Properties

Label 224.3.n.a.17.11
Level 224
Weight 3
Character 224.17
Analytic conductor 6.104
Analytic rank 0
Dimension 28
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 224.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.11
Character \(\chi\) \(=\) 224.17
Dual form 224.3.n.a.145.11

$q$-expansion

\(f(q)\) \(=\) \(q+(1.70138 - 2.94687i) q^{3} +(2.15858 + 3.73877i) q^{5} +(1.43197 + 6.85197i) q^{7} +(-1.28938 - 2.23327i) q^{9} +O(q^{10})\) \(q+(1.70138 - 2.94687i) q^{3} +(2.15858 + 3.73877i) q^{5} +(1.43197 + 6.85197i) q^{7} +(-1.28938 - 2.23327i) q^{9} +(15.4899 + 8.94308i) q^{11} +3.25607 q^{13} +14.6903 q^{15} +(-13.6263 - 7.86717i) q^{17} +(-0.778522 - 1.34844i) q^{19} +(22.6282 + 7.43796i) q^{21} +(-20.7069 - 35.8655i) q^{23} +(3.18105 - 5.50975i) q^{25} +21.8499 q^{27} -3.74374i q^{29} +(0.0145172 + 0.00838150i) q^{31} +(52.7082 - 30.4311i) q^{33} +(-22.5269 + 20.1443i) q^{35} +(-1.16774 + 0.674194i) q^{37} +(5.53981 - 9.59523i) q^{39} +70.3018i q^{41} -13.0380i q^{43} +(5.56646 - 9.64139i) q^{45} +(-30.9797 + 17.8862i) q^{47} +(-44.8989 + 19.6236i) q^{49} +(-46.3671 + 26.7701i) q^{51} +(39.7989 + 22.9779i) q^{53} +77.2174i q^{55} -5.29824 q^{57} +(34.3509 - 59.4974i) q^{59} +(-48.0386 - 83.2052i) q^{61} +(13.4559 - 12.0328i) q^{63} +(7.02849 + 12.1737i) q^{65} +(-12.0808 - 6.97484i) q^{67} -140.921 q^{69} +75.7095 q^{71} +(-46.0282 - 26.5744i) q^{73} +(-10.8244 - 18.7483i) q^{75} +(-39.0967 + 118.942i) q^{77} +(-11.6744 - 20.2206i) q^{79} +(48.7794 - 84.4884i) q^{81} -102.487 q^{83} -67.9277i q^{85} +(-11.0323 - 6.36952i) q^{87} +(-76.6985 + 44.2819i) q^{89} +(4.66259 + 22.3105i) q^{91} +(0.0493984 - 0.0285202i) q^{93} +(3.36100 - 5.82143i) q^{95} -140.869i q^{97} -46.1241i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q + 4q^{7} - 32q^{9} + O(q^{10}) \) \( 28q + 4q^{7} - 32q^{9} - 28q^{15} - 6q^{17} - 30q^{23} - 32q^{25} + 6q^{31} - 6q^{33} + 20q^{39} + 294q^{47} - 20q^{49} + 124q^{57} - 432q^{63} - 52q^{65} + 136q^{71} + 234q^{73} + 162q^{79} - 18q^{81} - 48q^{87} - 150q^{89} - 290q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70138 2.94687i 0.567126 0.982291i −0.429722 0.902961i \(-0.641388\pi\)
0.996848 0.0793303i \(-0.0252782\pi\)
\(4\) 0 0
\(5\) 2.15858 + 3.73877i 0.431716 + 0.747754i 0.997021 0.0771275i \(-0.0245748\pi\)
−0.565305 + 0.824882i \(0.691242\pi\)
\(6\) 0 0
\(7\) 1.43197 + 6.85197i 0.204567 + 0.978853i
\(8\) 0 0
\(9\) −1.28938 2.23327i −0.143264 0.248141i
\(10\) 0 0
\(11\) 15.4899 + 8.94308i 1.40817 + 0.813007i 0.995212 0.0977432i \(-0.0311624\pi\)
0.412958 + 0.910750i \(0.364496\pi\)
\(12\) 0 0
\(13\) 3.25607 0.250467 0.125233 0.992127i \(-0.460032\pi\)
0.125233 + 0.992127i \(0.460032\pi\)
\(14\) 0 0
\(15\) 14.6903 0.979350
\(16\) 0 0
\(17\) −13.6263 7.86717i −0.801550 0.462775i 0.0424631 0.999098i \(-0.486479\pi\)
−0.844013 + 0.536323i \(0.819813\pi\)
\(18\) 0 0
\(19\) −0.778522 1.34844i −0.0409748 0.0709705i 0.844811 0.535065i \(-0.179713\pi\)
−0.885786 + 0.464095i \(0.846380\pi\)
\(20\) 0 0
\(21\) 22.6282 + 7.43796i 1.07753 + 0.354188i
\(22\) 0 0
\(23\) −20.7069 35.8655i −0.900301 1.55937i −0.827103 0.562050i \(-0.810013\pi\)
−0.0731984 0.997317i \(-0.523321\pi\)
\(24\) 0 0
\(25\) 3.18105 5.50975i 0.127242 0.220390i
\(26\) 0 0
\(27\) 21.8499 0.809257
\(28\) 0 0
\(29\) 3.74374i 0.129095i −0.997915 0.0645473i \(-0.979440\pi\)
0.997915 0.0645473i \(-0.0205603\pi\)
\(30\) 0 0
\(31\) 0.0145172 + 0.00838150i 0.000468296 + 0.000270371i 0.500234 0.865890i \(-0.333247\pi\)
−0.499766 + 0.866161i \(0.666581\pi\)
\(32\) 0 0
\(33\) 52.7082 30.4311i 1.59722 0.922155i
\(34\) 0 0
\(35\) −22.5269 + 20.1443i −0.643626 + 0.575553i
\(36\) 0 0
\(37\) −1.16774 + 0.674194i −0.0315605 + 0.0182215i −0.515697 0.856771i \(-0.672467\pi\)
0.484137 + 0.874992i \(0.339134\pi\)
\(38\) 0 0
\(39\) 5.53981 9.59523i 0.142046 0.246031i
\(40\) 0 0
\(41\) 70.3018i 1.71468i 0.514753 + 0.857339i \(0.327884\pi\)
−0.514753 + 0.857339i \(0.672116\pi\)
\(42\) 0 0
\(43\) 13.0380i 0.303210i −0.988441 0.151605i \(-0.951556\pi\)
0.988441 0.151605i \(-0.0484442\pi\)
\(44\) 0 0
\(45\) 5.56646 9.64139i 0.123699 0.214253i
\(46\) 0 0
\(47\) −30.9797 + 17.8862i −0.659144 + 0.380557i −0.791951 0.610585i \(-0.790934\pi\)
0.132807 + 0.991142i \(0.457601\pi\)
\(48\) 0 0
\(49\) −44.8989 + 19.6236i −0.916305 + 0.400482i
\(50\) 0 0
\(51\) −46.3671 + 26.7701i −0.909160 + 0.524904i
\(52\) 0 0
\(53\) 39.7989 + 22.9779i 0.750923 + 0.433546i 0.826027 0.563630i \(-0.190596\pi\)
−0.0751042 + 0.997176i \(0.523929\pi\)
\(54\) 0 0
\(55\) 77.2174i 1.40395i
\(56\) 0 0
\(57\) −5.29824 −0.0929516
\(58\) 0 0
\(59\) 34.3509 59.4974i 0.582218 1.00843i −0.412998 0.910732i \(-0.635518\pi\)
0.995216 0.0976993i \(-0.0311484\pi\)
\(60\) 0 0
\(61\) −48.0386 83.2052i −0.787517 1.36402i −0.927484 0.373864i \(-0.878033\pi\)
0.139966 0.990156i \(1.54470\pi\)
\(62\) 0 0
\(63\) 13.4559 12.0328i 0.213586 0.190996i
\(64\) 0 0
\(65\) 7.02849 + 12.1737i 0.108131 + 0.187288i
\(66\) 0 0
\(67\) −12.0808 6.97484i −0.180310 0.104102i 0.407128 0.913371i \(-0.366530\pi\)
−0.587438 + 0.809269i \(0.699864\pi\)
\(68\) 0 0
\(69\) −140.921 −2.04234
\(70\) 0 0
\(71\) 75.7095 1.06633 0.533166 0.846011i \(-0.321002\pi\)
0.533166 + 0.846011i \(0.321002\pi\)
\(72\) 0 0
\(73\) −46.0282 26.5744i −0.630523 0.364033i 0.150432 0.988620i \(-0.451934\pi\)
−0.780955 + 0.624588i \(0.785267\pi\)
\(74\) 0 0
\(75\) −10.8244 18.7483i −0.144325 0.249978i
\(76\) 0 0
\(77\) −39.0967 + 118.942i −0.507749 + 1.54470i
\(78\) 0 0
\(79\) −11.6744 20.2206i −0.147777 0.255957i 0.782628 0.622489i \(-0.213878\pi\)
−0.930406 + 0.366532i \(0.880545\pi\)
\(80\) 0 0
\(81\) 48.7794 84.4884i 0.602215 1.04307i
\(82\) 0 0
\(83\) −102.487 −1.23479 −0.617393 0.786655i \(-0.711811\pi\)
−0.617393 + 0.786655i \(0.711811\pi\)
\(84\) 0 0
\(85\) 67.9277i 0.799150i
\(86\) 0 0
\(87\) −11.0323 6.36952i −0.126808 0.0732129i
\(88\) 0 0
\(89\) −76.6985 + 44.2819i −0.861781 + 0.497549i −0.864608 0.502447i \(-0.832433\pi\)
0.00282755 + 0.999996i \(0.499100\pi\)
\(90\) 0 0
\(91\) 4.66259 + 22.3105i 0.0512373 + 0.245170i
\(92\) 0 0
\(93\) 0.0493984 0.0285202i 0.000531166 0.000306669i
\(94\) 0 0
\(95\) 3.36100 5.82143i 0.0353790 0.0612782i
\(96\) 0 0
\(97\) 140.869i 1.45226i −0.687558 0.726130i \(-0.741317\pi\)
0.687558 0.726130i \(-0.258683\pi\)
\(98\) 0 0
\(99\) 46.1241i 0.465900i
\(100\) 0 0
\(101\) 17.6988 30.6553i 0.175236 0.303518i −0.765007 0.644022i \(-0.777265\pi\)
0.940243 + 0.340504i \(0.110598\pi\)
\(102\) 0 0
\(103\) −87.1651 + 50.3248i −0.846263 + 0.488590i −0.859388 0.511324i \(-0.829155\pi\)
0.0131250 + 0.999914i \(0.495822\pi\)
\(104\) 0 0
\(105\) 21.0360 + 100.657i 0.200343 + 0.958640i
\(106\) 0 0
\(107\) −92.6215 + 53.4751i −0.865622 + 0.499767i −0.865891 0.500233i \(-0.833248\pi\)
0.000269099 1.00000i \(0.499914\pi\)
\(108\) 0 0
\(109\) 45.5799 + 26.3156i 0.418165 + 0.241427i 0.694292 0.719694i \(-0.255718\pi\)
−0.276127 + 0.961121i \(0.589051\pi\)
\(110\) 0 0
\(111\) 4.58824i 0.0413355i
\(112\) 0 0
\(113\) 45.4346 0.402076 0.201038 0.979583i \(-0.435568\pi\)
0.201038 + 0.979583i \(0.435568\pi\)
\(114\) 0 0
\(115\) 89.3952 154.837i 0.777350 1.34641i
\(116\) 0 0
\(117\) −4.19831 7.27168i −0.0358830 0.0621511i
\(118\) 0 0
\(119\) 34.3931 104.633i 0.289018 0.879267i
\(120\) 0 0
\(121\) 99.4572 + 172.265i 0.821961 + 1.42368i
\(122\) 0 0
\(123\) 207.171 + 119.610i 1.68431 + 0.972439i
\(124\) 0 0
\(125\) 135.395 1.08316
\(126\) 0 0
\(127\) −125.695 −0.989723 −0.494861 0.868972i \(-0.664781\pi\)
−0.494861 + 0.868972i \(0.664781\pi\)
\(128\) 0 0
\(129\) −38.4215 22.1827i −0.297841 0.171959i
\(130\) 0 0
\(131\) 56.6504 + 98.1214i 0.432446 + 0.749018i 0.997083 0.0763210i \(-0.0243174\pi\)
−0.564638 + 0.825339i \(0.690984\pi\)
\(132\) 0 0
\(133\) 8.12464 7.26533i 0.0610875 0.0546265i
\(134\) 0 0
\(135\) 47.1648 + 81.6919i 0.349369 + 0.605125i
\(136\) 0 0
\(137\) −39.1679 + 67.8408i −0.285897 + 0.495188i −0.972826 0.231536i \(-0.925625\pi\)
0.686929 + 0.726724i \(0.258958\pi\)
\(138\) 0 0
\(139\) −149.038 −1.07222 −0.536109 0.844149i \(-0.680106\pi\)
−0.536109 + 0.844149i \(0.680106\pi\)
\(140\) 0 0
\(141\) 121.725i 0.863295i
\(142\) 0 0
\(143\) 50.4361 + 29.1193i 0.352700 + 0.203631i
\(144\) 0 0
\(145\) 13.9970 8.08117i 0.0965310 0.0557322i
\(146\) 0 0
\(147\) −18.5617 + 165.699i −0.126270 + 1.12720i
\(148\) 0 0
\(149\) 73.8369 42.6298i 0.495550 0.286106i −0.231324 0.972877i \(-0.574306\pi\)
0.726874 + 0.686771i \(0.240972\pi\)
\(150\) 0 0
\(151\) 65.9012 114.144i 0.436432 0.755922i −0.560979 0.827830i \(-0.689575\pi\)
0.997411 + 0.0719076i \(0.0229087\pi\)
\(152\) 0 0
\(153\) 40.5751i 0.265197i
\(154\) 0 0
\(155\) 0.0723686i 0.000466894i
\(156\) 0 0
\(157\) 122.552 212.267i 0.780589 1.35202i −0.151010 0.988532i \(-0.548253\pi\)
0.931599 0.363487i \(-0.118414\pi\)
\(158\) 0 0
\(159\) 135.426 78.1883i 0.851737 0.491750i
\(160\) 0 0
\(161\) 216.097 193.241i 1.34222 1.20026i
\(162\) 0 0
\(163\) 208.089 120.140i 1.27662 0.737057i 0.300395 0.953815i \(-0.402882\pi\)
0.976225 + 0.216758i \(0.0695482\pi\)
\(164\) 0 0
\(165\) 227.550 + 131.376i 1.37909 + 0.796219i
\(166\) 0 0
\(167\) 73.1965i 0.438302i −0.975691 0.219151i \(-0.929671\pi\)
0.975691 0.219151i \(-0.0703288\pi\)
\(168\) 0 0
\(169\) −158.398 −0.937266
\(170\) 0 0
\(171\) −2.00762 + 3.47730i −0.0117405 + 0.0203351i
\(172\) 0 0
\(173\) −18.5246 32.0855i −0.107078 0.185465i 0.807507 0.589858i \(-0.200816\pi\)
−0.914585 + 0.404393i \(0.867483\pi\)
\(174\) 0 0
\(175\) 42.3078 + 13.9067i 0.241759 + 0.0794668i
\(176\) 0 0
\(177\) −116.888 202.455i −0.660382 1.14382i
\(178\) 0 0
\(179\) 205.982 + 118.924i 1.15074 + 0.664379i 0.949067 0.315074i \(-0.102029\pi\)
0.201672 + 0.979453i \(0.435363\pi\)
\(180\) 0 0
\(181\) −292.553 −1.61631 −0.808157 0.588966i \(-0.799535\pi\)
−0.808157 + 0.588966i \(0.799535\pi\)
\(182\) 0 0
\(183\) −326.927 −1.78649
\(184\) 0 0
\(185\) −5.04132 2.91061i −0.0272504 0.0157330i
\(186\) 0 0
\(187\) −140.713 243.723i −0.752478 1.30333i
\(188\) 0 0
\(189\) 31.2884 + 149.715i 0.165547 + 0.792143i
\(190\) 0 0
\(191\) 70.6135 + 122.306i 0.369704 + 0.640346i 0.989519 0.144402i \(-0.0461257\pi\)
−0.619815 + 0.784748i \(0.712792\pi\)
\(192\) 0 0
\(193\) 32.9799 57.1229i 0.170880 0.295973i −0.767848 0.640633i \(-0.778672\pi\)
0.938728 + 0.344659i \(0.112006\pi\)
\(194\) 0 0
\(195\) 47.8325 0.245295
\(196\) 0 0
\(197\) 199.421i 1.01229i 0.862448 + 0.506145i \(0.168930\pi\)
−0.862448 + 0.506145i \(0.831070\pi\)
\(198\) 0 0
\(199\) −58.6230 33.8460i −0.294588 0.170080i 0.345421 0.938448i \(-0.387736\pi\)
−0.640009 + 0.768367i \(0.721069\pi\)
\(200\) 0 0
\(201\) −41.1079 + 23.7337i −0.204517 + 0.118078i
\(202\) 0 0
\(203\) 25.6520 5.36092i 0.126365 0.0264085i
\(204\) 0 0
\(205\) −262.842 + 151.752i −1.28216 + 0.740254i
\(206\) 0 0
\(207\) −53.3982 + 92.4884i −0.257962 + 0.446804i
\(208\) 0 0
\(209\) 27.8495i 0.133251i
\(210\) 0 0
\(211\) 62.1464i 0.294533i −0.989097 0.147266i \(-0.952953\pi\)
0.989097 0.147266i \(-0.0470475\pi\)
\(212\) 0 0
\(213\) 128.811 223.106i 0.604744 1.04745i
\(214\) 0 0
\(215\) 48.7463 28.1437i 0.226727 0.130901i
\(216\) 0 0
\(217\) −0.0366416 + 0.111473i −0.000168855 + 0.000513702i
\(218\) 0 0
\(219\) −156.623 + 90.4261i −0.715172 + 0.412905i
\(220\) 0 0
\(221\) −44.3683 25.6161i −0.200762 0.115910i
\(222\) 0 0
\(223\) 115.525i 0.518050i −0.965871 0.259025i \(-0.916599\pi\)
0.965871 0.259025i \(-0.0834012\pi\)
\(224\) 0 0
\(225\) −16.4063 −0.0729171
\(226\) 0 0
\(227\) −28.2532 + 48.9360i −0.124463 + 0.215577i −0.921523 0.388324i \(-0.873054\pi\)
0.797060 + 0.603901i \(0.206388\pi\)
\(228\) 0 0
\(229\) 59.1696 + 102.485i 0.258383 + 0.447532i 0.965809 0.259255i \(-0.0834771\pi\)
−0.707426 + 0.706787i \(0.750144\pi\)
\(230\) 0 0
\(231\) 283.990 + 317.579i 1.22939 + 1.37480i
\(232\) 0 0
\(233\) 12.3403 + 21.3740i 0.0529625 + 0.0917337i 0.891291 0.453431i \(-0.149800\pi\)
−0.838329 + 0.545165i \(0.816467\pi\)
\(234\) 0 0
\(235\) −133.745 77.2175i −0.569126 0.328585i
\(236\) 0 0
\(237\) −79.4503 −0.335233
\(238\) 0 0
\(239\) 251.189 1.05100 0.525499 0.850794i \(-0.323879\pi\)
0.525499 + 0.850794i \(0.323879\pi\)
\(240\) 0 0
\(241\) 97.3782 + 56.2213i 0.404059 + 0.233283i 0.688234 0.725489i \(-0.258386\pi\)
−0.284175 + 0.958772i \(0.591720\pi\)
\(242\) 0 0
\(243\) −67.6598 117.190i −0.278436 0.482265i
\(244\) 0 0
\(245\) −170.286 125.508i −0.695046 0.512276i
\(246\) 0 0
\(247\) −2.53492 4.39061i −0.0102628 0.0177758i
\(248\) 0 0
\(249\) −174.370 + 302.017i −0.700280 + 1.21292i
\(250\) 0 0
\(251\) −121.248 −0.483059 −0.241529 0.970394i \(-0.577649\pi\)
−0.241529 + 0.970394i \(0.577649\pi\)
\(252\) 0 0
\(253\) 740.735i 2.92781i
\(254\) 0 0
\(255\) −200.174 115.571i −0.784998 0.453219i
\(256\) 0 0
\(257\) −90.7377 + 52.3874i −0.353065 + 0.203842i −0.666034 0.745921i \(-0.732010\pi\)
0.312969 + 0.949763i \(0.398676\pi\)
\(258\) 0 0
\(259\) −6.29172 7.03588i −0.0242924 0.0271656i
\(260\) 0 0
\(261\) −8.36079 + 4.82710i −0.0320337 + 0.0184946i
\(262\) 0 0
\(263\) −52.3392 + 90.6542i −0.199008 + 0.344693i −0.948207 0.317653i \(-0.897105\pi\)
0.749199 + 0.662345i \(0.230439\pi\)
\(264\) 0 0
\(265\) 198.399i 0.748675i
\(266\) 0 0
\(267\) 301.361i 1.12869i
\(268\) 0 0
\(269\) −152.466 + 264.079i −0.566789 + 0.981707i 0.430092 + 0.902785i \(0.358481\pi\)
−0.996881 + 0.0789222i \(0.974852\pi\)
\(270\) 0 0
\(271\) −88.8942 + 51.3231i −0.328023 + 0.189384i −0.654963 0.755661i \(-0.727316\pi\)
0.326940 + 0.945045i \(0.393982\pi\)
\(272\) 0 0
\(273\) 73.6790 + 24.2185i 0.269886 + 0.0887125i
\(274\) 0 0
\(275\) 98.5482 56.8968i 0.358357 0.206898i
\(276\) 0 0
\(277\) 14.4235 + 8.32739i 0.0520703 + 0.0300628i 0.525809 0.850603i \(-0.323763\pi\)
−0.473739 + 0.880665i \(0.657096\pi\)
\(278\) 0 0
\(279\) 0.0432277i 0.000154938i
\(280\) 0 0
\(281\) 75.8291 0.269855 0.134927 0.990856i \(-0.456920\pi\)
0.134927 + 0.990856i \(0.456920\pi\)
\(282\) 0 0
\(283\) −43.6656 + 75.6311i −0.154296 + 0.267248i −0.932802 0.360389i \(-0.882644\pi\)
0.778507 + 0.627636i \(0.215977\pi\)
\(284\) 0 0
\(285\) −11.4367 19.8089i −0.0401287 0.0695050i
\(286\) 0 0
\(287\) −481.706 + 100.670i −1.67842 + 0.350767i
\(288\) 0 0
\(289\) −20.7152 35.8798i −0.0716789 0.124151i
\(290\) 0 0
\(291\) −415.124 239.672i −1.42654 0.823614i
\(292\) 0 0
\(293\) 27.5057 0.0938760 0.0469380 0.998898i \(-0.485054\pi\)
0.0469380 + 0.998898i \(0.485054\pi\)
\(294\) 0 0
\(295\) 296.597 1.00541
\(296\) 0 0
\(297\) 338.452 + 195.406i 1.13957 + 0.657931i
\(298\) 0 0
\(299\) −67.4232 116.780i −0.225496 0.390570i
\(300\) 0 0
\(301\) 89.3363 18.6701i 0.296798 0.0620269i
\(302\) 0 0
\(303\) −60.2248 104.312i −0.198762 0.344266i
\(304\) 0 0
\(305\) 207.390 359.211i 0.679968 1.17774i
\(306\) 0 0
\(307\) −247.996 −0.807805 −0.403902 0.914802i \(-0.632346\pi\)
−0.403902 + 0.914802i \(0.632346\pi\)
\(308\) 0 0
\(309\) 342.486i 1.10837i
\(310\) 0 0
\(311\) −378.484 218.518i −1.21699 0.702630i −0.252717 0.967540i \(-0.581324\pi\)
−0.964273 + 0.264910i \(0.914658\pi\)
\(312\) 0 0
\(313\) −71.7330 + 41.4151i −0.229179 + 0.132317i −0.610193 0.792253i \(-0.708908\pi\)
0.381014 + 0.924569i \(0.375575\pi\)
\(314\) 0 0
\(315\) 74.0335 + 24.3350i 0.235027 + 0.0772540i
\(316\) 0 0
\(317\) −211.775 + 122.268i −0.668059 + 0.385704i −0.795341 0.606162i \(-0.792708\pi\)
0.127282 + 0.991867i \(0.459375\pi\)
\(318\) 0 0
\(319\) 33.4806 57.9900i 0.104955 0.181787i
\(320\) 0 0
\(321\) 363.925i 1.13372i
\(322\) 0 0
\(323\) 24.4991i 0.0758485i
\(324\) 0 0
\(325\) 10.3577 17.9401i 0.0318699 0.0552004i
\(326\) 0 0
\(327\) 155.097 89.5456i 0.474304 0.273840i
\(328\) 0 0
\(329\) −166.917 186.660i −0.507348 0.567355i
\(330\) 0 0
\(331\) 66.2919 38.2736i 0.200278 0.115630i −0.396507 0.918032i \(-0.629778\pi\)
0.596785 + 0.802401i \(0.296445\pi\)
\(332\) 0 0
\(333\) 3.01132 + 1.73858i 0.00904299 + 0.00522097i
\(334\) 0 0
\(335\) 60.2230i 0.179770i
\(336\) 0 0
\(337\) −38.2520 −0.113507 −0.0567537 0.998388i \(-0.518075\pi\)
−0.0567537 + 0.998388i \(0.518075\pi\)
\(338\) 0 0
\(339\) 77.3015 133.890i 0.228028 0.394956i
\(340\) 0 0
\(341\) 0.149913 + 0.259656i 0.000439627 + 0.000761456i
\(342\) 0 0
\(343\) −198.754 279.546i −0.579459 0.815002i
\(344\) 0 0
\(345\) −304.190 526.873i −0.881711 1.52717i
\(346\) 0 0
\(347\) 208.395 + 120.317i 0.600561 + 0.346734i 0.769262 0.638933i \(-0.220624\pi\)
−0.168701 + 0.985667i \(0.553957\pi\)
\(348\) 0 0
\(349\) 430.367 1.23314 0.616572 0.787298i \(-0.288521\pi\)
0.616572 + 0.787298i \(0.288521\pi\)
\(350\) 0 0
\(351\) 71.1449 0.202692
\(352\) 0 0
\(353\) −265.950 153.546i −0.753399 0.434975i 0.0735214 0.997294i \(-0.476576\pi\)
−0.826921 + 0.562318i \(0.809910\pi\)
\(354\) 0 0
\(355\) 163.425 + 283.061i 0.460353 + 0.797354i
\(356\) 0 0
\(357\) −249.824 279.372i −0.699787 0.782555i
\(358\) 0 0
\(359\) 230.880 + 399.896i 0.643120 + 1.11392i 0.984732 + 0.174075i \(0.0556935\pi\)
−0.341613 + 0.939841i \(0.610973\pi\)
\(360\) 0 0
\(361\) 179.288 310.536i 0.496642 0.860209i
\(362\) 0 0
\(363\) 676.858 1.86462
\(364\) 0 0
\(365\) 229.452i 0.628635i
\(366\) 0 0
\(367\) 542.949 + 313.471i 1.47942 + 0.854146i 0.999729 0.0232895i \(-0.00741394\pi\)
0.479695 + 0.877435i \(0.340747\pi\)
\(368\) 0 0
\(369\) 157.003 90.6457i 0.425482 0.245652i
\(370\) 0 0
\(371\) −100.453 + 305.605i −0.270763 + 0.823732i
\(372\) 0 0
\(373\) 357.317 206.297i 0.957953 0.553075i 0.0624108 0.998051i \(-0.480121\pi\)
0.895543 + 0.444976i \(0.146788\pi\)
\(374\) 0 0
\(375\) 230.359 398.993i 0.614290 1.06398i
\(376\) 0 0
\(377\) 12.1899i 0.0323339i
\(378\) 0 0
\(379\) 327.118i 0.863107i −0.902087 0.431554i \(-0.857966\pi\)
0.902087 0.431554i \(-0.142034\pi\)
\(380\) 0 0
\(381\) −213.854 + 370.407i −0.561298 + 0.972196i
\(382\) 0 0
\(383\) 215.523 124.432i 0.562724 0.324889i −0.191514 0.981490i \(-0.561340\pi\)
0.754238 + 0.656601i \(0.228006\pi\)
\(384\) 0 0
\(385\) −529.091 + 110.573i −1.37426 + 0.287203i
\(386\) 0 0
\(387\) −29.1175 + 16.8110i −0.0752390 + 0.0434392i
\(388\) 0 0
\(389\) −326.728 188.637i −0.839918 0.484927i 0.0173181 0.999850i \(-0.494487\pi\)
−0.857236 + 0.514923i \(0.827821\pi\)
\(390\) 0 0
\(391\) 651.620i 1.66655i
\(392\) 0 0
\(393\) 385.535 0.981005
\(394\) 0 0
\(395\) 50.4003 87.2958i 0.127596 0.221002i
\(396\) 0 0
\(397\) 335.874 + 581.752i 0.846031 + 1.46537i 0.884723 + 0.466118i \(0.154348\pi\)
−0.0386913 + 0.999251i \(0.512319\pi\)
\(398\) 0 0
\(399\) −7.58692 36.3034i −0.0190148 0.0909859i
\(400\) 0 0
\(401\) 235.200 + 407.378i 0.586534 + 1.01591i 0.994682 + 0.102991i \(0.0328411\pi\)
−0.408149 + 0.912915i \(0.633826\pi\)
\(402\) 0 0
\(403\) 0.0472689 + 0.0272907i 0.000117293 + 6.77189e-5i
\(404\) 0 0
\(405\) 421.177 1.03994
\(406\) 0 0
\(407\) −24.1175 −0.0592567
\(408\) 0 0
\(409\) −57.7400 33.3362i −0.141174 0.0815067i 0.427750 0.903897i \(-0.359307\pi\)
−0.568923 + 0.822391i \(0.692640\pi\)
\(410\) 0 0
\(411\) 133.279 + 230.846i 0.324279 + 0.561669i
\(412\) 0 0
\(413\) 456.864 + 150.172i 1.10621 + 0.363614i
\(414\) 0 0
\(415\) −221.227 383.177i −0.533077 0.923317i
\(416\) 0 0
\(417\) −253.571 + 439.197i −0.608083 + 1.05323i
\(418\) 0 0
\(419\) 437.380 1.04387 0.521933 0.852986i \(-0.325211\pi\)
0.521933 + 0.852986i \(0.325211\pi\)
\(420\) 0 0
\(421\) 703.800i 1.67173i 0.548933 + 0.835867i \(0.315034\pi\)
−0.548933 + 0.835867i \(0.684966\pi\)
\(422\) 0 0
\(423\) 79.8893 + 46.1241i 0.188864 + 0.109040i
\(424\) 0 0
\(425\) −86.6923 + 50.0518i −0.203982 + 0.117769i
\(426\) 0 0
\(427\) 501.330 448.306i 1.17407 1.04990i
\(428\) 0 0
\(429\) 171.622 99.0858i 0.400051 0.230969i
\(430\) 0 0
\(431\) −274.869 + 476.087i −0.637747 + 1.10461i 0.348178 + 0.937428i \(0.386800\pi\)
−0.985926 + 0.167183i \(0.946533\pi\)
\(432\) 0 0
\(433\) 355.012i 0.819890i −0.912110 0.409945i \(-0.865548\pi\)
0.912110 0.409945i \(-0.134452\pi\)
\(434\) 0 0
\(435\) 54.9965i 0.126429i
\(436\) 0 0
\(437\) −32.2416 + 55.8441i −0.0737794 + 0.127790i
\(438\) 0 0
\(439\) −477.032 + 275.415i −1.08663 + 0.627369i −0.932678 0.360709i \(-0.882535\pi\)
−0.153956 + 0.988078i \(0.549201\pi\)
\(440\) 0 0
\(441\) 101.717 + 74.9692i 0.230650 + 0.169998i
\(442\) 0 0
\(443\) 234.027 135.116i 0.528278 0.305001i −0.212037 0.977262i \(-0.568010\pi\)
0.740315 + 0.672260i \(0.234676\pi\)
\(444\) 0 0
\(445\) −331.120 191.172i −0.744089 0.429600i
\(446\) 0 0
\(447\) 290.117i 0.649032i
\(448\) 0 0
\(449\) 455.397 1.01425 0.507124 0.861873i \(-0.330709\pi\)
0.507124 + 0.861873i \(0.330709\pi\)
\(450\) 0 0
\(451\) −628.714 + 1088.96i −1.39404 + 2.41456i
\(452\) 0 0
\(453\) −224.246 388.405i −0.495024 0.857406i
\(454\) 0 0
\(455\) −73.3492 + 65.5914i −0.161207 + 0.144157i
\(456\) 0 0
\(457\) 84.3172 + 146.042i 0.184501 + 0.319566i 0.943408 0.331633i \(-0.107600\pi\)
−0.758907 + 0.651199i \(0.774266\pi\)
\(458\) 0 0
\(459\) −297.735 171.897i −0.648659 0.374504i
\(460\) 0 0
\(461\) 265.062 0.574971 0.287485 0.957785i \(-0.407181\pi\)
0.287485 + 0.957785i \(0.407181\pi\)
\(462\) 0 0
\(463\) −97.4735 −0.210526 −0.105263 0.994444i \(-0.533568\pi\)
−0.105263 + 0.994444i \(0.533568\pi\)
\(464\) 0 0
\(465\) 0.213261 + 0.123126i 0.000458626 + 0.000264788i
\(466\) 0 0
\(467\) 37.0997 + 64.2586i 0.0794427 + 0.137599i 0.903010 0.429620i \(-0.141353\pi\)
−0.823567 + 0.567219i \(0.808019\pi\)
\(468\) 0 0
\(469\) 30.4921 92.7648i 0.0650150 0.197793i
\(470\) 0 0
\(471\) −417.016 722.293i −0.885385 1.53353i
\(472\) 0 0
\(473\) 116.600 201.958i 0.246512 0.426972i
\(474\) 0 0
\(475\) −9.90608 −0.0208549
\(476\) 0 0
\(477\) 118.509i 0.248447i
\(478\) 0 0
\(479\) 475.220 + 274.368i 0.992108 + 0.572794i 0.905904 0.423484i \(-0.139193\pi\)
0.0862043 + 0.996277i \(0.472526\pi\)
\(480\) 0 0
\(481\) −3.80224 + 2.19522i −0.00790486 + 0.00456387i
\(482\) 0 0
\(483\) −201.795 965.588i −0.417795 1.99915i
\(484\) 0 0
\(485\) 526.678 304.078i 1.08593 0.626964i
\(486\) 0 0
\(487\) 283.938 491.795i 0.583034 1.00985i −0.412083 0.911146i \(-0.635199\pi\)
0.995117 0.0986990i \(-0.0314681\pi\)
\(488\) 0 0
\(489\) 817.617i 1.67202i
\(490\) 0 0
\(491\) 78.8005i 0.160490i 0.996775 + 0.0802449i \(0.0255702\pi\)
−0.996775 + 0.0802449i \(0.974430\pi\)
\(492\) 0 0
\(493\) −29.4527 + 51.0135i −0.0597417 + 0.103476i
\(494\) 0 0
\(495\) 172.447 99.5626i 0.348379 0.201136i
\(496\) 0 0
\(497\) 108.414 + 518.759i 0.218136 + 1.04378i
\(498\) 0 0
\(499\) −290.932 + 167.970i −0.583030 + 0.336612i −0.762337 0.647181i \(-0.775948\pi\)
0.179307 + 0.983793i \(0.442615\pi\)
\(500\) 0 0
\(501\) −215.701 124.535i −0.430541 0.248573i
\(502\) 0 0
\(503\) 274.052i 0.544836i −0.962179 0.272418i \(-0.912177\pi\)
0.962179 0.272418i \(-0.0878233\pi\)
\(504\) 0 0
\(505\) 152.817 0.302609
\(506\) 0 0
\(507\) −269.495 + 466.779i −0.531548 + 0.920669i
\(508\) 0 0
\(509\) −168.009 291.000i −0.330076 0.571709i 0.652450 0.757831i \(-0.273741\pi\)
−0.982526 + 0.186123i \(0.940408\pi\)
\(510\) 0 0
\(511\) 116.176 353.437i 0.227350 0.691658i
\(512\) 0 0
\(513\) −17.0106 29.4633i −0.0331591 0.0574333i
\(514\) 0 0
\(515\) −376.306 217.260i −0.730691 0.421865i
\(516\) 0 0
\(517\) −639.829 −1.23758
\(518\) 0 0
\(519\) −126.069 −0.242908
\(520\) 0 0
\(521\) −547.572 316.141i −1.05100 0.606796i −0.128072 0.991765i \(-0.540879\pi\)
−0.922930 + 0.384969i \(0.874212\pi\)
\(522\) 0 0
\(523\) 389.623 + 674.847i 0.744977 + 1.29034i 0.950206 + 0.311624i \(0.100873\pi\)
−0.205229 + 0.978714i \(0.565794\pi\)
\(524\) 0 0
\(525\) 112.963 101.015i 0.215167 0.192410i
\(526\) 0 0
\(527\) −0.131877 0.228418i −0.000250242 0.000433431i
\(528\) 0 0
\(529\) −593.054 + 1027.20i −1.12109 + 1.94178i
\(530\) 0 0
\(531\) −177.165 −0.333644
\(532\) 0 0
\(533\) 228.907i 0.429470i
\(534\) 0 0
\(535\) −399.862 230.861i −0.747406 0.431515i
\(536\) 0 0
\(537\) 700.908 404.669i 1.30523 0.753574i
\(538\) 0 0
\(539\) −870.974 97.5673i −1.61591 0.181015i
\(540\) 0 0
\(541\) −583.617 + 336.952i −1.07878 + 0.622831i −0.930566 0.366125i \(-0.880684\pi\)
−0.148209 + 0.988956i \(0.547351\pi\)
\(542\) 0 0
\(543\) −497.743 + 862.117i −0.916655 + 1.58769i
\(544\) 0 0
\(545\) 227.217i 0.416913i
\(546\) 0 0
\(547\) 52.5329i 0.0960382i −0.998846 0.0480191i \(-0.984709\pi\)
0.998846 0.0480191i \(-0.0152908\pi\)
\(548\) 0 0
\(549\) −123.880 + 214.566i −0.225646 + 0.390831i
\(550\) 0 0
\(551\) −5.04821 + 2.91458i −0.00916190 + 0.00528963i
\(552\) 0 0
\(553\) 121.834 108.948i 0.220314 0.197012i
\(554\) 0 0
\(555\) −17.1544 + 9.90409i −0.0309088 + 0.0178452i
\(556\) 0 0
\(557\) −678.123 391.515i −1.21746 0.702899i −0.253083 0.967445i \(-0.581445\pi\)
−0.964373 + 0.264546i \(0.914778\pi\)
\(558\) 0 0
\(559\) 42.4528i 0.0759441i
\(560\) 0 0
\(561\) −957.628 −1.70700
\(562\) 0 0
\(563\) 446.202 772.844i 0.792543 1.37272i −0.131845 0.991270i \(-0.542090\pi\)
0.924388 0.381454i \(-0.124577\pi\)
\(564\) 0 0
\(565\) 98.0743 + 169.870i 0.173583 + 0.300654i
\(566\) 0 0
\(567\) 648.763 + 213.250i 1.14420 + 0.376102i
\(568\) 0 0
\(569\) 148.722 + 257.593i 0.261373 + 0.452712i 0.966607 0.256263i \(-0.0824912\pi\)
−0.705234 + 0.708975i \(0.749158\pi\)
\(570\) 0 0
\(571\) −218.885 126.373i −0.383335 0.221319i 0.295933 0.955209i \(-0.404369\pi\)
−0.679268 + 0.733890i \(0.737703\pi\)
\(572\) 0 0
\(573\) 480.561 0.838676
\(574\) 0 0
\(575\) −263.479 −0.458225
\(576\) 0 0
\(577\) 764.454 + 441.358i 1.32488 + 0.764918i 0.984502 0.175371i \(-0.0561126\pi\)
0.340375 + 0.940290i \(0.389446\pi\)
\(578\) 0 0
\(579\) −112.223 194.375i −0.193821 0.335709i
\(580\) 0 0
\(581\) −146.759 702.239i −0.252597 1.20867i
\(582\) 0 0
\(583\) 410.987 + 711.850i 0.704951 + 1.22101i
\(584\) 0 0
\(585\) 18.1248 31.3930i 0.0309825 0.0536633i
\(586\) 0 0
\(587\) −66.7814 −0.113767 −0.0568836 0.998381i \(-0.518116\pi\)
−0.0568836 + 0.998381i \(0.518116\pi\)
\(588\) 0 0
\(589\) 0.0261007i 4.43136e-5i
\(590\) 0 0
\(591\) 587.670 + 339.291i 0.994365 + 0.574097i
\(592\) 0 0
\(593\) −311.911 + 180.082i −0.525989 + 0.303680i −0.739381 0.673287i \(-0.764882\pi\)
0.213393 + 0.976967i \(0.431549\pi\)
\(594\) 0 0
\(595\) 465.439 97.2704i 0.782250 0.163480i
\(596\) 0 0
\(597\) −199.480 + 115.170i −0.334137 + 0.192914i
\(598\) 0 0
\(599\) −99.0219 + 171.511i −0.165312 + 0.286329i −0.936766 0.349956i \(-0.886196\pi\)
0.771454 + 0.636285i \(0.219530\pi\)
\(600\) 0 0
\(601\) 373.907i 0.622141i −0.950387 0.311071i \(-0.899312\pi\)
0.950387 0.311071i \(-0.100688\pi\)
\(602\) 0 0
\(603\) 35.9728i 0.0596565i
\(604\) 0 0
\(605\) −429.373 + 743.696i −0.709708 + 1.22925i
\(606\) 0 0
\(607\) −200.164 + 115.565i −0.329760 + 0.190387i −0.655735 0.754992i \(-0.727641\pi\)
0.325975 + 0.945379i \(0.394308\pi\)
\(608\) 0 0
\(609\) 27.8458 84.7142i 0.0457238 0.139104i
\(610\) 0 0
\(611\) −100.872 + 58.2386i −0.165094 + 0.0953168i
\(612\) 0 0
\(613\) 444.718 + 256.758i 0.725479 + 0.418855i 0.816766 0.576969i \(-0.195765\pi\)
−0.0912873 + 0.995825i \(0.529098\pi\)
\(614\) 0 0
\(615\) 1032.75i 1.67927i
\(616\) 0 0
\(617\) −1119.01 −1.81363 −0.906815 0.421529i \(-0.861493\pi\)
−0.906815 + 0.421529i \(0.861493\pi\)
\(618\) 0 0
\(619\) 64.1019 111.028i 0.103557 0.179366i −0.809591 0.586995i \(-0.800311\pi\)
0.913148 + 0.407629i \(0.133644\pi\)
\(620\) 0 0
\(621\) −452.445 783.658i −0.728575 1.26193i
\(622\) 0 0
\(623\) −413.248 462.125i −0.663319 0.741774i
\(624\) 0 0
\(625\) 212.735 + 368.469i 0.340377 + 0.589550i
\(626\) 0 0
\(627\) −82.0690 47.3826i −0.130892 0.0755703i
\(628\) 0 0
\(629\) 21.2160 0.0337297
\(630\) 0 0
\(631\) −313.995 −0.497615 −0.248808 0.968553i \(-0.580039\pi\)
−0.248808 + 0.968553i \(0.580039\pi\)
\(632\) 0 0
\(633\) −183.138 105.735i −0.289317 0.167037i
\(634\) 0 0
\(635\) −271.322 469.944i −0.427279 0.740070i
\(636\) 0 0
\(637\) −146.194 + 63.8959i −0.229504 + 0.100307i
\(638\) 0 0
\(639\) −97.6183 169.080i −0.152767 0.264601i
\(640\) 0 0
\(641\) 115.594 200.215i 0.180334 0.312348i −0.761660 0.647977i \(-0.775615\pi\)
0.941994 + 0.335629i \(0.108949\pi\)
\(642\) 0 0
\(643\) 637.869 0.992020 0.496010 0.868317i \(-0.334798\pi\)
0.496010 + 0.868317i \(0.334798\pi\)
\(644\) 0 0
\(645\) 191.532i 0.296949i
\(646\) 0 0
\(647\) 586.461 + 338.594i 0.906432 + 0.523329i 0.879281 0.476303i \(-0.158023\pi\)
0.0271505 + 0.999631i \(0.491357\pi\)
\(648\) 0 0
\(649\) 1064.18 614.405i 1.63972 0.946695i
\(650\) 0 0
\(651\) 0.266157 + 0.297636i 0.000408843 + 0.000457199i
\(652\) 0 0
\(653\) 916.022 528.865i 1.40279 0.809901i 0.408112 0.912932i \(-0.366187\pi\)
0.994678 + 0.103031i \(0.0328541\pi\)
\(654\) 0 0
\(655\) −244.569 + 423.606i −0.373388 + 0.646726i
\(656\) 0 0
\(657\) 137.058i 0.208612i
\(658\) 0 0
\(659\) 644.502i 0.978000i 0.872284 + 0.489000i \(0.162638\pi\)
−0.872284 + 0.489000i \(0.837362\pi\)
\(660\) 0 0
\(661\) −560.069 + 970.068i −0.847306 + 1.46758i 0.0362979 + 0.999341i \(0.488443\pi\)
−0.883604 + 0.468236i \(0.844890\pi\)
\(662\) 0 0
\(663\) −150.975 + 87.1652i −0.227714 + 0.131471i
\(664\) 0 0
\(665\) 44.7011 + 14.6934i 0.0672197 + 0.0220953i
\(666\) 0 0
\(667\) −134.271 + 77.5214i −0.201306 + 0.116224i
\(668\) 0 0
\(669\) −340.438 196.552i −0.508876 0.293800i
\(670\) 0 0
\(671\) 1718.45i 2.56103i
\(672\) 0 0
\(673\) −307.811 −0.457371 −0.228686 0.973500i \(-0.573443\pi\)
−0.228686 + 0.973500i \(0.573443\pi\)
\(674\) 0 0
\(675\) 69.5058 120.388i 0.102972 0.178352i
\(676\) 0 0
\(677\) 507.773 + 879.488i 0.750033 + 1.29910i 0.947806 + 0.318848i \(0.103296\pi\)
−0.197773 + 0.980248i \(0.563371\pi\)
\(678\) 0 0
\(679\) 965.231 201.720i 1.42155 0.297084i
\(680\) 0 0
\(681\) 96.1388 + 166.517i 0.141173 + 0.244519i
\(682\) 0 0
\(683\) −840.220 485.102i −1.23019 0.710251i −0.263121 0.964763i \(-0.584752\pi\)
−0.967070 + 0.254512i \(0.918085\pi\)
\(684\) 0 0
\(685\) −338.188 −0.493706
\(686\) 0 0
\(687\) 402.680 0.586143
\(688\) 0 0
\(689\) 129.588 + 74.8177i 0.188081 + 0.108589i
\(690\) 0 0
\(691\) 274.581 + 475.588i 0.397367 + 0.688260i 0.993400 0.114700i \(-0.0365906\pi\)
−0.596033 + 0.802960i \(0.703257\pi\)
\(692\) 0 0
\(693\) 316.041 66.0483i 0.456047 0.0953078i
\(694\) 0 0
\(695\) −321.711 557.221i −0.462894 0.801756i
\(696\) 0 0
\(697\) 553.076 957.956i 0.793510 1.37440i
\(698\) 0 0
\(699\) 83.9818 0.120146
\(700\) 0 0
\(701\) 452.665i 0.645742i 0.946443 + 0.322871i \(0.104648\pi\)
−0.946443 + 0.322871i \(0.895352\pi\)
\(702\) 0 0
\(703\) 1.81822 + 1.04975i 0.00258637 + 0.00149324i
\(704\) 0 0
\(705\) −455.100 + 262.752i −0.645533 + 0.372698i
\(706\) 0 0
\(707\) 235.393 + 77.3744i 0.332946 + 0.109440i
\(708\) 0 0
\(709\) 609.174 351.707i 0.859202 0.496060i −0.00454321 0.999990i \(-0.501446\pi\)
0.863745 + 0.503929i \(0.168113\pi\)
\(710\) 0 0
\(711\) −30.1054 + 52.1442i −0.0423424 + 0.0733392i
\(712\) 0 0
\(713\) 0.694220i 0.000973661i
\(714\) 0 0
\(715\) 251.425i 0.351644i
\(716\) 0 0
\(717\) 427.367 740.221i 0.596049 1.03239i
\(718\) 0 0
\(719\) −54.1160 + 31.2439i −0.0752656 + 0.0434546i −0.537161 0.843480i \(-0.680503\pi\)
0.461895 + 0.886935i \(0.347170\pi\)
\(720\) 0 0
\(721\) −469.642 525.189i −0.651376 0.728417i
\(722\) 0 0
\(723\) 331.354 191.307i 0.458305 0.264602i
\(724\) 0 0
\(725\) −20.6271 11.9090i −0.0284511 0.0164263i
\(726\) 0 0
\(727\) 889.995i 1.22420i −0.790779 0.612101i \(-0.790324\pi\)
0.790779 0.612101i \(-0.209676\pi\)
\(728\) 0 0
\(729\) 417.569 0.572797
\(730\) 0 0
\(731\) −102.573 + 177.661i −0.140318 + 0.243038i
\(732\) 0 0
\(733\) 456.127 + 790.035i 0.622274 + 1.07781i 0.989061 + 0.147505i \(0.0471243\pi\)
−0.366787 + 0.930305i \(0.619542\pi\)
\(734\) 0 0
\(735\) −659.577 + 288.276i −0.897383 + 0.392212i
\(736\) 0 0
\(737\) −124.753 216.079i −0.169271 0.293187i
\(738\) 0 0
\(739\) 1081.52 + 624.415i 1.46349 + 0.844946i 0.999171 0.0407224i \(-0.0129659\pi\)
0.464319 + 0.885668i \(0.346299\pi\)
\(740\) 0 0
\(741\) −17.2514 −0.0232813
\(742\) 0 0
\(743\) 305.880 0.411682 0.205841 0.978585i \(-0.434007\pi\)
0.205841 + 0.978585i \(0.434007\pi\)
\(744\) 0 0
\(745\) 318.766 + 184.040i 0.427874 + 0.247033i
\(746\) 0 0
\(747\) 132.145 + 228.882i 0.176901 + 0.306401i
\(748\) 0 0
\(749\) −499.041 558.065i −0.666276 0.745080i
\(750\) 0 0
\(751\) 258.895 + 448.420i 0.344734 + 0.597097i 0.985305 0.170802i \(-0.0546358\pi\)
−0.640571 + 0.767899i \(0.721302\pi\)
\(752\) 0 0
\(753\) −206.288 + 357.302i −0.273955 + 0.474504i
\(754\) 0 0
\(755\) 569.012 0.753659
\(756\) 0 0
\(757\) 939.898i 1.24161i −0.783965 0.620804i \(-0.786806\pi\)
0.783965 0.620804i \(-0.213194\pi\)
\(758\) 0 0
\(759\) −2182.85 1260.27i −2.87596 1.66044i
\(760\) 0 0
\(761\) −976.757 + 563.931i −1.28352 + 0.741039i −0.977490 0.210983i \(-0.932334\pi\)
−0.306028 + 0.952022i \(0.599000\pi\)
\(762\) 0 0
\(763\) −115.044 + 349.995i −0.150779 + 0.458710i
\(764\) 0 0
\(765\) −151.701 + 87.5846i −0.198302 + 0.114490i
\(766\) 0 0
\(767\) 111.849 193.728i 0.145826 0.252579i
\(768\) 0 0
\(769\) 300.115i 0.390267i 0.980777 + 0.195133i \(0.0625139\pi\)
−0.980777 + 0.195133i \(0.937486\pi\)
\(770\) 0 0
\(771\) 356.524i 0.462417i
\(772\) 0 0
\(773\) 375.120 649.727i 0.485278 0.840527i −0.514579 0.857443i \(-0.672052\pi\)
0.999857 + 0.0169165i \(0.00538495\pi\)
\(774\) 0 0
\(775\) 0.0923598 0.0533240i 0.000119174 6.88051e-5i
\(776\) 0 0
\(777\) −31.4385 + 6.57022i −0.0404613 + 0.00845588i
\(778\) 0 0
\(779\) 94.7977 54.7315i 0.121691 0.0702586i
\(780\) 0 0
\(781\) 1172.73 + 677.076i 1.50158 + 0.866935i
\(782\) 0 0
\(783\) 81.8005i 0.104471i
\(784\) 0 0
\(785\) 1058.16 1.34797
\(786\) 0 0
\(787\) −144.776 + 250.760i −0.183960 + 0.318627i −0.943225 0.332153i \(-0.892225\pi\)
0.759266