Properties

Label 224.2.u.c
Level 224
Weight 2
Character orbit 224.u
Analytic conductor 1.789
Analytic rank 0
Dimension 52
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 224.u (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.78864900528\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(13\) over \(\Q(\zeta_{8})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 52q - 20q^{6} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 52q - 20q^{6} - 8q^{10} + 12q^{12} - 12q^{16} - 20q^{18} + 20q^{22} - 20q^{23} - 8q^{24} + 20q^{26} - 24q^{27} - 8q^{28} + 20q^{30} + 60q^{32} - 48q^{33} + 48q^{34} + 8q^{36} - 60q^{38} - 24q^{39} + 20q^{40} - 44q^{43} + 32q^{44} + 40q^{45} - 32q^{46} - 84q^{48} - 124q^{50} + 16q^{51} - 32q^{52} - 36q^{53} + 96q^{54} + 32q^{55} + 16q^{56} + 4q^{58} - 92q^{60} - 32q^{61} + 12q^{62} + 68q^{63} + 48q^{64} + 80q^{65} + 16q^{66} + 28q^{67} - 4q^{68} - 32q^{69} + 8q^{70} - 88q^{72} + 36q^{74} + 32q^{75} + 96q^{76} - 12q^{77} + 12q^{78} - 108q^{80} - 96q^{82} + 64q^{85} + 76q^{86} - 56q^{87} + 104q^{88} - 132q^{90} + 32q^{92} - 4q^{94} - 64q^{95} + 8q^{96} - 72q^{97} - 64q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1 −1.33683 + 0.461403i −0.825255 0.341832i 1.57421 1.23363i −0.175588 0.423906i 1.26095 + 0.0761946i 0.707107 0.707107i −1.53525 + 2.37550i −1.55712 1.55712i 0.430322 + 0.485673i
29.2 −1.24749 0.666168i 2.18713 + 0.905938i 1.11244 + 1.66207i 0.797931 + 1.92638i −2.12490 2.58714i 0.707107 0.707107i −0.280536 2.81448i 1.84149 + 1.84149i 0.287882 2.93468i
29.3 −1.03545 + 0.963248i 2.47594 + 1.02557i 0.144306 1.99479i −1.23251 2.97553i −3.55158 + 1.32302i 0.707107 0.707107i 1.77205 + 2.20450i 2.95715 + 2.95715i 4.14237 + 1.89380i
29.4 −0.926451 1.06850i −1.34443 0.556881i −0.283377 + 1.97982i 0.598728 + 1.44546i 0.650522 + 1.95244i 0.707107 0.707107i 2.37797 1.53142i −0.623944 0.623944i 0.989776 1.97888i
29.5 −0.742328 + 1.20372i −2.57348 1.06597i −0.897897 1.78712i 0.224493 + 0.541974i 3.19350 2.30646i 0.707107 0.707107i 2.81773 + 0.245807i 3.36518 + 3.36518i −0.819034 0.132095i
29.6 −0.729813 + 1.21135i 1.74965 + 0.724727i −0.934745 1.76812i 1.44353 + 3.48498i −2.15481 + 1.59052i 0.707107 0.707107i 2.82401 + 0.158094i 0.414709 + 0.414709i −5.27504 0.794768i
29.7 −0.0564658 1.41309i −2.95511 1.22405i −1.99362 + 0.159582i −1.21151 2.92484i −1.56282 + 4.24494i 0.707107 0.707107i 0.338075 + 2.80815i 5.11306 + 5.11306i −4.06464 + 1.87712i
29.8 0.171231 + 1.40381i −0.380077 0.157433i −1.94136 + 0.480752i −1.58477 3.82598i 0.155925 0.560513i 0.707107 0.707107i −1.00731 2.64298i −2.00165 2.00165i 5.09958 2.87984i
29.9 0.631975 1.26515i 2.91760 + 1.20851i −1.20122 1.59909i −0.629460 1.51965i 3.37279 2.92745i 0.707107 0.707107i −2.78223 + 0.509137i 4.93055 + 4.93055i −2.32039 0.164019i
29.10 0.863963 1.11963i −0.301186 0.124755i −0.507135 1.93464i −0.107860 0.260396i −0.399893 + 0.229432i 0.707107 0.707107i −2.60422 1.10365i −2.04617 2.04617i −0.384733 0.104210i
29.11 0.875361 + 1.11074i 0.999166 + 0.413868i −0.467486 + 1.94460i 0.523077 + 1.26282i 0.414931 + 1.47210i 0.707107 0.707107i −2.56916 + 1.18297i −1.29427 1.29427i −0.944783 + 1.68643i
29.12 1.41113 0.0933551i −2.44686 1.01352i 1.98257 0.263472i 1.68815 + 4.07556i −3.54745 1.20178i 0.707107 0.707107i 2.77306 0.556876i 2.83858 + 2.83858i 2.76268 + 5.59355i
29.13 1.41405 0.0212810i 0.496926 + 0.205834i 1.99909 0.0601851i −0.334218 0.806875i 0.707060 + 0.280485i 0.707107 0.707107i 2.82555 0.127648i −1.91675 1.91675i −0.489774 1.13385i
85.1 −1.33683 0.461403i −0.825255 + 0.341832i 1.57421 + 1.23363i −0.175588 + 0.423906i 1.26095 0.0761946i 0.707107 + 0.707107i −1.53525 2.37550i −1.55712 + 1.55712i 0.430322 0.485673i
85.2 −1.24749 + 0.666168i 2.18713 0.905938i 1.11244 1.66207i 0.797931 1.92638i −2.12490 + 2.58714i 0.707107 + 0.707107i −0.280536 + 2.81448i 1.84149 1.84149i 0.287882 + 2.93468i
85.3 −1.03545 0.963248i 2.47594 1.02557i 0.144306 + 1.99479i −1.23251 + 2.97553i −3.55158 1.32302i 0.707107 + 0.707107i 1.77205 2.20450i 2.95715 2.95715i 4.14237 1.89380i
85.4 −0.926451 + 1.06850i −1.34443 + 0.556881i −0.283377 1.97982i 0.598728 1.44546i 0.650522 1.95244i 0.707107 + 0.707107i 2.37797 + 1.53142i −0.623944 + 0.623944i 0.989776 + 1.97888i
85.5 −0.742328 1.20372i −2.57348 + 1.06597i −0.897897 + 1.78712i 0.224493 0.541974i 3.19350 + 2.30646i 0.707107 + 0.707107i 2.81773 0.245807i 3.36518 3.36518i −0.819034 + 0.132095i
85.6 −0.729813 1.21135i 1.74965 0.724727i −0.934745 + 1.76812i 1.44353 3.48498i −2.15481 1.59052i 0.707107 + 0.707107i 2.82401 0.158094i 0.414709 0.414709i −5.27504 + 0.794768i
85.7 −0.0564658 + 1.41309i −2.95511 + 1.22405i −1.99362 0.159582i −1.21151 + 2.92484i −1.56282 4.24494i 0.707107 + 0.707107i 0.338075 2.80815i 5.11306 5.11306i −4.06464 1.87712i
See all 52 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 197.13
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
32.g even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 224.2.u.c 52
4.b odd 2 1 896.2.u.c 52
32.g even 8 1 inner 224.2.u.c 52
32.h odd 8 1 896.2.u.c 52
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
224.2.u.c 52 1.a even 1 1 trivial
224.2.u.c 52 32.g even 8 1 inner
896.2.u.c 52 4.b odd 2 1
896.2.u.c 52 32.h odd 8 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{52} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(224, [\chi])\).

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database