Properties

Label 224.3.g.a
Level 224
Weight 3
Character orbit 224.g
Analytic conductor 6.104
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 224.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.10355792167\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-7})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -2 + \beta_{1} ) q^{3} + ( -\beta_{2} + 2 \beta_{3} ) q^{5} -\beta_{3} q^{7} + ( -3 - 4 \beta_{1} ) q^{9} +O(q^{10})\) \( q + ( -2 + \beta_{1} ) q^{3} + ( -\beta_{2} + 2 \beta_{3} ) q^{5} -\beta_{3} q^{7} + ( -3 - 4 \beta_{1} ) q^{9} + ( -4 - 6 \beta_{1} ) q^{11} + ( \beta_{2} - 2 \beta_{3} ) q^{13} -2 \beta_{3} q^{15} + ( 18 - 4 \beta_{1} ) q^{17} + ( -2 - 19 \beta_{1} ) q^{19} + ( \beta_{2} + 2 \beta_{3} ) q^{21} + ( -8 \beta_{2} - 2 \beta_{3} ) q^{23} + ( -17 - 28 \beta_{1} ) q^{25} + ( 16 - 4 \beta_{1} ) q^{27} -6 \beta_{2} q^{29} + ( 4 \beta_{2} + 12 \beta_{3} ) q^{31} + ( -4 + 8 \beta_{1} ) q^{33} + ( 14 + 7 \beta_{1} ) q^{35} + ( -10 \beta_{2} - 8 \beta_{3} ) q^{37} + 2 \beta_{3} q^{39} + ( -10 + 12 \beta_{1} ) q^{41} + ( 20 + 2 \beta_{1} ) q^{43} + ( 11 \beta_{2} - 14 \beta_{3} ) q^{45} + ( 4 \beta_{2} + 8 \beta_{3} ) q^{47} -7 q^{49} + ( -44 + 26 \beta_{1} ) q^{51} + ( 12 \beta_{2} + 20 \beta_{3} ) q^{53} + ( 16 \beta_{2} - 20 \beta_{3} ) q^{55} + ( -34 + 36 \beta_{1} ) q^{57} + ( -46 + 11 \beta_{1} ) q^{59} + ( -3 \beta_{2} - 10 \beta_{3} ) q^{61} + ( -4 \beta_{2} + 3 \beta_{3} ) q^{63} + ( 42 + 28 \beta_{1} ) q^{65} + ( 56 + 16 \beta_{1} ) q^{67} + ( 18 \beta_{2} + 20 \beta_{3} ) q^{69} + ( -16 \beta_{2} - 16 \beta_{3} ) q^{71} + ( 58 - 8 \beta_{1} ) q^{73} + ( -22 + 39 \beta_{1} ) q^{75} + ( -6 \beta_{2} + 4 \beta_{3} ) q^{77} + ( -16 \beta_{2} + 8 \beta_{3} ) q^{79} + ( -13 + 60 \beta_{1} ) q^{81} + ( -22 - 13 \beta_{1} ) q^{83} + ( -10 \beta_{2} + 28 \beta_{3} ) q^{85} + ( 12 \beta_{2} + 12 \beta_{3} ) q^{87} + ( 78 + 24 \beta_{1} ) q^{89} + ( -14 - 7 \beta_{1} ) q^{91} + ( -20 \beta_{2} - 32 \beta_{3} ) q^{93} + ( 40 \beta_{2} - 42 \beta_{3} ) q^{95} + ( -34 - 92 \beta_{1} ) q^{97} + ( 60 + 34 \beta_{1} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 8q^{3} - 12q^{9} + O(q^{10}) \) \( 4q - 8q^{3} - 12q^{9} - 16q^{11} + 72q^{17} - 8q^{19} - 68q^{25} + 64q^{27} - 16q^{33} + 56q^{35} - 40q^{41} + 80q^{43} - 28q^{49} - 176q^{51} - 136q^{57} - 184q^{59} + 168q^{65} + 224q^{67} + 232q^{73} - 88q^{75} - 52q^{81} - 88q^{83} + 312q^{89} - 56q^{91} - 136q^{97} + 240q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 6 x^{2} + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 2 \nu \)\()/4\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 10 \nu \)\()/4\)
\(\beta_{3}\)\(=\)\( \nu^{2} + 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} - \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\(\beta_{3} - 3\)
\(\nu^{3}\)\(=\)\(-\beta_{2} + 5 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
15.1
0.707107 1.87083i
0.707107 + 1.87083i
−0.707107 + 1.87083i
−0.707107 1.87083i
0 −3.41421 0 1.54985i 0 2.64575i 0 2.65685 0
15.2 0 −3.41421 0 1.54985i 0 2.64575i 0 2.65685 0
15.3 0 −0.585786 0 9.03316i 0 2.64575i 0 −8.65685 0
15.4 0 −0.585786 0 9.03316i 0 2.64575i 0 −8.65685 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 224.3.g.a 4
3.b odd 2 1 2016.3.g.a 4
4.b odd 2 1 56.3.g.a 4
7.b odd 2 1 1568.3.g.h 4
8.b even 2 1 56.3.g.a 4
8.d odd 2 1 inner 224.3.g.a 4
12.b even 2 1 504.3.g.a 4
16.e even 4 2 1792.3.d.g 8
16.f odd 4 2 1792.3.d.g 8
24.f even 2 1 2016.3.g.a 4
24.h odd 2 1 504.3.g.a 4
28.d even 2 1 392.3.g.h 4
28.f even 6 2 392.3.k.j 8
28.g odd 6 2 392.3.k.i 8
56.e even 2 1 1568.3.g.h 4
56.h odd 2 1 392.3.g.h 4
56.j odd 6 2 392.3.k.j 8
56.p even 6 2 392.3.k.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.3.g.a 4 4.b odd 2 1
56.3.g.a 4 8.b even 2 1
224.3.g.a 4 1.a even 1 1 trivial
224.3.g.a 4 8.d odd 2 1 inner
392.3.g.h 4 28.d even 2 1
392.3.g.h 4 56.h odd 2 1
392.3.k.i 8 28.g odd 6 2
392.3.k.i 8 56.p even 6 2
392.3.k.j 8 28.f even 6 2
392.3.k.j 8 56.j odd 6 2
504.3.g.a 4 12.b even 2 1
504.3.g.a 4 24.h odd 2 1
1568.3.g.h 4 7.b odd 2 1
1568.3.g.h 4 56.e even 2 1
1792.3.d.g 8 16.e even 4 2
1792.3.d.g 8 16.f odd 4 2
2016.3.g.a 4 3.b odd 2 1
2016.3.g.a 4 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 4 T_{3} + 2 \) acting on \(S_{3}^{\mathrm{new}}(224, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( ( 1 + 4 T + 20 T^{2} + 36 T^{3} + 81 T^{4} )^{2} \)
$5$ \( 1 - 16 T^{2} - 254 T^{4} - 10000 T^{6} + 390625 T^{8} \)
$7$ \( ( 1 + 7 T^{2} )^{2} \)
$11$ \( ( 1 + 8 T + 186 T^{2} + 968 T^{3} + 14641 T^{4} )^{2} \)
$13$ \( 1 - 592 T^{2} + 143170 T^{4} - 16908112 T^{6} + 815730721 T^{8} \)
$17$ \( ( 1 - 36 T + 870 T^{2} - 10404 T^{3} + 83521 T^{4} )^{2} \)
$19$ \( ( 1 + 4 T + 4 T^{2} + 1444 T^{3} + 130321 T^{4} )^{2} \)
$23$ \( 1 - 268 T^{2} + 477286 T^{4} - 74997388 T^{6} + 78310985281 T^{8} \)
$29$ \( ( 1 - 1178 T^{2} + 707281 T^{4} )^{2} \)
$31$ \( 1 - 1380 T^{2} + 1419974 T^{4} - 1274458980 T^{6} + 852891037441 T^{8} \)
$37$ \( 1 - 1780 T^{2} + 2031622 T^{4} - 3336006580 T^{6} + 3512479453921 T^{8} \)
$41$ \( ( 1 + 20 T + 3174 T^{2} + 33620 T^{3} + 2825761 T^{4} )^{2} \)
$43$ \( ( 1 - 40 T + 4090 T^{2} - 73960 T^{3} + 3418801 T^{4} )^{2} \)
$47$ \( 1 - 7492 T^{2} + 23390470 T^{4} - 36558570052 T^{6} + 23811286661761 T^{8} \)
$53$ \( 1 - 1604 T^{2} - 6155034 T^{4} - 12656331524 T^{6} + 62259690411361 T^{8} \)
$59$ \( ( 1 + 92 T + 8836 T^{2} + 320252 T^{3} + 12117361 T^{4} )^{2} \)
$61$ \( 1 - 13232 T^{2} + 71110338 T^{4} - 183208168112 T^{6} + 191707312997281 T^{8} \)
$67$ \( ( 1 - 112 T + 11602 T^{2} - 502768 T^{3} + 20151121 T^{4} )^{2} \)
$71$ \( 1 - 9412 T^{2} + 47279686 T^{4} - 239174741572 T^{6} + 645753531245761 T^{8} \)
$73$ \( ( 1 - 116 T + 13894 T^{2} - 618164 T^{3} + 28398241 T^{4} )^{2} \)
$79$ \( 1 - 16900 T^{2} + 142880134 T^{4} - 658256368900 T^{6} + 1517108809906561 T^{8} \)
$83$ \( ( 1 + 44 T + 13924 T^{2} + 303116 T^{3} + 47458321 T^{4} )^{2} \)
$89$ \( ( 1 - 156 T + 20774 T^{2} - 1235676 T^{3} + 62742241 T^{4} )^{2} \)
$97$ \( ( 1 + 68 T + 3046 T^{2} + 639812 T^{3} + 88529281 T^{4} )^{2} \)
show more
show less