Properties

Label 224.2.bd
Level $224$
Weight $2$
Character orbit 224.bd
Rep. character $\chi_{224}(37,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $240$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 224.bd (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 224 \)
Character field: \(\Q(\zeta_{24})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(224, [\chi])\).

Total New Old
Modular forms 272 272 0
Cusp forms 240 240 0
Eisenstein series 32 32 0

Trace form

\( 240 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 16 q^{8} - 4 q^{9} + O(q^{10}) \) \( 240 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 16 q^{8} - 4 q^{9} - 4 q^{10} - 4 q^{11} - 4 q^{12} - 16 q^{13} + 24 q^{14} - 24 q^{16} - 24 q^{18} - 4 q^{19} - 48 q^{20} - 8 q^{21} - 24 q^{22} - 12 q^{23} + 36 q^{24} - 4 q^{25} - 4 q^{26} - 16 q^{27} + 12 q^{28} - 16 q^{29} + 44 q^{30} - 56 q^{31} - 4 q^{32} - 8 q^{33} - 32 q^{34} - 32 q^{35} - 96 q^{36} - 4 q^{37} + 36 q^{38} - 4 q^{39} - 68 q^{40} - 16 q^{41} - 28 q^{42} + 44 q^{44} + 8 q^{45} - 4 q^{46} - 16 q^{48} + 8 q^{50} - 28 q^{51} - 28 q^{52} - 20 q^{53} - 92 q^{54} - 16 q^{55} - 48 q^{56} - 16 q^{57} + 28 q^{58} - 36 q^{59} + 60 q^{60} - 4 q^{61} - 16 q^{63} + 56 q^{64} - 8 q^{65} - 36 q^{66} + 36 q^{67} - 36 q^{68} - 16 q^{69} - 44 q^{70} + 48 q^{71} - 4 q^{72} - 4 q^{73} + 68 q^{74} + 16 q^{75} - 16 q^{76} - 8 q^{77} - 120 q^{78} - 16 q^{80} - 44 q^{82} - 96 q^{83} - 28 q^{84} - 56 q^{85} - 4 q^{86} - 4 q^{87} + 40 q^{88} - 4 q^{89} + 224 q^{90} - 56 q^{91} - 80 q^{92} + 20 q^{93} + 4 q^{94} - 8 q^{95} - 32 q^{96} - 32 q^{97} + 96 q^{98} + 8 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(224, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
224.2.bd.a \(240\) \(1.789\) None \(-4\) \(-4\) \(-4\) \(-8\)