Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [224,2,Mod(27,224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(224, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 1, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("224.27");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 224 = 2^{5} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 224.x (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.78864900528\) |
Analytic rank: | \(0\) |
Dimension: | \(112\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
27.1 | −1.40726 | − | 0.140045i | −0.311327 | − | 0.751610i | 1.96078 | + | 0.394159i | −1.37157 | + | 3.31126i | 0.332860 | + | 1.10131i | −2.28614 | − | 1.33176i | −2.70413 | − | 0.829281i | 1.65333 | − | 1.65333i | 2.39388 | − | 4.46773i |
27.2 | −1.40726 | − | 0.140045i | 0.311327 | + | 0.751610i | 1.96078 | + | 0.394159i | 1.37157 | − | 3.31126i | −0.332860 | − | 1.10131i | 1.33176 | + | 2.28614i | −2.70413 | − | 0.829281i | 1.65333 | − | 1.65333i | −2.39388 | + | 4.46773i |
27.3 | −1.36868 | + | 0.355955i | −1.01638 | − | 2.45376i | 1.74659 | − | 0.974380i | 1.11188 | − | 2.68430i | 2.26454 | + | 2.99664i | 0.0435134 | − | 2.64539i | −2.04370 | + | 1.95533i | −2.86660 | + | 2.86660i | −0.566314 | + | 4.06974i |
27.4 | −1.36868 | + | 0.355955i | 1.01638 | + | 2.45376i | 1.74659 | − | 0.974380i | −1.11188 | + | 2.68430i | −2.26454 | − | 2.99664i | 2.64539 | − | 0.0435134i | −2.04370 | + | 1.95533i | −2.86660 | + | 2.86660i | 0.566314 | − | 4.06974i |
27.5 | −1.23575 | − | 0.687692i | −0.592616 | − | 1.43070i | 1.05416 | + | 1.69963i | −0.188106 | + | 0.454128i | −0.251557 | + | 2.17553i | 2.64138 | + | 0.152070i | −0.133852 | − | 2.82526i | 0.425604 | − | 0.425604i | 0.544752 | − | 0.431830i |
27.6 | −1.23575 | − | 0.687692i | 0.592616 | + | 1.43070i | 1.05416 | + | 1.69963i | 0.188106 | − | 0.454128i | 0.251557 | − | 2.17553i | −0.152070 | − | 2.64138i | −0.133852 | − | 2.82526i | 0.425604 | − | 0.425604i | −0.544752 | + | 0.431830i |
27.7 | −0.783777 | + | 1.17715i | −0.935381 | − | 2.25821i | −0.771386 | − | 1.84525i | 0.395947 | − | 0.955900i | 3.39139 | + | 0.668846i | −0.935627 | + | 2.47479i | 2.77674 | + | 0.538228i | −2.10326 | + | 2.10326i | 0.814908 | + | 1.21530i |
27.8 | −0.783777 | + | 1.17715i | 0.935381 | + | 2.25821i | −0.771386 | − | 1.84525i | −0.395947 | + | 0.955900i | −3.39139 | − | 0.668846i | −2.47479 | + | 0.935627i | 2.77674 | + | 0.538228i | −2.10326 | + | 2.10326i | −0.814908 | − | 1.21530i |
27.9 | −0.756841 | + | 1.19465i | −0.613776 | − | 1.48179i | −0.854385 | − | 1.80832i | −1.25513 | + | 3.03015i | 2.23475 | + | 0.388228i | 1.88664 | − | 1.85488i | 2.80695 | + | 0.347919i | 0.302349 | − | 0.302349i | −2.67004 | − | 3.79278i |
27.10 | −0.756841 | + | 1.19465i | 0.613776 | + | 1.48179i | −0.854385 | − | 1.80832i | 1.25513 | − | 3.03015i | −2.23475 | − | 0.388228i | 1.85488 | − | 1.88664i | 2.80695 | + | 0.347919i | 0.302349 | − | 0.302349i | 2.67004 | + | 3.79278i |
27.11 | −0.522376 | − | 1.31420i | −0.167131 | − | 0.403490i | −1.45425 | + | 1.37301i | −0.883342 | + | 2.13258i | −0.442962 | + | 0.430417i | 0.895629 | + | 2.48955i | 2.56408 | + | 1.19394i | 1.98645 | − | 1.98645i | 3.26407 | + | 0.0468829i |
27.12 | −0.522376 | − | 1.31420i | 0.167131 | + | 0.403490i | −1.45425 | + | 1.37301i | 0.883342 | − | 2.13258i | 0.442962 | − | 0.430417i | −2.48955 | − | 0.895629i | 2.56408 | + | 1.19394i | 1.98645 | − | 1.98645i | −3.26407 | − | 0.0468829i |
27.13 | −0.242331 | − | 1.39330i | −1.25862 | − | 3.03857i | −1.88255 | + | 0.675278i | −0.824079 | + | 1.98950i | −3.92863 | + | 2.48997i | −0.0837494 | − | 2.64443i | 1.39706 | + | 2.45931i | −5.52747 | + | 5.52747i | 2.97167 | + | 0.666069i |
27.14 | −0.242331 | − | 1.39330i | 1.25862 | + | 3.03857i | −1.88255 | + | 0.675278i | 0.824079 | − | 1.98950i | 3.92863 | − | 2.48997i | 2.64443 | + | 0.0837494i | 1.39706 | + | 2.45931i | −5.52747 | + | 5.52747i | −2.97167 | − | 0.666069i |
27.15 | 0.207749 | + | 1.39887i | −0.517660 | − | 1.24974i | −1.91368 | + | 0.581228i | 0.818546 | − | 1.97615i | 1.64068 | − | 0.983771i | −1.50177 | − | 2.17823i | −1.21063 | − | 2.55624i | 0.827440 | − | 0.827440i | 2.93442 | + | 0.734499i |
27.16 | 0.207749 | + | 1.39887i | 0.517660 | + | 1.24974i | −1.91368 | + | 0.581228i | −0.818546 | + | 1.97615i | −1.64068 | + | 0.983771i | 2.17823 | + | 1.50177i | −1.21063 | − | 2.55624i | 0.827440 | − | 0.827440i | −2.93442 | − | 0.734499i |
27.17 | 0.329116 | − | 1.37538i | −0.884481 | − | 2.13533i | −1.78336 | − | 0.905323i | 1.60624 | − | 3.87780i | −3.22799 | + | 0.513731i | 0.663558 | + | 2.56119i | −1.83210 | + | 2.15486i | −1.65599 | + | 1.65599i | −4.80483 | − | 3.48544i |
27.18 | 0.329116 | − | 1.37538i | 0.884481 | + | 2.13533i | −1.78336 | − | 0.905323i | −1.60624 | + | 3.87780i | 3.22799 | − | 0.513731i | −2.56119 | − | 0.663558i | −1.83210 | + | 2.15486i | −1.65599 | + | 1.65599i | 4.80483 | + | 3.48544i |
27.19 | 0.589446 | + | 1.28552i | −1.08865 | − | 2.62824i | −1.30511 | + | 1.51548i | −1.22393 | + | 2.95482i | 2.73695 | − | 2.94869i | −1.81057 | + | 1.92921i | −2.71747 | − | 0.784442i | −3.60116 | + | 3.60116i | −4.51992 | + | 0.168328i |
27.20 | 0.589446 | + | 1.28552i | 1.08865 | + | 2.62824i | −1.30511 | + | 1.51548i | 1.22393 | − | 2.95482i | −2.73695 | + | 2.94869i | −1.92921 | + | 1.81057i | −2.71747 | − | 0.784442i | −3.60116 | + | 3.60116i | 4.51992 | − | 0.168328i |
See next 80 embeddings (of 112 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
32.h | odd | 8 | 1 | inner |
224.x | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 224.2.x.b | ✓ | 112 |
4.b | odd | 2 | 1 | 896.2.x.b | 112 | ||
7.b | odd | 2 | 1 | inner | 224.2.x.b | ✓ | 112 |
28.d | even | 2 | 1 | 896.2.x.b | 112 | ||
32.g | even | 8 | 1 | 896.2.x.b | 112 | ||
32.h | odd | 8 | 1 | inner | 224.2.x.b | ✓ | 112 |
224.v | odd | 8 | 1 | 896.2.x.b | 112 | ||
224.x | even | 8 | 1 | inner | 224.2.x.b | ✓ | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
224.2.x.b | ✓ | 112 | 1.a | even | 1 | 1 | trivial |
224.2.x.b | ✓ | 112 | 7.b | odd | 2 | 1 | inner |
224.2.x.b | ✓ | 112 | 32.h | odd | 8 | 1 | inner |
224.2.x.b | ✓ | 112 | 224.x | even | 8 | 1 | inner |
896.2.x.b | 112 | 4.b | odd | 2 | 1 | ||
896.2.x.b | 112 | 28.d | even | 2 | 1 | ||
896.2.x.b | 112 | 32.g | even | 8 | 1 | ||
896.2.x.b | 112 | 224.v | odd | 8 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{112} + 4 T_{3}^{110} + 8 T_{3}^{108} - 168 T_{3}^{106} + 27036 T_{3}^{104} + 96192 T_{3}^{102} + 182592 T_{3}^{100} - 3442432 T_{3}^{98} + 258527648 T_{3}^{96} + 826311552 T_{3}^{94} + \cdots + 50\!\cdots\!76 \)
acting on \(S_{2}^{\mathrm{new}}(224, [\chi])\).