 0 0
\(569\) 240.696 416.898i 0.423016 0.732685i −0.573217 0.819404i \(-0.694305\pi\)
0.996233 + 0.0867185i \(0.0276381\pi\)
\(570\) 0 0
\(571\) 55.0633 + 95.3724i 0.0964331 + 0.167027i 0.910206 0.414156i \(-0.135923\pi\)
−0.813773 + 0.581183i \(0.802590\pi\)
\(572\) 0 0
\(573\) 1188.38i 2.07396i
\(574\) 0 0
\(575\) 827.097i 1.43843i
\(576\) 0 0
\(577\) 101.168 + 175.228i 0.175335 + 0.303688i 0.940277 0.340410i \(-0.110566\pi\)
−0.764942 + 0.644099i \(0.777233\pi\)
\(578\) 0 0
\(579\) 658.386 1140.36i 1.13711 1.96953i
\(580\) 0 0
\(581\) −460.421 + 424.310i −0.792463 + 0.730310i
\(582\) 0 0
\(583\) 183.452 + 105.916i 0.314669 + 0.181674i
\(584\) 0 0
\(585\) 74.0445 + 128.249i 0.126572 + 0.219229i
\(586\) 0 0
\(587\) 568.689 0.968805 0.484403 0.874845i \(-0.339037\pi\)
0.484403 + 0.874845i \(0.339037\pi\)
\(588\) 0 0
\(589\) 675.497i 1.14685i
\(590\) 0 0
\(591\) −1128.45 + 651.513i −1.90940 + 1.10239i
\(592\) 0 0
\(593\) 342.686 593.550i 0.577886 1.00093i −0.417835 0.908523i \(-0.637211\pi\)
0.995721 0.0924054i \(-0.0294556\pi\)
\(594\) 0 0
\(595\) 25.8837 + 28.0865i 0.0435019 + 0.0472042i
\(596\) 0 0
\(597\) 43.9088 + 25.3507i 0.0735491 + 0.0424636i
\(598\) 0 0
\(599\) −318.077 + 183.642i −0.531013 + 0.306580i −0.741429 0.671032i \(-0.765851\pi\)
0.210416 + 0.977612i \(0.432518\pi\)
\(600\) 0 0
\(601\) 412.344 0.686097 0.343049 0.939318i \(-0.388540\pi\)
0.343049 + 0.939318i \(0.388540\pi\)
\(602\) 0 0
\(603\) 406.190 0.673615
\(604\) 0 0
\(605\) −96.0484 + 55.4535i −0.158758 + 0.0916588i
\(606\) 0 0
\(607\) 1010.46 + 583.389i 1.66468 + 0.961102i 0.970436 + 0.241359i \(0.0775930\pi\)
0.694241 + 0.719743i \(0.255740\pi\)
\(608\) 0 0
\(609\) −231.442 + 741.377i −0.380036 + 1.21737i
\(610\) 0 0
\(611\) 474.276 821.470i 0.776229 1.34447i
\(612\) 0 0
\(613\) −373.900 + 215.871i −0.609951 + 0.352155i −0.772946 0.634471i \(-0.781218\pi\)
0.162995 + 0.986627i \(0.447885\pi\)
\(614\) 0 0
\(615\) 304.506i 0.495131i
\(616\) 0 0
\(617\) −333.751 −0.540926 −0.270463 0.962730i \(-0.587177\pi\)
−0.270463 + 0.962730i \(0.587177\pi\)
\(618\) 0 0
\(619\) −488.158 845.514i −0.788624 1.36594i −0.926810 0.375530i \(-0.877461\pi\)
0.138187 0.990406i \(-0.455873\pi\)
\(620\) 0 0
\(621\) −285.925 165.079i −0.460426 0.265827i
\(622\) 0 0
\(623\) −161.516 718.883i −0.259255 1.15390i
\(624\) 0 0
\(625\) −185.884 + 321.961i −0.297414 + 0.515137i
\(626\) 0 0
\(627\) −471.226 816.187i −0.751556 1.30173i
\(628\) 0 0
\(629\) 132.038i 0.209918i
\(630\) 0 0
\(631\) 639.885i 1.01408i −0.861922 0.507040i \(-0.830739\pi\)
0.861922 0.507040i \(-0.169261\pi\)
\(632\) 0 0
\(633\) 239.767 + 415.288i 0.378778 + 0.656063i
\(634\) 0 0
\(635\) −33.5995 + 58.1961i −0.0529127 + 0.0916474i
\(636\) 0 0
\(637\) 560.958 + 45.8681i 0.880625 + 0.0720064i
\(638\) 0 0
\(639\) −226.888 130.994i −0.355067 0.204998i
\(640\) 0 0
\(641\) −10.4295 18.0645i −0.0162707 0.0281817i 0.857775 0.514025i \(-0.171846\pi\)
−0.874046 + 0.485843i \(0.838513\pi\)
\(642\) 0 0
\(643\) 69.1348 0.107519 0.0537596 0.998554i \(-0.482880\pi\)
0.0537596 + 0.998554i \(0.482880\pi\)
\(644\) 0 0
\(645\) 354.338i 0.549362i
\(646\) 0 0
\(647\) −310.868 + 179.480i −0.480476 + 0.277403i −0.720615 0.693336i \(-0.756140\pi\)
0.240139 + 0.970739i \(0.422807\pi\)
\(648\) 0 0
\(649\) −41.0169 + 71.0433i −0.0632001 + 0.109466i
\(650\) 0 0
\(651\) −611.302 + 137.345i −0.939021 + 0.210976i
\(652\) 0 0
\(653\) 32.1227 + 18.5460i 0.0491925 + 0.0284013i 0.524395 0.851475i \(-0.324292\pi\)
−0.475202 + 0.879877i \(0.657625\pi\)
\(654\) 0 0
\(655\) 197.744 114.168i 0.301900 0.174302i
\(656\) 0 0
\(657\) 95.7284 0.145705
\(658\) 0 0
\(659\) −197.302 −0.299396 −0.149698 0.988732i \(-0.547830\pi\)
−0.149698 + 0.988732i \(0.547830\pi\)
\(660\) 0 0
\(661\) 938.626 541.916i 1.42001 0.819843i 0.423710 0.905798i \(-0.360728\pi\)
0.996299 + 0.0859554i \(0.0273942\pi\)
\(662\) 0 0
\(663\) 114.781 + 66.2688i 0.173124 + 0.0999530i
\(664\) 0 0
\(665\) −117.982 + 377.930i −0.177416 + 0.568316i
\(666\) 0 0
\(667\) −537.173 + 930.411i −0.805357 + 1.39492i
\(668\) 0 0
\(669\) −1285.84 + 742.378i −1.92203 + 1.10968i
\(670\) 0 0
\(671\) 174.628i 0.260250i
\(672\) 0 0
\(673\) −286.066 −0.425061 −0.212530 0.977154i \(-0.568170\pi\)
−0.212530 + 0.977154i \(0.568170\pi\)
\(674\) 0 0
\(675\) 91.8834 + 159.147i 0.136124 + 0.235773i
\(676\) 0 0
\(677\) 433.324 + 250.180i 0.640065 + 0.369542i 0.784640 0.619952i \(-0.212848\pi\)
−0.144575 + 0.989494i \(0.546181\pi\)
\(678\) 0 0
\(679\) −284.811 + 262.473i −0.419456 + 0.386558i
\(680\) 0 0
\(681\) 146.155 253.148i 0.214618 0.371729i
\(682\) 0 0
\(683\) 473.225 + 819.650i 0.692862 + 1.20007i 0.970896 + 0.239501i \(0.0769840\pi\)
−0.278034 + 0.960571i \(0.589683\pi\)
\(684\) 0 0
\(685\) 15.9952i 0.0233507i
\(686\) 0 0
\(687\) 1689.76i 2.45962i
\(688\) 0 0
\(689\) −154.400 267.428i −0.224092 0.388140i
\(690\) 0 0
\(691\) 151.632 262.634i 0.219439 0.380079i −0.735198 0.677853i \(-0.762911\pi\)
0.954636 + 0.297774i \(0.0962441\pi\)
\(692\) 0 0
\(693\) −277.775 + 255.989i −0.400830 + 0.369393i
\(694\) 0 0
\(695\) −4.98781 2.87971i −0.00717670 0.00414347i
\(696\) 0 0
\(697\) −58.8834 101.989i −0.0844812 0.146326i
\(698\) 0 0
\(699\) −332.074 −0.475069
\(700\) 0 0
\(701\) 390.864i 0.557580i −0.960352 0.278790i \(-0.910067\pi\)
0.960352 0.278790i \(-0.0899333\pi\)
\(702\) 0 0
\(703\) 1185.32 684.345i 1.68609 0.973464i
\(704\) 0 0
\(705\) 309.446 535.976i 0.438930 0.760250i
\(706\) 0 0
\(707\) −65.5679 + 210.033i −0.0927411 + 0.297077i
\(708\) 0 0
\(709\) 832.393 + 480.582i 1.17404 + 0.677831i 0.954628 0.297801i \(-0.0962533\pi\)
0.219410 + 0.975633i \(0.429587\pi\)
\(710\) 0 0
\(711\) 303.608 175.288i 0.427016 0.246538i
\(712\) 0 0
\(713\) −866.685 −1.21555
\(714\) 0 0
\(715\) −170.379 −0.238293
\(716\) 0 0
\(717\) 388.074 224.055i 0.541247 0.312489i
\(718\) 0 0
\(719\) 454.773 + 262.563i 0.632507 + 0.365178i 0.781722 0.623627i \(-0.214341\pi\)
−0.149215 + 0.988805i \(0.547675\pi\)
\(720\) 0 0
\(721\) 546.285 122.737i 0.757677 0.170232i
\(722\) 0 0
\(723\) −558.204 + 966.838i −0.772067 + 1.33726i
\(724\) 0 0
\(725\) 517.870 298.992i 0.714304 0.412403i
\(726\) 0 0
\(727\) 108.633i 0.149426i 0.997205 + 0.0747131i \(0.0238041\pi\)
−0.997205 + 0.0747131i \(0.976196\pi\)
\(728\) 0 0
\(729\) −348.775 −0.478429
\(730\) 0 0
\(731\) 68.5197 + 118.680i 0.0937341 + 0.162352i
\(732\) 0 0
\(733\) 34.8609 + 20.1270i 0.0475593 + 0.0274584i 0.523591 0.851970i \(-0.324592\pi\)
−0.476032 + 0.879428i \(0.657925\pi\)
\(734\) 0 0
\(735\) 366.003 + 29.9271i 0.497963 + 0.0407171i
\(736\) 0 0
\(737\) −233.665 + 404.719i −0.317049 + 0.549144i
\(738\) 0 0
\(739\) 498.602 + 863.603i 0.674698 + 1.16861i 0.976557 + 0.215258i \(0.0690594\pi\)
−0.301859 + 0.953352i \(0.597607\pi\)
\(740\) 0 0
\(741\) 1373.87i 1.85407i
\(742\) 0 0
\(743\) 476.575i 0.641420i 0.947177 + 0.320710i \(0.103922\pi\)
−0.947177 + 0.320710i \(0.896078\pi\)
\(744\) 0 0
\(745\) −29.8607 51.7203i −0.0400815 0.0694232i
\(746\) 0 0
\(747\) −306.289 + 530.509i −0.410026 + 0.710186i
\(748\) 0 0
\(749\) 74.8265 + 333.041i 0.0999018 + 0.444648i
\(750\) 0 0
\(751\) 457.691 + 264.248i 0.609442 + 0.351862i 0.772747 0.634714i \(-0.218882\pi\)
−0.163305 + 0.986576i \(0.552215\pi\)
\(752\) 0 0
\(753\) −65.5993 113.621i −0.0871173 0.150892i
\(754\) 0 0
\(755\) 477.400 0.632318
\(756\) 0 0
\(757\) 455.964i 0.602331i 0.953572 + 0.301165i \(0.0973756\pi\)
−0.953572 + 0.301165i \(0.902624\pi\)
\(758\) 0 0
\(759\) −1047.19 + 604.598i −1.37970 + 0.796572i
\(760\) 0 0
\(761\) −238.325 + 412.791i −0.313174 + 0.542433i −0.979048 0.203632i \(-0.934726\pi\)
0.665874 + 0.746064i \(0.268059\pi\)
\(762\) 0 0
\(763\) 240.031 768.888i 0.314588 1.00772i
\(764\) 0 0
\(765\) 32.3619 + 18.6842i 0.0423032 + 0.0244238i
\(766\) 0 0
\(767\) 103.564 59.7927i 0.135025 0.0779565i
\(768\) 0 0
\(769\) −568.246 −0.738941 −0.369471 0.929242i \(-0.620461\pi\)
−0.369471 + 0.929242i \(0.620461\pi\)
\(770\) 0 0
\(771\) −892.621 −1.15774
\(772\) 0 0
\(773\) −1036.66 + 598.515i −1.34108 + 0.774275i −0.986967 0.160925i \(-0.948552\pi\)
−0.354118 + 0.935201i \(0.615219\pi\)
\(774\) 0 0
\(775\) 417.771 + 241.200i 0.539059 + 0.311226i
\(776\) 0 0
\(777\) −860.314 933.531i −1.10723 1.20146i
\(778\) 0 0
\(779\) 610.377 1057.20i 0.783539 1.35713i
\(780\) 0 0
\(781\) 261.039 150.711i 0.334237 0.192972i
\(782\) 0 0
\(783\) 238.701i 0.304855i
\(784\) 0 0
\(785\) 92.8596 0.118292
\(786\) 0 0
\(787\) 226.134 + 391.676i 0.287337 + 0.497682i 0.973173 0.230074i \(-0.0738967\pi\)
−0.685836 + 0.727756i \(0.740563\pi\)
\(788\) 0 0
\(789\) −585.969 338.309i −0.742673 0.428783i
\(790\) 0 0
\(791\) 287.008 264.498i 0.362843 0.334385i
\(792\) 0 0
\(793\) 127.282 220.459i 0.160507 0.278007i