Newspace parameters
Level: | \( N \) | \(=\) | \( 224 = 2^{5} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 224.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.78864900528\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-2}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 2 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 56) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/224\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(129\) | \(197\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
113.1 |
|
0 | − | 1.41421i | 0 | − | 1.41421i | 0 | −1.00000 | 0 | 1.00000 | 0 | ||||||||||||||||||||||
113.2 | 0 | 1.41421i | 0 | 1.41421i | 0 | −1.00000 | 0 | 1.00000 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 224.2.b.a | 2 | |
3.b | odd | 2 | 1 | 2016.2.c.a | 2 | ||
4.b | odd | 2 | 1 | 56.2.b.a | ✓ | 2 | |
7.b | odd | 2 | 1 | 1568.2.b.a | 2 | ||
7.c | even | 3 | 2 | 1568.2.t.c | 4 | ||
7.d | odd | 6 | 2 | 1568.2.t.b | 4 | ||
8.b | even | 2 | 1 | inner | 224.2.b.a | 2 | |
8.d | odd | 2 | 1 | 56.2.b.a | ✓ | 2 | |
12.b | even | 2 | 1 | 504.2.c.a | 2 | ||
16.e | even | 4 | 2 | 1792.2.a.p | 2 | ||
16.f | odd | 4 | 2 | 1792.2.a.n | 2 | ||
24.f | even | 2 | 1 | 504.2.c.a | 2 | ||
24.h | odd | 2 | 1 | 2016.2.c.a | 2 | ||
28.d | even | 2 | 1 | 392.2.b.b | 2 | ||
28.f | even | 6 | 2 | 392.2.p.b | 4 | ||
28.g | odd | 6 | 2 | 392.2.p.a | 4 | ||
56.e | even | 2 | 1 | 392.2.b.b | 2 | ||
56.h | odd | 2 | 1 | 1568.2.b.a | 2 | ||
56.j | odd | 6 | 2 | 1568.2.t.b | 4 | ||
56.k | odd | 6 | 2 | 392.2.p.a | 4 | ||
56.m | even | 6 | 2 | 392.2.p.b | 4 | ||
56.p | even | 6 | 2 | 1568.2.t.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
56.2.b.a | ✓ | 2 | 4.b | odd | 2 | 1 | |
56.2.b.a | ✓ | 2 | 8.d | odd | 2 | 1 | |
224.2.b.a | 2 | 1.a | even | 1 | 1 | trivial | |
224.2.b.a | 2 | 8.b | even | 2 | 1 | inner | |
392.2.b.b | 2 | 28.d | even | 2 | 1 | ||
392.2.b.b | 2 | 56.e | even | 2 | 1 | ||
392.2.p.a | 4 | 28.g | odd | 6 | 2 | ||
392.2.p.a | 4 | 56.k | odd | 6 | 2 | ||
392.2.p.b | 4 | 28.f | even | 6 | 2 | ||
392.2.p.b | 4 | 56.m | even | 6 | 2 | ||
504.2.c.a | 2 | 12.b | even | 2 | 1 | ||
504.2.c.a | 2 | 24.f | even | 2 | 1 | ||
1568.2.b.a | 2 | 7.b | odd | 2 | 1 | ||
1568.2.b.a | 2 | 56.h | odd | 2 | 1 | ||
1568.2.t.b | 4 | 7.d | odd | 6 | 2 | ||
1568.2.t.b | 4 | 56.j | odd | 6 | 2 | ||
1568.2.t.c | 4 | 7.c | even | 3 | 2 | ||
1568.2.t.c | 4 | 56.p | even | 6 | 2 | ||
1792.2.a.n | 2 | 16.f | odd | 4 | 2 | ||
1792.2.a.p | 2 | 16.e | even | 4 | 2 | ||
2016.2.c.a | 2 | 3.b | odd | 2 | 1 | ||
2016.2.c.a | 2 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 2 \)
acting on \(S_{2}^{\mathrm{new}}(224, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 2 \)
$5$
\( T^{2} + 2 \)
$7$
\( (T + 1)^{2} \)
$11$
\( T^{2} + 8 \)
$13$
\( T^{2} + 18 \)
$17$
\( (T + 6)^{2} \)
$19$
\( T^{2} + 18 \)
$23$
\( (T - 6)^{2} \)
$29$
\( T^{2} + 8 \)
$31$
\( (T - 4)^{2} \)
$37$
\( T^{2} + 72 \)
$41$
\( (T - 6)^{2} \)
$43$
\( T^{2} + 72 \)
$47$
\( T^{2} \)
$53$
\( T^{2} + 32 \)
$59$
\( T^{2} + 2 \)
$61$
\( T^{2} + 162 \)
$67$
\( T^{2} \)
$71$
\( T^{2} \)
$73$
\( (T - 2)^{2} \)
$79$
\( (T + 8)^{2} \)
$83$
\( T^{2} + 242 \)
$89$
\( (T - 6)^{2} \)
$97$
\( (T + 10)^{2} \)
show more
show less