Properties

Label 224.2.be
Level $224$
Weight $2$
Character orbit 224.be
Rep. character $\chi_{224}(3,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $240$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 224.be (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 224 \)
Character field: \(\Q(\zeta_{24})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(224, [\chi])\).

Total New Old
Modular forms 272 272 0
Cusp forms 240 240 0
Eisenstein series 32 32 0

Trace form

\( 240 q - 4 q^{2} - 12 q^{3} - 4 q^{4} - 12 q^{5} - 8 q^{7} - 16 q^{8} - 4 q^{9} + O(q^{10}) \) \( 240 q - 4 q^{2} - 12 q^{3} - 4 q^{4} - 12 q^{5} - 8 q^{7} - 16 q^{8} - 4 q^{9} - 12 q^{10} - 4 q^{11} - 12 q^{12} - 40 q^{14} - 32 q^{15} - 24 q^{16} + 16 q^{18} - 12 q^{19} - 8 q^{21} - 8 q^{22} + 4 q^{23} - 12 q^{24} - 4 q^{25} - 12 q^{26} + 12 q^{28} - 16 q^{29} - 52 q^{30} - 4 q^{32} - 24 q^{33} - 32 q^{35} + 64 q^{36} - 4 q^{37} - 12 q^{38} - 4 q^{39} - 12 q^{40} - 28 q^{42} - 32 q^{43} - 52 q^{44} - 48 q^{45} - 4 q^{46} - 24 q^{47} - 40 q^{50} + 20 q^{51} + 60 q^{52} - 20 q^{53} - 12 q^{54} - 48 q^{56} - 16 q^{57} - 36 q^{58} + 84 q^{59} + 28 q^{60} - 12 q^{61} - 136 q^{64} - 8 q^{65} + 132 q^{66} + 36 q^{67} - 12 q^{68} + 28 q^{70} - 80 q^{71} - 4 q^{72} - 12 q^{73} - 20 q^{74} - 72 q^{75} - 8 q^{77} - 216 q^{78} - 8 q^{79} + 24 q^{80} + 108 q^{82} + 12 q^{84} + 24 q^{85} - 4 q^{86} - 12 q^{87} - 48 q^{88} - 12 q^{89} + 40 q^{91} - 80 q^{92} + 20 q^{93} + 60 q^{94} + 312 q^{96} - 16 q^{98} - 40 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(224, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
224.2.be.a \(240\) \(1.789\) None \(-4\) \(-12\) \(-12\) \(-8\)