# Properties

 Label 224.2.bd.a.37.14 Level $224$ Weight $2$ Character 224.37 Analytic conductor $1.789$ Analytic rank $0$ Dimension $240$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$224 = 2^{5} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 224.bd (of order $$24$$, degree $$8$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.78864900528$$ Analytic rank: $$0$$ Dimension: $$240$$ Relative dimension: $$30$$ over $$\Q(\zeta_{24})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

## Embedding invariants

 Embedding label 37.14 Character $$\chi$$ $$=$$ 224.37 Dual form 224.2.bd.a.109.14

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.399779 - 1.35653i) q^{2} +(1.62045 - 2.11181i) q^{3} +(-1.68035 + 1.08463i) q^{4} +(1.05240 - 0.807534i) q^{5} +(-3.51256 - 1.35393i) q^{6} +(2.64452 - 0.0808662i) q^{7} +(2.14310 + 1.84584i) q^{8} +(-1.05744 - 3.94640i) q^{9} +O(q^{10})$$ $$q+(-0.399779 - 1.35653i) q^{2} +(1.62045 - 2.11181i) q^{3} +(-1.68035 + 1.08463i) q^{4} +(1.05240 - 0.807534i) q^{5} +(-3.51256 - 1.35393i) q^{6} +(2.64452 - 0.0808662i) q^{7} +(2.14310 + 1.84584i) q^{8} +(-1.05744 - 3.94640i) q^{9} +(-1.51617 - 1.10478i) q^{10} +(-1.69616 + 0.223304i) q^{11} +(-0.432405 + 5.30618i) q^{12} +(-0.550667 + 0.228094i) q^{13} +(-1.16692 - 3.55504i) q^{14} -3.53104i q^{15} +(1.64718 - 3.64511i) q^{16} +(-4.66215 + 2.69169i) q^{17} +(-4.93068 + 3.01213i) q^{18} +(-0.654477 + 4.97125i) q^{19} +(-0.892530 + 2.49840i) q^{20} +(4.11453 - 5.71576i) q^{21} +(0.981009 + 2.21162i) q^{22} +(1.35463 + 5.05554i) q^{23} +(7.37086 - 1.53473i) q^{24} +(-0.838663 + 3.12993i) q^{25} +(0.529562 + 0.655810i) q^{26} +(-2.66982 - 1.10587i) q^{27} +(-4.35601 + 3.00419i) q^{28} +(-3.87939 - 9.36567i) q^{29} +(-4.78996 + 1.41163i) q^{30} +(1.43967 + 2.49358i) q^{31} +(-5.60321 - 0.777209i) q^{32} +(-2.27697 + 3.94383i) q^{33} +(5.51519 + 5.24827i) q^{34} +(2.71778 - 2.22064i) q^{35} +(6.05724 + 5.48443i) q^{36} +(4.83651 - 3.71118i) q^{37} +(7.00530 - 1.09958i) q^{38} +(-0.410638 + 1.53252i) q^{39} +(3.74597 + 0.211937i) q^{40} +(2.70535 - 2.70535i) q^{41} +(-9.39851 - 3.29645i) q^{42} +(1.10066 - 2.65723i) q^{43} +(2.60795 - 2.21493i) q^{44} +(-4.29970 - 3.29928i) q^{45} +(6.31644 - 3.85869i) q^{46} +(-8.38206 - 4.83939i) q^{47} +(-5.02862 - 9.38525i) q^{48} +(6.98692 - 0.427704i) q^{49} +(4.58113 - 0.113609i) q^{50} +(-1.87043 + 14.2073i) q^{51} +(0.677920 - 0.980546i) q^{52} +(6.88442 - 0.906351i) q^{53} +(-0.432817 + 4.06380i) q^{54} +(-1.60471 + 1.60471i) q^{55} +(5.81672 + 4.70805i) q^{56} +(9.43780 + 9.43780i) q^{57} +(-11.1539 + 9.00670i) q^{58} +(-0.0283506 - 0.215344i) q^{59} +(3.82985 + 5.93339i) q^{60} +(4.05592 + 0.533972i) q^{61} +(2.80707 - 2.94984i) q^{62} +(-3.11554 - 10.3508i) q^{63} +(1.18574 + 7.91164i) q^{64} +(-0.395328 + 0.684728i) q^{65} +(6.26022 + 1.51212i) q^{66} +(-8.41153 + 10.9621i) q^{67} +(4.91458 - 9.57968i) q^{68} +(12.8715 + 5.33153i) q^{69} +(-4.09888 - 2.79899i) q^{70} +(6.41498 + 6.41498i) q^{71} +(5.01825 - 10.4094i) q^{72} +(-9.61077 - 2.57520i) q^{73} +(-6.96787 - 5.07722i) q^{74} +(5.25082 + 6.84301i) q^{75} +(-4.29219 - 9.06332i) q^{76} +(-4.46747 + 0.727693i) q^{77} +(2.24308 - 0.0556267i) q^{78} +(4.05809 + 2.34294i) q^{79} +(-1.21006 - 5.16626i) q^{80} +(3.95304 - 2.28229i) q^{81} +(-4.75143 - 2.58835i) q^{82} +(9.11873 - 3.77710i) q^{83} +(-0.714412 + 14.0672i) q^{84} +(-2.73281 + 6.59758i) q^{85} +(-4.04464 - 0.430776i) q^{86} +(-26.0649 - 6.98407i) q^{87} +(-4.04723 - 2.65228i) q^{88} +(-16.1173 + 4.31863i) q^{89} +(-2.75664 + 7.15166i) q^{90} +(-1.43780 + 0.647728i) q^{91} +(-7.75962 - 7.02583i) q^{92} +(7.59889 + 1.00041i) q^{93} +(-3.21381 + 13.3052i) q^{94} +(3.32568 + 5.76025i) q^{95} +(-10.7210 + 10.5735i) q^{96} -9.28832 q^{97} +(-3.37342 - 9.30699i) q^{98} +(2.67483 + 6.45761i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$240 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 16 q^{8} - 4 q^{9}+O(q^{10})$$ 240 * q - 4 * q^2 - 4 * q^3 - 4 * q^4 - 4 * q^5 - 16 * q^6 - 8 * q^7 - 16 * q^8 - 4 * q^9 $$240 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 16 q^{8} - 4 q^{9} - 4 q^{10} - 4 q^{11} - 4 q^{12} - 16 q^{13} + 24 q^{14} - 24 q^{16} - 24 q^{18} - 4 q^{19} - 48 q^{20} - 8 q^{21} - 24 q^{22} - 12 q^{23} + 36 q^{24} - 4 q^{25} - 4 q^{26} - 16 q^{27} + 12 q^{28} - 16 q^{29} + 44 q^{30} - 56 q^{31} - 4 q^{32} - 8 q^{33} - 32 q^{34} - 32 q^{35} - 96 q^{36} - 4 q^{37} + 36 q^{38} - 4 q^{39} - 68 q^{40} - 16 q^{41} - 28 q^{42} + 44 q^{44} + 8 q^{45} - 4 q^{46} - 16 q^{48} + 8 q^{50} - 28 q^{51} - 28 q^{52} - 20 q^{53} - 92 q^{54} - 16 q^{55} - 48 q^{56} - 16 q^{57} + 28 q^{58} - 36 q^{59} + 60 q^{60} - 4 q^{61} - 16 q^{63} + 56 q^{64} - 8 q^{65} - 36 q^{66} + 36 q^{67} - 36 q^{68} - 16 q^{69} - 44 q^{70} + 48 q^{71} - 4 q^{72} - 4 q^{73} + 68 q^{74} + 16 q^{75} - 16 q^{76} - 8 q^{77} - 120 q^{78} - 16 q^{80} - 44 q^{82} - 96 q^{83} - 28 q^{84} - 56 q^{85} - 4 q^{86} - 4 q^{87} + 40 q^{88} - 4 q^{89} + 224 q^{90} - 56 q^{91} - 80 q^{92} + 20 q^{93} + 4 q^{94} - 8 q^{95} - 32 q^{96} - 32 q^{97} + 96 q^{98} + 8 q^{99}+O(q^{100})$$ 240 * q - 4 * q^2 - 4 * q^3 - 4 * q^4 - 4 * q^5 - 16 * q^6 - 8 * q^7 - 16 * q^8 - 4 * q^9 - 4 * q^10 - 4 * q^11 - 4 * q^12 - 16 * q^13 + 24 * q^14 - 24 * q^16 - 24 * q^18 - 4 * q^19 - 48 * q^20 - 8 * q^21 - 24 * q^22 - 12 * q^23 + 36 * q^24 - 4 * q^25 - 4 * q^26 - 16 * q^27 + 12 * q^28 - 16 * q^29 + 44 * q^30 - 56 * q^31 - 4 * q^32 - 8 * q^33 - 32 * q^34 - 32 * q^35 - 96 * q^36 - 4 * q^37 + 36 * q^38 - 4 * q^39 - 68 * q^40 - 16 * q^41 - 28 * q^42 + 44 * q^44 + 8 * q^45 - 4 * q^46 - 16 * q^48 + 8 * q^50 - 28 * q^51 - 28 * q^52 - 20 * q^53 - 92 * q^54 - 16 * q^55 - 48 * q^56 - 16 * q^57 + 28 * q^58 - 36 * q^59 + 60 * q^60 - 4 * q^61 - 16 * q^63 + 56 * q^64 - 8 * q^65 - 36 * q^66 + 36 * q^67 - 36 * q^68 - 16 * q^69 - 44 * q^70 + 48 * q^71 - 4 * q^72 - 4 * q^73 + 68 * q^74 + 16 * q^75 - 16 * q^76 - 8 * q^77 - 120 * q^78 - 16 * q^80 - 44 * q^82 - 96 * q^83 - 28 * q^84 - 56 * q^85 - 4 * q^86 - 4 * q^87 + 40 * q^88 - 4 * q^89 + 224 * q^90 - 56 * q^91 - 80 * q^92 + 20 * q^93 + 4 * q^94 - 8 * q^95 - 32 * q^96 - 32 * q^97 + 96 * q^98 + 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/224\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$129$$ $$197$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{8}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.399779 1.35653i −0.282686 0.959212i
$$3$$ 1.62045 2.11181i 0.935568 1.21926i −0.0399198 0.999203i $$-0.512710\pi$$
0.975488 0.220053i $$-0.0706231\pi$$
$$4$$ −1.68035 + 1.08463i −0.840177 + 0.542313i
$$5$$ 1.05240 0.807534i 0.470647 0.361140i −0.346041 0.938219i $$-0.612474\pi$$
0.816688 + 0.577079i $$0.195808\pi$$
$$6$$ −3.51256 1.35393i −1.43400 0.552741i
$$7$$ 2.64452 0.0808662i 0.999533 0.0305646i
$$8$$ 2.14310 + 1.84584i 0.757700 + 0.652604i
$$9$$ −1.05744 3.94640i −0.352479 1.31547i
$$10$$ −1.51617 1.10478i −0.479456 0.349361i
$$11$$ −1.69616 + 0.223304i −0.511412 + 0.0673287i −0.381816 0.924238i $$-0.624701\pi$$
−0.129596 + 0.991567i $$0.541368\pi$$
$$12$$ −0.432405 + 5.30618i −0.124825 + 1.53176i
$$13$$ −0.550667 + 0.228094i −0.152728 + 0.0632619i −0.457738 0.889087i $$-0.651340\pi$$
0.305010 + 0.952349i $$0.401340\pi$$
$$14$$ −1.16692 3.55504i −0.311872 0.950124i
$$15$$ 3.53104i 0.911710i
$$16$$ 1.64718 3.64511i 0.411794 0.911277i
$$17$$ −4.66215 + 2.69169i −1.13074 + 0.652831i −0.944120 0.329601i $$-0.893086\pi$$
−0.186617 + 0.982433i $$0.559752\pi$$
$$18$$ −4.93068 + 3.01213i −1.16217 + 0.709967i
$$19$$ −0.654477 + 4.97125i −0.150147 + 1.14048i 0.735967 + 0.677017i $$0.236728\pi$$
−0.886115 + 0.463466i $$0.846606\pi$$
$$20$$ −0.892530 + 2.49840i −0.199576 + 0.558659i
$$21$$ 4.11453 5.71576i 0.897865 1.24728i
$$22$$ 0.981009 + 2.21162i 0.209152 + 0.471520i
$$23$$ 1.35463 + 5.05554i 0.282459 + 1.05415i 0.950676 + 0.310186i $$0.100391\pi$$
−0.668217 + 0.743967i $$0.732942\pi$$
$$24$$ 7.37086 1.53473i 1.50457 0.313275i
$$25$$ −0.838663 + 3.12993i −0.167733 + 0.625987i
$$26$$ 0.529562 + 0.655810i 0.103856 + 0.128615i
$$27$$ −2.66982 1.10587i −0.513807 0.212826i
$$28$$ −4.35601 + 3.00419i −0.823209 + 0.567739i
$$29$$ −3.87939 9.36567i −0.720384 1.73916i −0.672255 0.740319i $$-0.734674\pi$$
−0.0481284 0.998841i $$-0.515326\pi$$
$$30$$ −4.78996 + 1.41163i −0.874524 + 0.257728i
$$31$$ 1.43967 + 2.49358i 0.258572 + 0.447860i 0.965860 0.259066i $$-0.0834147\pi$$
−0.707288 + 0.706926i $$0.750081\pi$$
$$32$$ −5.60321 0.777209i −0.990517 0.137392i
$$33$$ −2.27697 + 3.94383i −0.396370 + 0.686533i
$$34$$ 5.51519 + 5.24827i 0.945848 + 0.900071i
$$35$$ 2.71778 2.22064i 0.459389 0.375356i
$$36$$ 6.05724 + 5.48443i 1.00954 + 0.914072i
$$37$$ 4.83651 3.71118i 0.795117 0.610115i −0.129253 0.991612i $$-0.541258\pi$$
0.924370 + 0.381497i $$0.124591\pi$$
$$38$$ 7.00530 1.09958i 1.13641 0.178376i
$$39$$ −0.410638 + 1.53252i −0.0657547 + 0.245400i
$$40$$ 3.74597 + 0.211937i 0.592290 + 0.0335102i
$$41$$ 2.70535 2.70535i 0.422505 0.422505i −0.463561 0.886065i $$-0.653428\pi$$
0.886065 + 0.463561i $$0.153428\pi$$
$$42$$ −9.39851 3.29645i −1.45022 0.508654i
$$43$$ 1.10066 2.65723i 0.167849 0.405224i −0.817464 0.575980i $$-0.804621\pi$$
0.985313 + 0.170755i $$0.0546208\pi$$
$$44$$ 2.60795 2.21493i 0.393163 0.333913i
$$45$$ −4.29970 3.29928i −0.640961 0.491827i
$$46$$ 6.31644 3.85869i 0.931309 0.568933i
$$47$$ −8.38206 4.83939i −1.22265 0.705897i −0.257168 0.966367i $$-0.582789\pi$$
−0.965482 + 0.260470i $$0.916123\pi$$
$$48$$ −5.02862 9.38525i −0.725818 1.35464i
$$49$$ 6.98692 0.427704i 0.998132 0.0611005i
$$50$$ 4.58113 0.113609i 0.647870 0.0160667i
$$51$$ −1.87043 + 14.2073i −0.261913 + 1.98943i
$$52$$ 0.677920 0.980546i 0.0940105 0.135977i
$$53$$ 6.88442 0.906351i 0.945648 0.124497i 0.358097 0.933684i $$-0.383426\pi$$
0.587551 + 0.809187i $$0.300092\pi$$
$$54$$ −0.432817 + 4.06380i −0.0588989 + 0.553013i
$$55$$ −1.60471 + 1.60471i −0.216379 + 0.216379i
$$56$$ 5.81672 + 4.70805i 0.777292 + 0.629140i
$$57$$ 9.43780 + 9.43780i 1.25007 + 1.25007i
$$58$$ −11.1539 + 9.00670i −1.46458 + 1.18264i
$$59$$ −0.0283506 0.215344i −0.00369093 0.0280354i 0.989500 0.144531i $$-0.0461673\pi$$
−0.993191 + 0.116495i $$0.962834\pi$$
$$60$$ 3.82985 + 5.93339i 0.494432 + 0.765998i
$$61$$ 4.05592 + 0.533972i 0.519308 + 0.0683682i 0.385624 0.922656i $$-0.373986\pi$$
0.133684 + 0.991024i $$0.457319\pi$$
$$62$$ 2.80707 2.94984i 0.356498 0.374629i
$$63$$ −3.11554 10.3508i −0.392521 1.30408i
$$64$$ 1.18574 + 7.91164i 0.148217 + 0.988955i
$$65$$ −0.395328 + 0.684728i −0.0490344 + 0.0849301i
$$66$$ 6.26022 + 1.51212i 0.770579 + 0.186129i
$$67$$ −8.41153 + 10.9621i −1.02763 + 1.33924i −0.0883499 + 0.996089i $$0.528159\pi$$
−0.939282 + 0.343146i $$0.888507\pi$$
$$68$$ 4.91458 9.57968i 0.595980 1.16171i
$$69$$ 12.8715 + 5.33153i 1.54954 + 0.641841i
$$70$$ −4.09888 2.79899i −0.489910 0.334543i
$$71$$ 6.41498 + 6.41498i 0.761319 + 0.761319i 0.976561 0.215242i $$-0.0690541\pi$$
−0.215242 + 0.976561i $$0.569054\pi$$
$$72$$ 5.01825 10.4094i 0.591406 1.22676i
$$73$$ −9.61077 2.57520i −1.12486 0.301404i −0.352009 0.935997i $$-0.614501\pi$$
−0.772847 + 0.634593i $$0.781168\pi$$
$$74$$ −6.96787 5.07722i −0.809999 0.590215i
$$75$$ 5.25082 + 6.84301i 0.606313 + 0.790162i
$$76$$ −4.29219 9.06332i −0.492348 1.03963i
$$77$$ −4.46747 + 0.727693i −0.509115 + 0.0829283i
$$78$$ 2.24308 0.0556267i 0.253979 0.00629849i
$$79$$ 4.05809 + 2.34294i 0.456571 + 0.263601i 0.710601 0.703595i $$-0.248423\pi$$
−0.254030 + 0.967196i $$0.581756\pi$$
$$80$$ −1.21006 5.16626i −0.135289 0.577605i
$$81$$ 3.95304 2.28229i 0.439226 0.253587i
$$82$$ −4.75143 2.58835i −0.524708 0.285835i
$$83$$ 9.11873 3.77710i 1.00091 0.414591i 0.178780 0.983889i $$-0.442785\pi$$
0.822131 + 0.569298i $$0.192785\pi$$
$$84$$ −0.714412 + 14.0672i −0.0779488 + 1.53486i
$$85$$ −2.73281 + 6.59758i −0.296414 + 0.715608i
$$86$$ −4.04464 0.430776i −0.436145 0.0464518i
$$87$$ −26.0649 6.98407i −2.79445 0.748771i
$$88$$ −4.04723 2.65228i −0.431436 0.282735i
$$89$$ −16.1173 + 4.31863i −1.70844 + 0.457774i −0.975040 0.222028i $$-0.928732\pi$$
−0.733395 + 0.679802i $$0.762066\pi$$
$$90$$ −2.75664 + 7.15166i −0.290575 + 0.753851i
$$91$$ −1.43780 + 0.647728i −0.150723 + 0.0679004i
$$92$$ −7.75962 7.02583i −0.808996 0.732493i
$$93$$ 7.59889 + 1.00041i 0.787968 + 0.103738i
$$94$$ −3.21381 + 13.3052i −0.331479 + 1.37233i
$$95$$ 3.32568 + 5.76025i 0.341208 + 0.590989i
$$96$$ −10.7210 + 10.5735i −1.09421 + 1.07915i
$$97$$ −9.28832 −0.943086 −0.471543 0.881843i $$-0.656303\pi$$
−0.471543 + 0.881843i $$0.656303\pi$$
$$98$$ −3.37342 9.30699i −0.340767 0.940148i
$$99$$ 2.67483 + 6.45761i 0.268831 + 0.649015i
$$100$$ −1.98555 6.16903i −0.198555 0.616903i
$$101$$ −1.94029 14.7380i −0.193066 1.46648i −0.763855 0.645388i $$-0.776696\pi$$
0.570789 0.821097i $$-0.306637\pi$$
$$102$$ 20.0205 3.14250i 1.98232 0.311154i
$$103$$ 6.26364 1.67834i 0.617175 0.165372i 0.0633318 0.997993i $$-0.479827\pi$$
0.553843 + 0.832621i $$0.313161\pi$$
$$104$$ −1.60116 0.527617i −0.157007 0.0517371i
$$105$$ −0.285542 9.33789i −0.0278660 0.911284i
$$106$$ −3.98174 8.97659i −0.386741 0.871884i
$$107$$ 1.46810 + 1.91327i 0.141927 + 0.184963i 0.858908 0.512130i $$-0.171143\pi$$
−0.716981 + 0.697093i $$0.754477\pi$$
$$108$$ 5.68570 1.03749i 0.547107 0.0998326i
$$109$$ 1.07390 + 0.824034i 0.102861 + 0.0789282i 0.658912 0.752220i $$-0.271017\pi$$
−0.556050 + 0.831149i $$0.687684\pi$$
$$110$$ 2.81837 + 1.53531i 0.268721 + 0.146386i
$$111$$ 16.2276i 1.54026i
$$112$$ 4.06122 9.77274i 0.383749 0.923437i
$$113$$ 9.70571i 0.913036i −0.889714 0.456518i $$-0.849096\pi$$
0.889714 0.456518i $$-0.150904\pi$$
$$114$$ 9.02964 16.5757i 0.845703 1.55246i
$$115$$ 5.50813 + 4.22653i 0.513635 + 0.394126i
$$116$$ 16.6770 + 11.5300i 1.54842 + 1.07053i
$$117$$ 1.48245 + 1.93196i 0.137052 + 0.178610i
$$118$$ −0.280787 + 0.124548i −0.0258485 + 0.0114656i
$$119$$ −12.1115 + 7.49523i −1.11026 + 0.687087i
$$120$$ 6.51774 7.56736i 0.594985 0.690802i
$$121$$ −7.79808 + 2.08949i −0.708917 + 0.189954i
$$122$$ −0.897123 5.71546i −0.0812217 0.517453i
$$123$$ −1.32931 10.0971i −0.119860 0.910423i
$$124$$ −5.12375 2.62859i −0.460126 0.236055i
$$125$$ 4.18310 + 10.0989i 0.374148 + 0.903274i
$$126$$ −12.7957 + 8.36436i −1.13993 + 0.745156i
$$127$$ −15.3584 −1.36283 −0.681417 0.731895i $$-0.738636\pi$$
−0.681417 + 0.731895i $$0.738636\pi$$
$$128$$ 10.2584 4.77140i 0.906719 0.421736i
$$129$$ −3.82801 6.63031i −0.337038 0.583766i
$$130$$ 1.08690 + 0.262535i 0.0953273 + 0.0230258i
$$131$$ −13.2843 1.74892i −1.16066 0.152804i −0.474500 0.880256i $$-0.657371\pi$$
−0.686158 + 0.727452i $$0.740704\pi$$
$$132$$ −0.451461 9.09669i −0.0392946 0.791766i
$$133$$ −1.32877 + 13.1995i −0.115219 + 1.14454i
$$134$$ 18.2332 + 7.02808i 1.57511 + 0.607133i
$$135$$ −3.70274 + 0.992147i −0.318681 + 0.0853904i
$$136$$ −14.9599 2.83703i −1.28280 0.243273i
$$137$$ 7.49981 + 2.00957i 0.640752 + 0.171689i 0.564544 0.825403i $$-0.309052\pi$$
0.0762081 + 0.997092i $$0.475719\pi$$
$$138$$ 2.08665 19.5920i 0.177628 1.66778i
$$139$$ 0.525559 1.26881i 0.0445774 0.107619i −0.900023 0.435843i $$-0.856450\pi$$
0.944600 + 0.328224i $$0.106450\pi$$
$$140$$ −2.15827 + 6.67923i −0.182407 + 0.564498i
$$141$$ −23.8026 + 9.85936i −2.00454 + 0.830308i
$$142$$ 6.13755 11.2667i 0.515052 0.945481i
$$143$$ 0.883087 0.509851i 0.0738474 0.0426358i
$$144$$ −16.1269 2.64596i −1.34390 0.220496i
$$145$$ −11.6458 6.72368i −0.967127 0.558371i
$$146$$ 0.348847 + 14.0668i 0.0288708 + 1.16418i
$$147$$ 10.4187 15.4481i 0.859323 1.27414i
$$148$$ −4.10180 + 11.4819i −0.337166 + 0.943807i
$$149$$ −5.81887 7.58329i −0.476700 0.621248i 0.491665 0.870784i $$-0.336388\pi$$
−0.968365 + 0.249537i $$0.919722\pi$$
$$150$$ 7.18358 9.85860i 0.586537 0.804951i
$$151$$ 10.0907 + 2.70380i 0.821172 + 0.220032i 0.644859 0.764302i $$-0.276916\pi$$
0.176313 + 0.984334i $$0.443583\pi$$
$$152$$ −10.5787 + 9.44581i −0.858050 + 0.766157i
$$153$$ 15.5524 + 15.5524i 1.25734 + 1.25734i
$$154$$ 2.77314 + 5.76935i 0.223466 + 0.464907i
$$155$$ 3.52875 + 1.46166i 0.283436 + 0.117403i
$$156$$ −0.972195 3.02057i −0.0778379 0.241839i
$$157$$ −8.51876 + 11.1019i −0.679871 + 0.886026i −0.998076 0.0619963i $$-0.980253\pi$$
0.318205 + 0.948022i $$0.396920\pi$$
$$158$$ 1.55593 6.44159i 0.123783 0.512465i
$$159$$ 9.24183 16.0073i 0.732925 1.26946i
$$160$$ −6.52443 + 3.70685i −0.515802 + 0.293052i
$$161$$ 3.99116 + 13.2599i 0.314547 + 1.04503i
$$162$$ −4.67634 4.45001i −0.367408 0.349626i
$$163$$ 19.8763 + 2.61676i 1.55683 + 0.204961i 0.859254 0.511549i $$-0.170928\pi$$
0.697577 + 0.716510i $$0.254262\pi$$
$$164$$ −1.61165 + 7.48024i −0.125849 + 0.584108i
$$165$$ 0.788495 + 5.98921i 0.0613843 + 0.466260i
$$166$$ −8.76923 10.8598i −0.680624 0.842887i
$$167$$ −6.01405 6.01405i −0.465381 0.465381i 0.435033 0.900414i $$-0.356737\pi$$
−0.900414 + 0.435033i $$0.856737\pi$$
$$168$$ 19.3682 4.65466i 1.49429 0.359115i
$$169$$ −8.94118 + 8.94118i −0.687783 + 0.687783i
$$170$$ 10.0423 + 1.06956i 0.770212 + 0.0820318i
$$171$$ 20.3106 2.67395i 1.55319 0.204482i
$$172$$ 1.03260 + 5.65890i 0.0787350 + 0.431487i
$$173$$ −0.741181 + 5.62983i −0.0563510 + 0.428028i 0.939895 + 0.341463i $$0.110922\pi$$
−0.996246 + 0.0865651i $$0.972411\pi$$
$$174$$ 0.946091 + 38.1499i 0.0717230 + 2.89214i
$$175$$ −1.96475 + 8.34498i −0.148521 + 0.630821i
$$176$$ −1.97991 + 6.55052i −0.149241 + 0.493764i
$$177$$ −0.500707 0.289083i −0.0376354 0.0217288i
$$178$$ 12.3017 + 20.1372i 0.922054 + 1.50935i
$$179$$ 4.22574 + 3.24253i 0.315847 + 0.242358i 0.754502 0.656298i $$-0.227878\pi$$
−0.438655 + 0.898655i $$0.644545\pi$$
$$180$$ 10.8035 + 0.880387i 0.805245 + 0.0656202i
$$181$$ 0.166639 0.402302i 0.0123862 0.0299029i −0.917565 0.397585i $$-0.869848\pi$$
0.929952 + 0.367682i $$0.119848\pi$$
$$182$$ 1.45347 + 1.69148i 0.107738 + 0.125381i
$$183$$ 7.70008 7.70008i 0.569206 0.569206i
$$184$$ −6.42863 + 13.3349i −0.473925 + 0.983065i
$$185$$ 2.09303 7.81129i 0.153883 0.574298i
$$186$$ −1.68078 10.7081i −0.123241 0.785154i
$$187$$ 7.30670 5.60662i 0.534319 0.409997i
$$188$$ 19.3337 0.959516i 1.41006 0.0699799i
$$189$$ −7.14980 2.70860i −0.520072 0.197022i
$$190$$ 6.48442 6.81422i 0.470429 0.494355i
$$191$$ −2.23881 + 3.87774i −0.161995 + 0.280583i −0.935584 0.353104i $$-0.885126\pi$$
0.773589 + 0.633687i $$0.218459\pi$$
$$192$$ 18.6293 + 10.3164i 1.34446 + 0.744520i
$$193$$ −11.3376 19.6373i −0.816098 1.41352i −0.908537 0.417805i $$-0.862800\pi$$
0.0924389 0.995718i $$-0.470534\pi$$
$$194$$ 3.71328 + 12.5999i 0.266598 + 0.904620i
$$195$$ 0.805408 + 1.94443i 0.0576765 + 0.139243i
$$196$$ −11.2766 + 8.29688i −0.805471 + 0.592635i
$$197$$ −9.07205 3.75777i −0.646357 0.267730i 0.0353278 0.999376i $$-0.488752\pi$$
−0.681685 + 0.731646i $$0.738752\pi$$
$$198$$ 7.69061 6.21011i 0.546548 0.441333i
$$199$$ 1.01507 3.78831i 0.0719567 0.268546i −0.920569 0.390579i $$-0.872275\pi$$
0.992526 + 0.122033i $$0.0389414\pi$$
$$200$$ −7.57470 + 5.15972i −0.535612 + 0.364847i
$$201$$ 9.51947 + 35.5272i 0.671452 + 2.50589i
$$202$$ −19.2168 + 8.52400i −1.35209 + 0.599747i
$$203$$ −11.0165 24.4539i −0.773204 1.71633i
$$204$$ −12.2667 25.9021i −0.858838 1.81351i
$$205$$ 0.662445 5.03177i 0.0462672 0.351434i
$$206$$ −4.78079 7.82586i −0.333093 0.545254i
$$207$$ 18.5188 10.6918i 1.28714 0.743133i
$$208$$ −0.0756195 + 2.38295i −0.00524327 + 0.165228i
$$209$$ 8.57819i 0.593366i
$$210$$ −12.5530 + 4.12044i −0.866238 + 0.284337i
$$211$$ 20.7378 8.58990i 1.42765 0.591353i 0.470882 0.882196i $$-0.343936\pi$$
0.956771 + 0.290843i $$0.0939359\pi$$
$$212$$ −10.5852 + 8.99001i −0.726995 + 0.617436i
$$213$$ 23.9424 3.15208i 1.64051 0.215977i
$$214$$ 2.00849 2.75642i 0.137298 0.188425i
$$215$$ −0.987470 3.68529i −0.0673449 0.251335i
$$216$$ −3.68041 7.29806i −0.250420 0.496570i
$$217$$ 4.00887 + 6.47789i 0.272140 + 0.439748i
$$218$$ 0.688505 1.78621i 0.0466314 0.120978i
$$219$$ −21.0121 + 16.1232i −1.41987 + 1.08950i
$$220$$ 0.955973 4.43700i 0.0644517 0.299142i
$$221$$ 1.95333 2.54564i 0.131395 0.171238i
$$222$$ −22.0132 + 6.48745i −1.47743 + 0.435409i
$$223$$ 16.6980 1.11818 0.559091 0.829106i $$-0.311150\pi$$
0.559091 + 0.829106i $$0.311150\pi$$
$$224$$ −14.8806 1.60223i −0.994253 0.107054i
$$225$$ 13.2388 0.882588
$$226$$ −13.1661 + 3.88014i −0.875796 + 0.258103i
$$227$$ −1.78212 + 2.32250i −0.118284 + 0.154150i −0.848742 0.528807i $$-0.822640\pi$$
0.730459 + 0.682957i $$0.239306\pi$$
$$228$$ −26.0953 5.62237i −1.72821 0.372350i
$$229$$ 12.9898 9.96740i 0.858388 0.658664i −0.0827933 0.996567i $$-0.526384\pi$$
0.941181 + 0.337903i $$0.109717\pi$$
$$230$$ 3.53139 9.16162i 0.232853 0.604100i
$$231$$ −5.70257 + 10.6137i −0.375201 + 0.698327i
$$232$$ 8.97363 27.2323i 0.589148 1.78789i
$$233$$ 2.69076 + 10.0420i 0.176277 + 0.657876i 0.996331 + 0.0855886i $$0.0272771\pi$$
−0.820053 + 0.572287i $$0.806056\pi$$
$$234$$ 2.02812 2.78334i 0.132582 0.181953i
$$235$$ −12.7292 + 1.67584i −0.830364 + 0.109319i
$$236$$ 0.281206 + 0.331104i 0.0183050 + 0.0215530i
$$237$$ 11.5238 4.77331i 0.748551 0.310060i
$$238$$ 15.0094 + 13.4331i 0.972916 + 0.870741i
$$239$$ 1.67622i 0.108426i −0.998529 0.0542128i $$-0.982735\pi$$
0.998529 0.0542128i $$-0.0172649\pi$$
$$240$$ −12.8710 5.81624i −0.830820 0.375437i
$$241$$ 6.58959 3.80450i 0.424473 0.245070i −0.272516 0.962151i $$-0.587856\pi$$
0.696989 + 0.717082i $$0.254523\pi$$
$$242$$ 5.95197 + 9.74301i 0.382607 + 0.626304i
$$243$$ 2.71752 20.6416i 0.174329 1.32416i
$$244$$ −7.39455 + 3.50189i −0.473387 + 0.224186i
$$245$$ 7.00764 6.09229i 0.447702 0.389222i
$$246$$ −13.1656 + 5.83985i −0.839407 + 0.372335i
$$247$$ −0.773512 2.88679i −0.0492174 0.183682i
$$248$$ −1.51740 + 8.00138i −0.0963551 + 0.508088i
$$249$$ 6.79993 25.3777i 0.430928 1.60824i
$$250$$ 12.0272 9.71184i 0.760665 0.614231i
$$251$$ −28.1259 11.6501i −1.77529 0.735350i −0.993767 0.111474i $$-0.964443\pi$$
−0.781524 0.623876i $$-0.785557\pi$$
$$252$$ 16.4620 + 14.0138i 1.03701 + 0.882789i
$$253$$ −3.42659 8.27252i −0.215428 0.520089i
$$254$$ 6.13995 + 20.8341i 0.385255 + 1.30725i
$$255$$ 9.50447 + 16.4622i 0.595193 + 1.03090i
$$256$$ −10.5736 12.0083i −0.660851 0.750517i
$$257$$ −7.21889 + 12.5035i −0.450302 + 0.779946i −0.998405 0.0564650i $$-0.982017\pi$$
0.548102 + 0.836411i $$0.315350\pi$$
$$258$$ −7.46386 + 7.84347i −0.464680 + 0.488313i
$$259$$ 12.4901 10.2054i 0.776098 0.634132i
$$260$$ −0.0783826 1.57937i −0.00486108 0.0979483i
$$261$$ −32.8585 + 25.2132i −2.03389 + 1.56066i
$$262$$ 2.93834 + 18.7198i 0.181531 + 1.15651i
$$263$$ −3.07789 + 11.4868i −0.189791 + 0.708309i 0.803763 + 0.594949i $$0.202828\pi$$
−0.993554 + 0.113360i $$0.963839\pi$$
$$264$$ −12.1595 + 4.24909i −0.748363 + 0.261513i
$$265$$ 6.51325 6.51325i 0.400106 0.400106i
$$266$$ 18.4367 3.47435i 1.13043 0.213026i
$$267$$ −16.9972 + 41.0350i −1.04021 + 2.51130i
$$268$$ 2.24455 27.5436i 0.137108 1.68249i
$$269$$ 5.35148 + 4.10634i 0.326286 + 0.250368i 0.758894 0.651214i $$-0.225740\pi$$
−0.432608 + 0.901582i $$0.642407\pi$$
$$270$$ 2.82616 + 4.62625i 0.171994 + 0.281544i
$$271$$ 23.2482 + 13.4224i 1.41223 + 0.815351i 0.995598 0.0937244i $$-0.0298773\pi$$
0.416631 + 0.909076i $$0.363211\pi$$
$$272$$ 2.13213 + 21.4277i 0.129279 + 1.29925i
$$273$$ −0.962009 + 4.08598i −0.0582234 + 0.247295i
$$274$$ −0.272224 10.9771i −0.0164457 0.663152i
$$275$$ 0.723582 5.49615i 0.0436337 0.331431i
$$276$$ −27.4113 + 5.00185i −1.64997 + 0.301076i
$$277$$ −11.1523 + 1.46823i −0.670077 + 0.0882173i −0.457886 0.889011i $$-0.651393\pi$$
−0.212191 + 0.977228i $$0.568060\pi$$
$$278$$ −1.93129 0.205693i −0.115831 0.0123367i
$$279$$ 8.31831 8.31831i 0.498004 0.498004i
$$280$$ 9.92342 + 0.257549i 0.593038 + 0.0153915i
$$281$$ 13.0894 + 13.0894i 0.780849 + 0.780849i 0.979974 0.199125i $$-0.0638100\pi$$
−0.199125 + 0.979974i $$0.563810\pi$$
$$282$$ 22.8903 + 28.3474i 1.36310 + 1.68806i
$$283$$ −1.17342 8.91302i −0.0697526 0.529824i −0.990274 0.139131i $$-0.955569\pi$$
0.920521 0.390692i $$-0.127764\pi$$
$$284$$ −17.7373 3.82159i −1.05251 0.226770i
$$285$$ 17.5537 + 2.31099i 1.03979 + 0.136891i
$$286$$ −1.04467 0.994108i −0.0617725 0.0587828i
$$287$$ 6.93557 7.37311i 0.409394 0.435221i
$$288$$ 2.85785 + 22.9344i 0.168401 + 1.35142i
$$289$$ 5.99042 10.3757i 0.352378 0.610336i
$$290$$ −4.46515 + 18.4858i −0.262203 + 1.08552i
$$291$$ −15.0513 + 19.6152i −0.882321 + 1.14986i
$$292$$ 18.9426 6.09684i 1.10853 0.356791i
$$293$$ −7.53848 3.12254i −0.440403 0.182421i 0.151453 0.988464i $$-0.451605\pi$$
−0.591856 + 0.806044i $$0.701605\pi$$
$$294$$ −25.1211 7.95750i −1.46509 0.464091i
$$295$$ −0.203734 0.203734i −0.0118618 0.0118618i
$$296$$ 17.2154 + 0.974000i 1.00062 + 0.0566126i
$$297$$ 4.77539 + 1.27956i 0.277096 + 0.0742477i
$$298$$ −7.96071 + 10.9251i −0.461152 + 0.632875i
$$299$$ −1.89909 2.47494i −0.109827 0.143129i
$$300$$ −16.2453 5.80350i −0.937925 0.335065i
$$301$$ 2.69584 7.11610i 0.155385 0.410165i
$$302$$ −0.366268 14.7693i −0.0210764 0.849878i
$$303$$ −34.2680 19.7847i −1.96865 1.13660i
$$304$$ 17.0427 + 10.5742i 0.977466 + 0.606470i
$$305$$ 4.69965 2.71334i 0.269101 0.155366i
$$306$$ 14.8798 27.3149i 0.850623 1.56149i
$$307$$ −23.7853 + 9.85221i −1.35750 + 0.562295i −0.938370 0.345631i $$-0.887665\pi$$
−0.419130 + 0.907926i $$0.637665\pi$$
$$308$$ 6.71765 6.06831i 0.382774 0.345774i
$$309$$ 6.60559 15.9473i 0.375779 0.907211i
$$310$$ 0.572063 5.37120i 0.0324910 0.305064i
$$311$$ −23.0690 6.18132i −1.30812 0.350510i −0.463607 0.886041i $$-0.653445\pi$$
−0.844516 + 0.535531i $$0.820112\pi$$
$$312$$ −3.70883 + 2.52637i −0.209971 + 0.143028i
$$313$$ −12.7761 + 3.42336i −0.722151 + 0.193500i −0.601131 0.799150i $$-0.705283\pi$$
−0.121020 + 0.992650i $$0.538616\pi$$
$$314$$ 18.4657 + 7.11768i 1.04208 + 0.401674i
$$315$$ −11.6374 8.37728i −0.655694 0.472006i
$$316$$ −9.36024 + 0.464540i −0.526555 + 0.0261324i
$$317$$ 29.9430 + 3.94206i 1.68176 + 0.221408i 0.910031 0.414539i $$-0.136057\pi$$
0.771732 + 0.635948i $$0.219391\pi$$
$$318$$ −25.4091 6.13744i −1.42487 0.344171i
$$319$$ 8.67146 + 15.0194i 0.485508 + 0.840925i
$$320$$ 7.63678 + 7.36867i 0.426909 + 0.411921i
$$321$$ 6.41947 0.358300
$$322$$ 16.3919 10.7152i 0.913485 0.597132i
$$323$$ −10.3298 24.9384i −0.574766 1.38761i
$$324$$ −4.16707 + 8.12261i −0.231504 + 0.451256i
$$325$$ −0.252094 1.91485i −0.0139837 0.106217i
$$326$$ −4.39640 28.0089i −0.243494 1.55127i
$$327$$ 3.48041 0.932574i 0.192467 0.0515715i
$$328$$ 10.7915 0.804182i 0.595860 0.0444035i
$$329$$ −22.5578 12.1200i −1.24365 0.668197i
$$330$$ 7.80933 3.46398i 0.429890 0.190686i
$$331$$ −9.77869 12.7438i −0.537485 0.700464i 0.443119 0.896463i $$-0.353872\pi$$
−0.980604 + 0.195998i $$0.937205\pi$$
$$332$$ −11.2260 + 16.2373i −0.616104 + 0.891136i
$$333$$ −19.7601 15.1625i −1.08285 0.830899i
$$334$$ −5.75396 + 10.5625i −0.314843 + 0.577957i
$$335$$ 18.3291i 1.00143i
$$336$$ −14.0572 24.4128i −0.766883 1.33183i
$$337$$ 12.3378i 0.672081i −0.941848 0.336041i $$-0.890912\pi$$
0.941848 0.336041i $$-0.109088\pi$$
$$338$$ 15.7035 + 8.55449i 0.854157 + 0.465303i
$$339$$ −20.4966 15.7276i −1.11323 0.854208i
$$340$$ −2.56382 14.0503i −0.139043 0.761986i
$$341$$ −2.99874 3.90803i −0.162391 0.211632i
$$342$$ −11.7471 26.4830i −0.635208 1.43204i
$$343$$ 18.4424 1.69608i 0.995798 0.0915794i
$$344$$ 7.26366 3.66306i 0.391630 0.197499i
$$345$$ 17.8513 4.78324i 0.961082 0.257521i
$$346$$ 7.93335 1.24525i 0.426499 0.0669452i
$$347$$ 0.350030 + 2.65874i 0.0187906 + 0.142729i 0.998268 0.0588232i $$-0.0187348\pi$$
−0.979478 + 0.201552i $$0.935402\pi$$
$$348$$ 51.3733 16.5349i 2.75390 0.886366i
$$349$$ −7.04548 17.0093i −0.377136 0.910487i −0.992500 0.122244i $$-0.960991\pi$$
0.615364 0.788243i $$-0.289009\pi$$
$$350$$ 12.1057 0.670899i 0.647076 0.0358611i
$$351$$ 1.72242 0.0919362
$$352$$ 9.67751 + 0.0670535i 0.515813 + 0.00357396i
$$353$$ −7.72069 13.3726i −0.410931 0.711753i 0.584061 0.811710i $$-0.301463\pi$$
−0.994992 + 0.0999565i $$0.968130\pi$$
$$354$$ −0.191978 + 0.794794i −0.0102035 + 0.0422428i
$$355$$ 11.9314 + 1.57080i 0.633255 + 0.0833696i
$$356$$ 22.3988 24.7381i 1.18713 1.31112i
$$357$$ −3.79749 + 37.7228i −0.200985 + 1.99650i
$$358$$ 2.70923 7.02865i 0.143187 0.371476i
$$359$$ 0.280573 0.0751793i 0.0148081 0.00396781i −0.251407 0.967881i $$-0.580893\pi$$
0.266215 + 0.963914i $$0.414227\pi$$
$$360$$ −3.12474 15.0072i −0.164688 0.790951i
$$361$$ −5.93239 1.58958i −0.312231 0.0836621i
$$362$$ −0.612354 0.0652190i −0.0321846 0.00342784i
$$363$$ −8.22380 + 19.8540i −0.431638 + 1.04207i
$$364$$ 1.71348 2.64789i 0.0898105 0.138787i
$$365$$ −12.1939 + 5.05089i −0.638259 + 0.264376i
$$366$$ −13.5237 7.36707i −0.706896 0.385083i
$$367$$ 21.4497 12.3840i 1.11966 0.646438i 0.178348 0.983968i $$-0.442925\pi$$
0.941315 + 0.337530i $$0.109591\pi$$
$$368$$ 20.6593 + 3.38960i 1.07694 + 0.176695i
$$369$$ −13.5371 7.81567i −0.704715 0.406868i
$$370$$ −11.4330 + 0.283530i −0.594374 + 0.0147400i
$$371$$ 18.1327 2.95358i 0.941401 0.153342i
$$372$$ −13.8539 + 6.56090i −0.718291 + 0.340167i
$$373$$ −1.37170 1.78763i −0.0710240 0.0925602i 0.756490 0.654005i $$-0.226912\pi$$
−0.827514 + 0.561445i $$0.810246\pi$$
$$374$$ −10.5266 7.67035i −0.544319 0.396624i
$$375$$ 28.1055 + 7.53085i 1.45136 + 0.388892i
$$376$$ −9.03084 25.8432i −0.465730 1.33276i
$$377$$ 4.27250 + 4.27250i 0.220045 + 0.220045i
$$378$$ −0.815966 + 10.7818i −0.0419688 + 0.554555i
$$379$$ 11.1490 + 4.61806i 0.572685 + 0.237214i 0.650182 0.759779i $$-0.274693\pi$$
−0.0774966 + 0.996993i $$0.524693\pi$$
$$380$$ −11.8360 6.07214i −0.607176 0.311494i
$$381$$ −24.8875 + 32.4340i −1.27502 + 1.66164i
$$382$$ 6.15530 + 1.48678i 0.314932 + 0.0760703i
$$383$$ −14.4746 + 25.0707i −0.739616 + 1.28105i 0.213052 + 0.977041i $$0.431660\pi$$
−0.952668 + 0.304012i $$0.901674\pi$$
$$384$$ 6.54686 29.3955i 0.334093 1.50008i
$$385$$ −4.11392 + 4.37346i −0.209665 + 0.222892i
$$386$$ −22.1061 + 23.2304i −1.12517 + 1.18240i
$$387$$ −11.6504 1.53380i −0.592223 0.0779676i
$$388$$ 15.6077 10.0743i 0.792359 0.511448i
$$389$$ −0.794882 6.03773i −0.0403021 0.306125i −0.999710 0.0241012i $$-0.992328\pi$$
0.959407 0.282024i $$-0.0910057\pi$$
$$390$$ 2.31569 1.86990i 0.117260 0.0946862i
$$391$$ −19.9234 19.9234i −1.00757 1.00757i
$$392$$ 15.7631 + 11.9801i 0.796158 + 0.605088i
$$393$$ −25.2200 + 25.2200i −1.27218 + 1.27218i
$$394$$ −1.47071 + 13.8088i −0.0740934 + 0.695677i
$$395$$ 6.16274 0.811340i 0.310081 0.0408229i
$$396$$ −11.4988 7.94989i −0.577834 0.399497i
$$397$$ 2.87380 21.8287i 0.144232 1.09555i −0.754265 0.656570i $$-0.772006\pi$$
0.898497 0.438980i $$-0.144660\pi$$
$$398$$ −5.54477 + 0.137506i −0.277934 + 0.00689256i
$$399$$ 25.7216 + 24.1952i 1.28769 + 1.21128i
$$400$$ 10.0275 + 8.21257i 0.501376 + 0.410629i
$$401$$ 24.3241 + 14.0435i 1.21469 + 0.701300i 0.963777 0.266710i $$-0.0859366\pi$$
0.250911 + 0.968010i $$0.419270\pi$$
$$402$$ 44.3880 27.1165i 2.21387 1.35245i
$$403$$ −1.36155 1.04475i −0.0678236 0.0520429i
$$404$$ 19.2456 + 22.6605i 0.957503 + 1.12740i
$$405$$ 2.31715 5.59409i 0.115140 0.277972i
$$406$$ −28.7684 + 24.7203i −1.42775 + 1.22685i
$$407$$ −7.37478 + 7.37478i −0.365555 + 0.365555i
$$408$$ −30.2330 + 26.9952i −1.49676 + 1.33646i
$$409$$ −4.34197 + 16.2044i −0.214697 + 0.801258i 0.771577 + 0.636136i $$0.219468\pi$$
−0.986273 + 0.165122i $$0.947198\pi$$
$$410$$ −7.09058 + 1.11297i −0.350179 + 0.0549656i
$$411$$ 16.3969 12.5818i 0.808800 0.620614i
$$412$$ −8.70477 + 9.61390i −0.428853 + 0.473643i
$$413$$ −0.0923875 0.567188i −0.00454609 0.0279095i
$$414$$ −21.9072 20.8469i −1.07668 1.02457i
$$415$$ 6.54640 11.3387i 0.321350 0.556595i
$$416$$ 3.26278 0.850074i 0.159971 0.0416783i
$$417$$ −1.82785 3.16593i −0.0895103 0.155036i
$$418$$ −11.6366 + 3.42938i −0.569164 + 0.167737i
$$419$$ 9.28172 + 22.4081i 0.453442 + 1.09471i 0.971005 + 0.239060i $$0.0768393\pi$$
−0.517563 + 0.855645i $$0.673161\pi$$
$$420$$ 10.6079 + 15.3812i 0.517613 + 0.750528i
$$421$$ 12.3542 + 5.11727i 0.602106 + 0.249400i 0.662849 0.748753i $$-0.269347\pi$$
−0.0607433 + 0.998153i $$0.519347\pi$$
$$422$$ −19.9430 24.6975i −0.970811 1.20225i
$$423$$ −10.2347 + 38.1964i −0.497627 + 1.85717i
$$424$$ 16.4270 + 10.7652i 0.797764 + 0.522802i
$$425$$ −4.51485 16.8496i −0.219002 0.817328i
$$426$$ −13.8476 31.2185i −0.670917 1.51254i
$$427$$ 10.7691 + 1.08411i 0.521155 + 0.0524638i
$$428$$ −4.54212 1.62263i −0.219552 0.0784327i
$$429$$ 0.354290 2.69110i 0.0171053 0.129928i
$$430$$ −4.60444 + 2.81283i −0.222046 + 0.135647i
$$431$$ −8.96739 + 5.17733i −0.431944 + 0.249383i −0.700175 0.713972i $$-0.746894\pi$$
0.268230 + 0.963355i $$0.413561\pi$$
$$432$$ −8.42869 + 7.91020i −0.405526 + 0.380580i
$$433$$ 18.5114i 0.889599i 0.895630 + 0.444800i $$0.146725\pi$$
−0.895630 + 0.444800i $$0.853275\pi$$
$$434$$ 7.18479 8.02788i 0.344881 0.385351i
$$435$$ −33.0705 + 13.6983i −1.58561 + 0.656781i
$$436$$ −2.69830 0.219887i −0.129225 0.0105307i
$$437$$ −26.0189 + 3.42546i −1.24465 + 0.163862i
$$438$$ 30.2718 + 22.0579i 1.44644 + 1.05397i
$$439$$ 5.08206 + 18.9665i 0.242554 + 0.905222i 0.974597 + 0.223965i $$0.0719000\pi$$
−0.732044 + 0.681258i $$0.761433\pi$$
$$440$$ −6.40110 + 0.477011i −0.305161 + 0.0227406i
$$441$$ −9.07611 27.1210i −0.432196 1.29147i
$$442$$ −4.23414 1.63207i −0.201397 0.0776295i
$$443$$ 23.7835 18.2498i 1.12999 0.867072i 0.137635 0.990483i $$-0.456050\pi$$
0.992356 + 0.123411i $$0.0393834\pi$$
$$444$$ 17.6009 + 27.2681i 0.835300 + 1.29409i
$$445$$ −13.4744 + 17.5602i −0.638749 + 0.832434i
$$446$$ −6.67552 22.6514i −0.316095 1.07257i
$$447$$ −25.4437 −1.20345
$$448$$ 3.77548 + 20.8266i 0.178375 + 0.983963i
$$449$$ 27.2364 1.28536 0.642682 0.766133i $$-0.277822\pi$$
0.642682 + 0.766133i $$0.277822\pi$$
$$450$$ −5.29260 17.9589i −0.249496 0.846589i
$$451$$ −3.98460 + 5.19283i −0.187627 + 0.244521i
$$452$$ 10.5271 + 16.3090i 0.495151 + 0.767112i
$$453$$ 22.0615 16.9284i 1.03654 0.795363i
$$454$$ 3.86300 + 1.48901i 0.181300 + 0.0698829i
$$455$$ −0.990080 + 1.84274i −0.0464156 + 0.0863891i
$$456$$ 2.80544 + 37.6468i 0.131377 + 1.76297i
$$457$$ −4.47114 16.6865i −0.209151 0.780562i −0.988144 0.153529i $$-0.950936\pi$$
0.778993 0.627032i $$-0.215731\pi$$
$$458$$ −18.7141 13.6363i −0.874453 0.637181i
$$459$$ 15.4238 2.03058i 0.719920 0.0947792i
$$460$$ −13.8398 1.12782i −0.645284 0.0525848i
$$461$$ 8.36744 3.46591i 0.389711 0.161423i −0.179220 0.983809i $$-0.557357\pi$$
0.568931 + 0.822386i $$0.307357\pi$$
$$462$$ 16.6775 + 3.49259i 0.775908 + 0.162490i
$$463$$ 11.8044i 0.548599i −0.961644 0.274299i $$-0.911554\pi$$
0.961644 0.274299i $$-0.0884459\pi$$
$$464$$ −40.5289 1.28613i −1.88151 0.0597069i
$$465$$ 8.80492 5.08352i 0.408319 0.235743i
$$466$$ 12.5466 7.66469i 0.581211 0.355060i
$$467$$ 1.79383 13.6255i 0.0830086 0.630513i −0.898483 0.439008i $$-0.855330\pi$$
0.981492 0.191505i $$-0.0613368\pi$$
$$468$$ −4.58649 1.63848i −0.212010 0.0757388i
$$469$$ −21.3580 + 29.6697i −0.986219 + 1.37002i
$$470$$ 7.36220 + 16.5976i 0.339593 + 0.765592i
$$471$$ 9.64083 + 35.9801i 0.444226 + 1.65787i
$$472$$ 0.336733 0.513834i 0.0154994 0.0236511i
$$473$$ −1.27353 + 4.75288i −0.0585570 + 0.218538i
$$474$$ −11.0821 13.7241i −0.509019 0.630370i
$$475$$ −15.0108 6.21768i −0.688743 0.285287i
$$476$$ 12.2220 25.7310i 0.560195 1.17938i
$$477$$ −10.8567 26.2103i −0.497093 1.20009i
$$478$$ −2.27384 + 0.670117i −0.104003 + 0.0306504i
$$479$$ 0.255055 + 0.441769i 0.0116538 + 0.0201849i 0.871793 0.489874i $$-0.162957\pi$$
−0.860140 + 0.510059i $$0.829624\pi$$
$$480$$ −2.74435 + 19.7851i −0.125262 + 0.903064i
$$481$$ −1.81681 + 3.14681i −0.0828394 + 0.143482i
$$482$$ −7.79531 7.41803i −0.355067 0.337882i
$$483$$ 34.4699 + 13.0585i 1.56844 + 0.594180i
$$484$$ 10.8372 11.9691i 0.492601 0.544049i
$$485$$ −9.77502 + 7.50063i −0.443861 + 0.340586i
$$486$$ −29.0874 + 4.56568i −1.31943 + 0.207104i
$$487$$ 6.03562 22.5252i 0.273500 1.02072i −0.683340 0.730100i $$-0.739473\pi$$
0.956840 0.290615i $$-0.0938600\pi$$
$$488$$ 7.70661 + 8.63095i 0.348862 + 0.390705i
$$489$$ 37.7347 37.7347i 1.70642 1.70642i
$$490$$ −11.0659 7.07051i −0.499906 0.319413i
$$491$$ 0.893235 2.15646i 0.0403111 0.0973197i −0.902442 0.430812i $$-0.858227\pi$$
0.942753 + 0.333492i $$0.108227\pi$$
$$492$$ 13.1853 + 15.5249i 0.594437 + 0.699915i
$$493$$ 43.2958 + 33.2220i 1.94994 + 1.49624i
$$494$$ −3.60678 + 2.20337i −0.162277 + 0.0991343i
$$495$$ 8.02973 + 4.63597i 0.360910 + 0.208371i
$$496$$ 11.4608 1.14038i 0.514603 0.0512047i
$$497$$ 17.4833 + 16.4458i 0.784232 + 0.737693i
$$498$$ −37.1441 + 0.921146i −1.66447 + 0.0412775i
$$499$$ −4.22841 + 32.1180i −0.189290 + 1.43780i 0.588104 + 0.808785i $$0.299874\pi$$
−0.777394 + 0.629014i $$0.783459\pi$$
$$500$$ −17.9826 12.4326i −0.804207 0.556004i
$$501$$ −22.4460 + 2.95508i −1.00281 + 0.132023i
$$502$$ −4.55962 + 42.8111i −0.203506 + 1.91075i
$$503$$ −18.0124 + 18.0124i −0.803132 + 0.803132i −0.983584 0.180452i $$-0.942244\pi$$
0.180452 + 0.983584i $$0.442244\pi$$
$$504$$ 12.4291 27.9336i 0.553635 1.24426i
$$505$$ −13.9434 13.9434i −0.620472 0.620472i
$$506$$ −9.85205 + 7.95546i −0.437977 + 0.353663i
$$507$$ 4.39336 + 33.3709i 0.195116 + 1.48205i
$$508$$ 25.8075 16.6581i 1.14502 0.739082i
$$509$$ −29.1195 3.83365i −1.29070 0.169924i −0.546260 0.837616i $$-0.683949\pi$$
−0.744437 + 0.667692i $$0.767282\pi$$
$$510$$ 18.5318 19.4744i 0.820604 0.862339i
$$511$$ −25.6241 6.03296i −1.13354 0.266883i
$$512$$ −12.0625 + 19.1441i −0.533091 + 0.846058i
$$513$$ 7.24492 12.5486i 0.319871 0.554033i
$$514$$ 19.8473 + 4.79402i 0.875428 + 0.211455i
$$515$$ 5.23653 6.82438i 0.230749 0.300718i
$$516$$ 13.6238 + 6.98931i 0.599755 + 0.307687i
$$517$$ 15.2980 + 6.33664i 0.672805 + 0.278685i
$$518$$ −18.8372 12.8633i −0.827660 0.565182i
$$519$$ 10.6881 + 10.6881i 0.469156 + 0.469156i
$$520$$ −2.11113 + 0.737727i −0.0925790 + 0.0323514i
$$521$$ 15.4615 + 4.14291i 0.677382 + 0.181504i 0.581078 0.813848i $$-0.302631\pi$$
0.0963044 + 0.995352i $$0.469298\pi$$
$$522$$ 47.3387 + 34.4939i 2.07196 + 1.50976i
$$523$$ −13.0166 16.9636i −0.569176 0.741764i 0.416737 0.909027i $$-0.363174\pi$$
−0.985912 + 0.167263i $$0.946507\pi$$
$$524$$ 24.2193 11.4697i 1.05803 0.501057i
$$525$$ 14.4393 + 17.6718i 0.630181 + 0.771262i
$$526$$ 16.8127 0.416944i 0.733070 0.0181796i
$$527$$ −13.4239 7.75029i −0.584754 0.337608i
$$528$$ 10.6251 + 14.7960i 0.462399 + 0.643913i
$$529$$ −3.80487 + 2.19674i −0.165429 + 0.0955106i
$$530$$ −11.4393 6.23156i −0.496891 0.270682i
$$531$$ −0.819855 + 0.339595i −0.0355787 + 0.0147372i
$$532$$ −12.0837 23.6210i −0.523894 1.02410i
$$533$$ −0.872674 + 2.10682i −0.0377997 + 0.0912566i
$$534$$ 62.4603 + 6.65237i 2.70292 + 0.287876i
$$535$$ 3.09006 + 0.827980i 0.133595 + 0.0357967i
$$536$$ −38.2611 + 7.96654i −1.65263 + 0.344102i
$$537$$ 13.6952 3.66962i 0.590993 0.158356i
$$538$$ 3.43096 8.90108i 0.147919 0.383753i
$$539$$ −11.7554 + 2.28566i −0.506343 + 0.0984505i
$$540$$ 5.14581 5.68325i 0.221440 0.244568i
$$541$$ −4.12687 0.543312i −0.177428 0.0233588i 0.0412887 0.999147i $$-0.486854\pi$$
−0.218717 + 0.975788i $$0.570187\pi$$
$$542$$ 8.91371 36.9029i 0.382877 1.58512i
$$543$$ −0.579556 1.00382i −0.0248711 0.0430781i
$$544$$ 28.2150 11.4587i 1.20971 0.491286i
$$545$$ 1.79561 0.0769154
$$546$$ 5.92736 0.328495i 0.253667 0.0140583i
$$547$$ −13.2421 31.9692i −0.566190 1.36690i −0.904744 0.425956i $$-0.859938\pi$$
0.338554 0.940947i $$-0.390062\pi$$
$$548$$ −14.7820 + 4.75770i −0.631454 + 0.203239i
$$549$$ −2.18161 16.5710i −0.0931088 0.707231i
$$550$$ −7.74498 + 1.21568i −0.330247 + 0.0518370i
$$551$$ 49.0980 13.1558i 2.09165 0.560455i
$$552$$ 17.7436 + 35.1847i 0.755219 + 1.49756i
$$553$$ 10.9212 + 5.86778i 0.464415 + 0.249523i
$$554$$ 6.45015 + 14.5415i 0.274041 + 0.617808i
$$555$$ −13.1043 17.0779i −0.556248 0.724917i
$$556$$ 0.493060 + 2.70209i 0.0209104 + 0.114594i
$$557$$ −0.576651 0.442480i −0.0244335 0.0187485i 0.596473 0.802634i $$-0.296568\pi$$
−0.620906 + 0.783885i $$0.713235\pi$$
$$558$$ −14.6095 7.95857i −0.618471 0.336913i
$$559$$ 1.71431i 0.0725074i
$$560$$ −3.61780 13.5644i −0.152880 0.573200i
$$561$$ 24.5156i 1.03505i
$$562$$ 12.5233 22.9891i 0.528265 0.969735i
$$563$$ 8.72655 + 6.69612i 0.367780 + 0.282208i 0.776073 0.630644i $$-0.217209\pi$$
−0.408292 + 0.912851i $$0.633876\pi$$
$$564$$ 29.3031 42.3841i 1.23388 1.78469i
$$565$$ −7.83769 10.2143i −0.329734 0.429718i
$$566$$ −11.6217 + 5.15502i −0.488496 + 0.216682i
$$567$$ 10.2693 6.35521i 0.431270 0.266894i
$$568$$ 1.90689 + 25.5890i 0.0800115 + 1.07369i
$$569$$ −4.48148 + 1.20081i −0.187873 + 0.0503405i −0.351529 0.936177i $$-0.614338\pi$$
0.163656 + 0.986518i $$0.447671\pi$$
$$570$$ −3.88267 24.7360i −0.162627 1.03608i
$$571$$ 3.02103 + 22.9470i 0.126426 + 0.960301i 0.930633 + 0.365953i $$0.119257\pi$$
−0.804207 + 0.594349i $$0.797410\pi$$
$$572$$ −0.930902 + 1.81455i −0.0389230 + 0.0758700i
$$573$$ 4.56117 + 11.0116i 0.190546 + 0.460018i
$$574$$ −12.7745 6.46070i −0.533199 0.269664i
$$575$$ −16.9596 −0.707263
$$576$$ 29.9687 13.0454i 1.24870 0.543560i
$$577$$ 0.147694 + 0.255814i 0.00614858 + 0.0106497i 0.869083 0.494666i $$-0.164709\pi$$
−0.862935 + 0.505315i $$0.831376\pi$$
$$578$$ −16.4698 3.97820i −0.685054 0.165471i
$$579$$ −59.8423 7.87839i −2.48696 0.327415i
$$580$$ 26.8616 1.33312i 1.11537 0.0553548i
$$581$$ 23.8092 10.7260i 0.987771 0.444989i
$$582$$ 32.6258 + 12.5758i 1.35238 + 0.521283i
$$583$$ −11.4747 + 3.07464i −0.475234 + 0.127339i
$$584$$ −15.8434 23.2589i −0.655605 0.962459i
$$585$$ 3.12025 + 0.836068i 0.129006 + 0.0345672i
$$586$$ −1.22210 + 11.4745i −0.0504844 + 0.474008i
$$587$$ 3.80781 9.19287i 0.157165 0.379430i −0.825608 0.564243i $$-0.809168\pi$$
0.982774 + 0.184813i $$0.0591680\pi$$
$$588$$ −0.751711 + 37.2588i −0.0310000 + 1.53653i
$$589$$ −13.3384 + 5.52496i −0.549601 + 0.227652i
$$590$$ −0.194923 + 0.357819i −0.00802483 + 0.0147312i
$$591$$ −22.6365 + 13.0692i −0.931142 + 0.537595i
$$592$$ −5.56108 23.7426i −0.228559 0.975814i
$$593$$ −1.47253 0.850168i −0.0604698 0.0349122i 0.469460 0.882954i $$-0.344448\pi$$
−0.529930 + 0.848041i $$0.677782\pi$$
$$594$$ −0.173335 6.98951i −0.00711201 0.286783i
$$595$$ −6.69342 + 17.6684i −0.274404 + 0.724333i
$$596$$ 18.0028 + 6.43133i 0.737423 + 0.263437i
$$597$$ −6.35532 8.28242i −0.260106 0.338977i
$$598$$ −2.59812 + 3.56560i −0.106245 + 0.145808i
$$599$$ −5.37460 1.44012i −0.219600 0.0588417i 0.147341 0.989086i $$-0.452928\pi$$
−0.366942 + 0.930244i $$0.619595\pi$$
$$600$$ −1.37808 + 24.3574i −0.0562598 + 0.994388i
$$601$$ −22.0815 22.0815i −0.900723 0.900723i 0.0947758 0.995499i $$-0.469787\pi$$
−0.995499 + 0.0947758i $$0.969787\pi$$
$$602$$ −10.7309 0.812120i −0.437361 0.0330995i
$$603$$ 52.1556 + 21.6036i 2.12394 + 0.879765i
$$604$$ −19.8886 + 6.40131i −0.809256 + 0.260466i
$$605$$ −6.51936 + 8.49619i −0.265050 + 0.345419i
$$606$$ −13.1389 + 54.3951i −0.533730 + 2.20965i
$$607$$ −8.55391 + 14.8158i −0.347193 + 0.601355i −0.985750 0.168219i $$-0.946198\pi$$
0.638557 + 0.769575i $$0.279532\pi$$
$$608$$ 7.53087 27.3463i 0.305417 1.10904i
$$609$$ −69.4938 16.3617i −2.81603 0.663010i
$$610$$ −5.55956 5.29048i −0.225100 0.214205i
$$611$$ 5.71956 + 0.752995i 0.231389 + 0.0304629i
$$612$$ −43.0021 9.26503i −1.73826 0.374517i
$$613$$ −4.23641 32.1788i −0.171107 1.29969i −0.834330 0.551266i $$-0.814145\pi$$
0.663223 0.748422i $$-0.269188\pi$$
$$614$$ 22.8737 + 28.3268i 0.923107 + 1.14318i
$$615$$ −9.55270 9.55270i −0.385202 0.385202i
$$616$$ −10.9174 6.68672i −0.439876 0.269416i
$$617$$ 31.1039 31.1039i 1.25220 1.25220i 0.297465 0.954733i $$-0.403859\pi$$
0.954733 0.297465i $$-0.0961411\pi$$
$$618$$ −24.2738 2.58529i −0.976435 0.103996i
$$619$$ 8.98941 1.18348i 0.361315 0.0475680i 0.0523164 0.998631i $$-0.483340\pi$$
0.308998 + 0.951063i $$0.400006\pi$$
$$620$$ −7.51491 + 1.37127i −0.301806 + 0.0550717i
$$621$$ 1.97418 14.9954i 0.0792213 0.601745i
$$622$$ 0.837347 + 33.7650i 0.0335745 + 1.35385i
$$623$$ −42.2733 + 12.7240i −1.69365 + 0.509778i
$$624$$ 4.90981 + 4.02115i 0.196550 + 0.160975i
$$625$$ −1.47361 0.850790i −0.0589444 0.0340316i
$$626$$ 9.75153 + 15.9627i 0.389749 + 0.637996i
$$627$$ −18.1155 13.9005i −0.723465 0.555134i
$$628$$ 2.27317 27.8947i 0.0907093 1.11312i
$$629$$ −12.5592 + 30.3205i −0.500767 + 1.20896i
$$630$$ −6.71165 + 19.1356i −0.267399 + 0.762380i
$$631$$ 34.6058 34.6058i 1.37763 1.37763i 0.529034 0.848600i $$-0.322554\pi$$
0.848600 0.529034i $$-0.177446\pi$$
$$632$$ 4.37219 + 12.5118i 0.173916 + 0.497691i
$$633$$ 15.4644 57.7140i 0.614655 2.29392i
$$634$$ −6.62303 42.1945i −0.263034 1.67576i
$$635$$ −16.1631 + 12.4024i −0.641414 + 0.492174i
$$636$$ 1.83240 + 36.9219i 0.0726593 + 1.46405i
$$637$$ −3.74991 + 1.82920i −0.148577 + 0.0724754i
$$638$$ 16.9076 17.7675i 0.669379 0.703424i
$$639$$ 18.5327 32.0996i 0.733142 1.26984i
$$640$$ 6.94281 13.3054i 0.274439 0.525941i
$$641$$ 16.1845 + 28.0324i 0.639250 + 1.10721i 0.985598 + 0.169108i $$0.0540886\pi$$
−0.346347 + 0.938106i $$0.612578\pi$$
$$642$$ −2.56637 8.70820i −0.101286 0.343685i
$$643$$ 1.89126 + 4.56590i 0.0745839 + 0.180061i 0.956774 0.290831i $$-0.0939319\pi$$
−0.882190 + 0.470893i $$0.843932\pi$$
$$644$$ −21.0886 17.9524i −0.831006 0.707425i
$$645$$ −9.38279 3.88648i −0.369447 0.153030i
$$646$$ −29.7000 + 23.9825i −1.16853 + 0.943580i
$$647$$ 7.18841 26.8275i 0.282606 1.05470i −0.667965 0.744192i $$-0.732835\pi$$
0.950571 0.310507i $$-0.100499\pi$$
$$648$$ 12.6845 + 2.40552i 0.498294 + 0.0944976i
$$649$$ 0.0961743 + 0.358927i 0.00377517 + 0.0140891i
$$650$$ −2.49677 + 1.10749i −0.0979313 + 0.0434393i
$$651$$ 20.1763 + 2.03111i 0.790770 + 0.0796056i
$$652$$ −36.2374 + 17.1612i −1.41917 + 0.672086i
$$653$$ −3.36747 + 25.5785i −0.131779 + 1.00096i 0.789961 + 0.613157i $$0.210101\pi$$
−0.921741 + 0.387807i $$0.873233\pi$$
$$654$$ −2.65646 4.34847i −0.103876 0.170038i
$$655$$ −15.3927 + 8.88699i −0.601444 + 0.347244i
$$656$$ −5.40510 14.3175i −0.211034 0.559004i
$$657$$ 40.6511i 1.58595i
$$658$$ −7.42302 + 35.4457i −0.289379 + 1.38182i
$$659$$ −10.6410 + 4.40765i −0.414515 + 0.171698i −0.580187 0.814483i $$-0.697021\pi$$
0.165672 + 0.986181i $$0.447021\pi$$
$$660$$ −7.82100 9.20878i −0.304432 0.358451i
$$661$$ 41.8739 5.51280i 1.62870 0.214423i 0.739902 0.672714i $$-0.234872\pi$$
0.888802 + 0.458291i $$0.151538\pi$$
$$662$$ −13.3781 + 18.3598i −0.519954 + 0.713574i
$$663$$ −2.21062 8.25016i −0.0858535 0.320410i
$$664$$ 26.5143 + 8.73703i 1.02895 + 0.339063i
$$665$$ 9.26062 + 14.9641i 0.359112 + 0.580284i
$$666$$ −12.6687 + 32.8669i −0.490902 + 1.27357i
$$667$$ 42.0934 32.2994i 1.62986 1.25064i
$$668$$ 16.6287 + 3.58274i 0.643385 + 0.138620i
$$669$$ 27.0583 35.2631i 1.04614 1.36335i
$$670$$ 24.8640 7.32759i 0.960581 0.283090i
$$671$$ −6.99874 −0.270183
$$672$$ −27.4969 + 28.8288i −1.06072 + 1.11209i
$$673$$ 44.7537 1.72513 0.862563 0.505949i $$-0.168858\pi$$
0.862563 + 0.505949i $$0.168858\pi$$
$$674$$ −16.7366 + 4.93238i −0.644669 + 0.189988i
$$675$$ 5.70039 7.42890i 0.219408 0.285938i
$$676$$ 5.32652 24.7222i 0.204866 0.950853i
$$677$$ −5.59437 + 4.29271i −0.215009 + 0.164982i −0.710651 0.703545i $$-0.751599\pi$$
0.495642 + 0.868527i $$0.334933\pi$$
$$678$$ −13.1409 + 34.0919i −0.504673 + 1.30929i
$$679$$ −24.5631 + 0.751111i −0.942646 + 0.0288250i
$$680$$ −18.0348 + 9.09492i −0.691601 + 0.348774i
$$681$$ 2.01686 + 7.52701i 0.0772861 + 0.288436i
$$682$$ −4.10253 + 5.63023i −0.157094 + 0.215593i
$$683$$ −10.4129 + 1.37088i −0.398437 + 0.0524552i −0.327082 0.944996i $$-0.606065\pi$$
−0.0713545 + 0.997451i $$0.522732\pi$$
$$684$$ −31.2288 + 26.5226i −1.19406 + 1.01412i
$$685$$ 9.51559 3.94148i 0.363572 0.150596i
$$686$$ −9.67367 24.3397i −0.369343 0.929293i
$$687$$ 43.5836i 1.66282i
$$688$$ −7.87291 8.38896i −0.300152 0.319826i
$$689$$ −3.58429 + 2.06939i −0.136551 + 0.0788376i
$$690$$ −13.6252 22.3036i −0.518702 0.849084i
$$691$$ −3.87592 + 29.4406i −0.147447 + 1.11997i 0.744432 + 0.667698i $$0.232720\pi$$
−0.891879 + 0.452273i $$0.850613\pi$$
$$692$$ −4.86081 10.2640i −0.184780 0.390179i
$$693$$ 7.59583 + 16.8610i 0.288542 + 0.640495i
$$694$$ 3.46673 1.53774i 0.131595 0.0583716i
$$695$$ −0.471511 1.75970i −0.0178854 0.0667493i
$$696$$ −42.9681 63.0792i −1.62870 2.39101i
$$697$$ −5.33077 + 19.8947i −0.201917 + 0.753566i
$$698$$ −20.2570 + 16.3574i −0.766739 + 0.619136i
$$699$$ 25.5671 + 10.5903i 0.967038 + 0.400560i
$$700$$ −5.74970 16.1535i −0.217318 0.610546i
$$701$$ 7.49691 + 18.0991i 0.283154 + 0.683595i 0.999906 0.0137337i $$-0.00437171\pi$$
−0.716751 + 0.697329i $$0.754372\pi$$
$$702$$ −0.688589 2.33652i −0.0259891 0.0881864i
$$703$$ 15.2838 + 26.4724i 0.576441 + 0.998425i
$$704$$ −3.77790 13.1546i −0.142385 0.495784i
$$705$$ −17.0881 + 29.5974i −0.643574 + 1.11470i
$$706$$ −15.0538 + 15.8195i −0.566558 + 0.595373i
$$707$$ −6.32294 38.8179i −0.237799 1.45990i
$$708$$ 1.15491 0.0573172i 0.0434042 0.00215411i
$$709$$ 14.8796 11.4175i 0.558815 0.428794i −0.290350 0.956920i $$-0.593772\pi$$
0.849166 + 0.528126i $$0.177105\pi$$
$$710$$ −2.63909 16.8133i −0.0990434 0.630993i
$$711$$ 4.95502 18.4924i 0.185828 0.693519i
$$712$$ −42.5126 20.4948i −1.59323 0.768076i
$$713$$ −10.6562 + 10.6562i −0.399077 + 0.399077i
$$714$$ 52.6903 9.92936i 1.97189 0.371597i
$$715$$ 0.517638 1.24969i 0.0193586 0.0467357i
$$716$$ −10.6177 0.865244i −0.396801 0.0323357i
$$717$$ −3.53986 2.71623i −0.132198 0.101439i
$$718$$ −0.214150 0.350551i −0.00799202 0.0130824i
$$719$$ 10.9538 + 6.32419i 0.408509 + 0.235853i 0.690149 0.723667i $$-0.257545\pi$$
−0.281640 + 0.959520i $$0.590878\pi$$
$$720$$ −19.1086 + 10.2384i −0.712135 + 0.381562i
$$721$$ 16.4286 4.94491i 0.611832 0.184158i
$$722$$ 0.215331 + 8.68295i 0.00801379 + 0.323146i
$$723$$ 2.64371 20.0810i 0.0983208 0.746821i
$$724$$ 0.156334 + 0.856750i 0.00581013 + 0.0318409i
$$725$$ 32.5674 4.28758i 1.20952 0.159237i
$$726$$ 30.2203 + 3.21863i 1.12158 + 0.119454i
$$727$$ −8.10183 + 8.10183i −0.300480 + 0.300480i −0.841202 0.540721i $$-0.818151\pi$$
0.540721 + 0.841202i $$0.318151\pi$$
$$728$$ −4.27696 1.26581i −0.158515 0.0469141i
$$729$$ −29.5047 29.5047i −1.09277 1.09277i
$$730$$ 11.7266 + 14.5222i 0.434019 + 0.537491i
$$731$$ 2.02100 + 15.3511i 0.0747496 + 0.567779i
$$732$$ −4.58716 + 21.2906i −0.169546 + 0.786921i
$$733$$ −30.3827 3.99996i −1.12221 0.147742i −0.453495 0.891259i $$-0.649823\pi$$
−0.668717 + 0.743517i $$0.733156\pi$$
$$734$$ −25.3743 24.1463i −0.936584 0.891255i
$$735$$ −1.51024 24.6711i −0.0557060 0.910007i
$$736$$ −3.66105 29.3801i −0.134948 1.08296i
$$737$$ 11.8194 20.4719i 0.435374 0.754091i
$$738$$ −5.19034 + 21.4881i −0.191059 + 0.790988i
$$739$$ 10.2948 13.4165i 0.378702 0.493534i −0.564649 0.825331i $$-0.690988\pi$$
0.943351 + 0.331797i $$0.107655\pi$$
$$740$$ 4.95529 + 15.3959i 0.182160 + 0.565964i
$$741$$ −7.34980 3.04438i −0.270001 0.111838i
$$742$$ −11.2557 23.4168i −0.413209 0.859656i
$$743$$ −0.628600 0.628600i −0.0230611 0.0230611i 0.695482 0.718543i $$-0.255191\pi$$
−0.718543 + 0.695482i $$0.755191\pi$$
$$744$$ 14.4386 + 16.1703i 0.529343 + 0.592833i
$$745$$ −12.2475 3.28172i −0.448715 0.120233i
$$746$$ −1.87661 + 2.57541i −0.0687074 + 0.0942926i
$$747$$ −24.5484 31.9922i −0.898181 1.17053i
$$748$$ −6.19675 + 17.3461i −0.226575 + 0.634238i
$$749$$ 4.03714 + 4.94096i 0.147514 + 0.180539i
$$750$$ −1.02016 41.1367i −0.0372510 1.50210i
$$751$$ −8.64463 4.99098i −0.315447 0.182124i 0.333914 0.942603i $$-0.391630\pi$$
−0.649361 + 0.760480i $$0.724964\pi$$
$$752$$ −31.4468 + 22.5822i −1.14675 + 0.823488i
$$753$$ −70.1795 + 40.5182i −2.55748 + 1.47656i
$$754$$ 4.08773 7.50384i 0.148866 0.273274i
$$755$$ 12.8029 5.30313i 0.465944 0.193001i
$$756$$ 14.9520 3.20344i 0.543800 0.116508i
$$757$$ −6.50215 + 15.6976i −0.236325 + 0.570539i −0.996897 0.0787146i $$-0.974918\pi$$
0.760572 + 0.649253i $$0.224918\pi$$
$$758$$ 1.80742 16.9702i 0.0656483 0.616384i
$$759$$ −23.0226 6.16890i −0.835669 0.223917i
$$760$$ −3.50525 + 18.4835i −0.127149 + 0.670465i
$$761$$ −0.398743 + 0.106843i −0.0144544 + 0.00387305i −0.266039 0.963962i $$-0.585715\pi$$
0.251585 + 0.967835i $$0.419048\pi$$
$$762$$ 53.9472 + 20.7942i 1.95430 + 0.753295i
$$763$$ 2.90659 + 2.09233i 0.105226 + 0.0757474i
$$764$$ −0.443894 8.94424i −0.0160595 0.323591i
$$765$$ 28.9265 + 3.80824i 1.04584 + 0.137687i
$$766$$ 39.7958 + 9.61248i 1.43788 + 0.347313i
$$767$$ 0.0647303 + 0.112116i 0.00233728 + 0.00404828i
$$768$$ −42.4933 + 2.87069i −1.53334 + 0.103587i
$$769$$ 4.31950 0.155765 0.0778826 0.996963i $$-0.475184\pi$$
0.0778826 + 0.996963i $$0.475184\pi$$
$$770$$ 7.57739 + 3.83225i 0.273070 + 0.138105i
\(