Newspace parameters
Level: | \( N \) | \(=\) | \( 224 = 2^{5} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 224.i (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.78864900528\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(129\) | \(197\) |
\(\chi(n)\) | \(1\) | \(\beta_{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
0 | −1.20711 | − | 2.09077i | 0 | −1.91421 | + | 3.31552i | 0 | −1.00000 | + | 2.44949i | 0 | −1.41421 | + | 2.44949i | 0 | ||||||||||||||||||||||
65.2 | 0 | 0.207107 | + | 0.358719i | 0 | 0.914214 | − | 1.58346i | 0 | −1.00000 | − | 2.44949i | 0 | 1.41421 | − | 2.44949i | 0 | |||||||||||||||||||||||
193.1 | 0 | −1.20711 | + | 2.09077i | 0 | −1.91421 | − | 3.31552i | 0 | −1.00000 | − | 2.44949i | 0 | −1.41421 | − | 2.44949i | 0 | |||||||||||||||||||||||
193.2 | 0 | 0.207107 | − | 0.358719i | 0 | 0.914214 | + | 1.58346i | 0 | −1.00000 | + | 2.44949i | 0 | 1.41421 | + | 2.44949i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 224.2.i.a | ✓ | 4 |
3.b | odd | 2 | 1 | 2016.2.s.q | 4 | ||
4.b | odd | 2 | 1 | 224.2.i.d | yes | 4 | |
7.b | odd | 2 | 1 | 1568.2.i.x | 4 | ||
7.c | even | 3 | 1 | inner | 224.2.i.a | ✓ | 4 |
7.c | even | 3 | 1 | 1568.2.a.w | 2 | ||
7.d | odd | 6 | 1 | 1568.2.a.j | 2 | ||
7.d | odd | 6 | 1 | 1568.2.i.x | 4 | ||
8.b | even | 2 | 1 | 448.2.i.j | 4 | ||
8.d | odd | 2 | 1 | 448.2.i.g | 4 | ||
12.b | even | 2 | 1 | 2016.2.s.s | 4 | ||
21.h | odd | 6 | 1 | 2016.2.s.q | 4 | ||
28.d | even | 2 | 1 | 1568.2.i.o | 4 | ||
28.f | even | 6 | 1 | 1568.2.a.u | 2 | ||
28.f | even | 6 | 1 | 1568.2.i.o | 4 | ||
28.g | odd | 6 | 1 | 224.2.i.d | yes | 4 | |
28.g | odd | 6 | 1 | 1568.2.a.l | 2 | ||
56.j | odd | 6 | 1 | 3136.2.a.bx | 2 | ||
56.k | odd | 6 | 1 | 448.2.i.g | 4 | ||
56.k | odd | 6 | 1 | 3136.2.a.bw | 2 | ||
56.m | even | 6 | 1 | 3136.2.a.be | 2 | ||
56.p | even | 6 | 1 | 448.2.i.j | 4 | ||
56.p | even | 6 | 1 | 3136.2.a.bd | 2 | ||
84.n | even | 6 | 1 | 2016.2.s.s | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
224.2.i.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
224.2.i.a | ✓ | 4 | 7.c | even | 3 | 1 | inner |
224.2.i.d | yes | 4 | 4.b | odd | 2 | 1 | |
224.2.i.d | yes | 4 | 28.g | odd | 6 | 1 | |
448.2.i.g | 4 | 8.d | odd | 2 | 1 | ||
448.2.i.g | 4 | 56.k | odd | 6 | 1 | ||
448.2.i.j | 4 | 8.b | even | 2 | 1 | ||
448.2.i.j | 4 | 56.p | even | 6 | 1 | ||
1568.2.a.j | 2 | 7.d | odd | 6 | 1 | ||
1568.2.a.l | 2 | 28.g | odd | 6 | 1 | ||
1568.2.a.u | 2 | 28.f | even | 6 | 1 | ||
1568.2.a.w | 2 | 7.c | even | 3 | 1 | ||
1568.2.i.o | 4 | 28.d | even | 2 | 1 | ||
1568.2.i.o | 4 | 28.f | even | 6 | 1 | ||
1568.2.i.x | 4 | 7.b | odd | 2 | 1 | ||
1568.2.i.x | 4 | 7.d | odd | 6 | 1 | ||
2016.2.s.q | 4 | 3.b | odd | 2 | 1 | ||
2016.2.s.q | 4 | 21.h | odd | 6 | 1 | ||
2016.2.s.s | 4 | 12.b | even | 2 | 1 | ||
2016.2.s.s | 4 | 84.n | even | 6 | 1 | ||
3136.2.a.bd | 2 | 56.p | even | 6 | 1 | ||
3136.2.a.be | 2 | 56.m | even | 6 | 1 | ||
3136.2.a.bw | 2 | 56.k | odd | 6 | 1 | ||
3136.2.a.bx | 2 | 56.j | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{4} + 2T_{3}^{3} + 5T_{3}^{2} - 2T_{3} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(224, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} + 2 T^{3} + 5 T^{2} - 2 T + 1 \)
$5$
\( T^{4} + 2 T^{3} + 11 T^{2} - 14 T + 49 \)
$7$
\( (T^{2} + 2 T + 7)^{2} \)
$11$
\( T^{4} - 2 T^{3} + 5 T^{2} + 2 T + 1 \)
$13$
\( (T^{2} - 8)^{2} \)
$17$
\( T^{4} - 6 T^{3} + 35 T^{2} - 6 T + 1 \)
$19$
\( T^{4} + 10 T^{3} + 77 T^{2} + \cdots + 529 \)
$23$
\( T^{4} - 2 T^{3} + 21 T^{2} + 34 T + 289 \)
$29$
\( (T^{2} - 8)^{2} \)
$31$
\( T^{4} + 14 T^{3} + 149 T^{2} + \cdots + 2209 \)
$37$
\( T^{4} + 6 T^{3} + 59 T^{2} - 138 T + 529 \)
$41$
\( (T^{2} + 8 T + 8)^{2} \)
$43$
\( (T^{2} - 8 T - 16)^{2} \)
$47$
\( T^{4} + 18 T^{3} + 245 T^{2} + \cdots + 6241 \)
$53$
\( (T^{2} - T + 1)^{2} \)
$59$
\( T^{4} + 2 T^{3} + 101 T^{2} + \cdots + 9409 \)
$61$
\( T^{4} + 6 T^{3} + 59 T^{2} - 138 T + 529 \)
$67$
\( T^{4} - 14 T^{3} + 165 T^{2} + \cdots + 961 \)
$71$
\( (T^{2} - 16 T + 32)^{2} \)
$73$
\( T^{4} - 18 T^{3} + 275 T^{2} + \cdots + 2401 \)
$79$
\( T^{4} - 2 T^{3} + 53 T^{2} + \cdots + 2401 \)
$83$
\( (T^{2} - 8 T - 112)^{2} \)
$89$
\( (T^{2} - 9 T + 81)^{2} \)
$97$
\( (T^{2} + 8 T + 8)^{2} \)
show more
show less