Properties

Label 224.2.be
Level $224$
Weight $2$
Character orbit 224.be
Rep. character $\chi_{224}(3,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $240$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 224.be (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 224 \)
Character field: \(\Q(\zeta_{24})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(224, [\chi])\).

Total New Old
Modular forms 272 272 0
Cusp forms 240 240 0
Eisenstein series 32 32 0

Trace form

\( 240 q - 4 q^{2} - 12 q^{3} - 4 q^{4} - 12 q^{5} - 8 q^{7} - 16 q^{8} - 4 q^{9} - 12 q^{10} - 4 q^{11} - 12 q^{12} - 40 q^{14} - 32 q^{15} - 24 q^{16} + 16 q^{18} - 12 q^{19} - 8 q^{21} - 8 q^{22} + 4 q^{23}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(224, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
224.2.be.a 224.be 224.ae $240$ $1.789$ None 224.2.be.a \(-4\) \(-12\) \(-12\) \(-8\) $\mathrm{SU}(2)[C_{24}]$