Properties

Label 2205.4.a.z.1.1
Level $2205$
Weight $4$
Character 2205.1
Self dual yes
Analytic conductor $130.099$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,4,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.53113\) of defining polynomial
Character \(\chi\) \(=\) 2205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.53113 q^{2} +12.5311 q^{4} +5.00000 q^{5} -20.5311 q^{8} +O(q^{10})\) \(q-4.53113 q^{2} +12.5311 q^{4} +5.00000 q^{5} -20.5311 q^{8} -22.6556 q^{10} +19.0623 q^{11} +2.93774 q^{13} -7.21984 q^{16} -6.49806 q^{17} +5.43580 q^{19} +62.6556 q^{20} -86.3735 q^{22} -49.3774 q^{23} +25.0000 q^{25} -13.3113 q^{26} +291.494 q^{29} -244.307 q^{31} +196.963 q^{32} +29.4436 q^{34} -193.121 q^{37} -24.6303 q^{38} -102.656 q^{40} +315.113 q^{41} -300.996 q^{43} +238.872 q^{44} +223.735 q^{46} +86.5058 q^{47} -113.278 q^{50} +36.8132 q^{52} -509.677 q^{53} +95.3113 q^{55} -1320.80 q^{58} -83.3852 q^{59} +5.25291 q^{61} +1106.99 q^{62} -834.706 q^{64} +14.6887 q^{65} +205.992 q^{67} -81.4281 q^{68} -1004.31 q^{71} +1007.29 q^{73} +875.055 q^{74} +68.1168 q^{76} -863.237 q^{79} -36.0992 q^{80} -1427.82 q^{82} +1334.72 q^{83} -32.4903 q^{85} +1363.85 q^{86} -391.370 q^{88} +326.249 q^{89} -618.755 q^{92} -391.969 q^{94} +27.1790 q^{95} -1526.77 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 17 q^{4} + 10 q^{5} - 33 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 17 q^{4} + 10 q^{5} - 33 q^{8} - 5 q^{10} + 22 q^{11} + 22 q^{13} - 87 q^{16} + 116 q^{17} - 102 q^{19} + 85 q^{20} - 76 q^{22} - 260 q^{23} + 50 q^{25} + 54 q^{26} + 196 q^{29} - 150 q^{31} + 15 q^{32} + 462 q^{34} - 96 q^{37} - 404 q^{38} - 165 q^{40} - 176 q^{41} - 344 q^{43} + 252 q^{44} - 520 q^{46} + 560 q^{47} - 25 q^{50} + 122 q^{52} - 326 q^{53} + 110 q^{55} - 1658 q^{58} - 844 q^{59} + 204 q^{61} + 1440 q^{62} - 839 q^{64} + 110 q^{65} - 104 q^{67} + 466 q^{68} - 1670 q^{71} + 386 q^{73} + 1218 q^{74} - 412 q^{76} - 888 q^{79} - 435 q^{80} - 3162 q^{82} + 928 q^{83} + 580 q^{85} + 1212 q^{86} - 428 q^{88} + 588 q^{89} - 1560 q^{92} + 1280 q^{94} - 510 q^{95} - 522 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.53113 −1.60200 −0.800998 0.598667i \(-0.795697\pi\)
−0.800998 + 0.598667i \(0.795697\pi\)
\(3\) 0 0
\(4\) 12.5311 1.56639
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) −20.5311 −0.907356
\(9\) 0 0
\(10\) −22.6556 −0.716434
\(11\) 19.0623 0.522499 0.261249 0.965271i \(-0.415865\pi\)
0.261249 + 0.965271i \(0.415865\pi\)
\(12\) 0 0
\(13\) 2.93774 0.0626756 0.0313378 0.999509i \(-0.490023\pi\)
0.0313378 + 0.999509i \(0.490023\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −7.21984 −0.112810
\(17\) −6.49806 −0.0927066 −0.0463533 0.998925i \(-0.514760\pi\)
−0.0463533 + 0.998925i \(0.514760\pi\)
\(18\) 0 0
\(19\) 5.43580 0.0656347 0.0328173 0.999461i \(-0.489552\pi\)
0.0328173 + 0.999461i \(0.489552\pi\)
\(20\) 62.6556 0.700511
\(21\) 0 0
\(22\) −86.3735 −0.837041
\(23\) −49.3774 −0.447648 −0.223824 0.974630i \(-0.571854\pi\)
−0.223824 + 0.974630i \(0.571854\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −13.3113 −0.100406
\(27\) 0 0
\(28\) 0 0
\(29\) 291.494 1.86652 0.933261 0.359200i \(-0.116950\pi\)
0.933261 + 0.359200i \(0.116950\pi\)
\(30\) 0 0
\(31\) −244.307 −1.41545 −0.707724 0.706489i \(-0.750278\pi\)
−0.707724 + 0.706489i \(0.750278\pi\)
\(32\) 196.963 1.08808
\(33\) 0 0
\(34\) 29.4436 0.148516
\(35\) 0 0
\(36\) 0 0
\(37\) −193.121 −0.858077 −0.429038 0.903286i \(-0.641147\pi\)
−0.429038 + 0.903286i \(0.641147\pi\)
\(38\) −24.6303 −0.105147
\(39\) 0 0
\(40\) −102.656 −0.405782
\(41\) 315.113 1.20030 0.600151 0.799887i \(-0.295107\pi\)
0.600151 + 0.799887i \(0.295107\pi\)
\(42\) 0 0
\(43\) −300.996 −1.06748 −0.533738 0.845650i \(-0.679213\pi\)
−0.533738 + 0.845650i \(0.679213\pi\)
\(44\) 238.872 0.818437
\(45\) 0 0
\(46\) 223.735 0.717130
\(47\) 86.5058 0.268472 0.134236 0.990949i \(-0.457142\pi\)
0.134236 + 0.990949i \(0.457142\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −113.278 −0.320399
\(51\) 0 0
\(52\) 36.8132 0.0981745
\(53\) −509.677 −1.32093 −0.660467 0.750855i \(-0.729642\pi\)
−0.660467 + 0.750855i \(0.729642\pi\)
\(54\) 0 0
\(55\) 95.3113 0.233669
\(56\) 0 0
\(57\) 0 0
\(58\) −1320.80 −2.99016
\(59\) −83.3852 −0.183997 −0.0919985 0.995759i \(-0.529326\pi\)
−0.0919985 + 0.995759i \(0.529326\pi\)
\(60\) 0 0
\(61\) 5.25291 0.0110257 0.00551283 0.999985i \(-0.498245\pi\)
0.00551283 + 0.999985i \(0.498245\pi\)
\(62\) 1106.99 2.26754
\(63\) 0 0
\(64\) −834.706 −1.63029
\(65\) 14.6887 0.0280294
\(66\) 0 0
\(67\) 205.992 0.375611 0.187806 0.982206i \(-0.439862\pi\)
0.187806 + 0.982206i \(0.439862\pi\)
\(68\) −81.4281 −0.145215
\(69\) 0 0
\(70\) 0 0
\(71\) −1004.31 −1.67872 −0.839362 0.543573i \(-0.817071\pi\)
−0.839362 + 0.543573i \(0.817071\pi\)
\(72\) 0 0
\(73\) 1007.29 1.61499 0.807494 0.589876i \(-0.200823\pi\)
0.807494 + 0.589876i \(0.200823\pi\)
\(74\) 875.055 1.37464
\(75\) 0 0
\(76\) 68.1168 0.102810
\(77\) 0 0
\(78\) 0 0
\(79\) −863.237 −1.22939 −0.614695 0.788765i \(-0.710721\pi\)
−0.614695 + 0.788765i \(0.710721\pi\)
\(80\) −36.0992 −0.0504502
\(81\) 0 0
\(82\) −1427.82 −1.92288
\(83\) 1334.72 1.76512 0.882560 0.470200i \(-0.155818\pi\)
0.882560 + 0.470200i \(0.155818\pi\)
\(84\) 0 0
\(85\) −32.4903 −0.0414596
\(86\) 1363.85 1.71009
\(87\) 0 0
\(88\) −391.370 −0.474093
\(89\) 326.249 0.388565 0.194283 0.980946i \(-0.437762\pi\)
0.194283 + 0.980946i \(0.437762\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −618.755 −0.701192
\(93\) 0 0
\(94\) −391.969 −0.430091
\(95\) 27.1790 0.0293527
\(96\) 0 0
\(97\) −1526.77 −1.59815 −0.799075 0.601232i \(-0.794677\pi\)
−0.799075 + 0.601232i \(0.794677\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 313.278 0.313278
\(101\) 96.8716 0.0954365 0.0477182 0.998861i \(-0.484805\pi\)
0.0477182 + 0.998861i \(0.484805\pi\)
\(102\) 0 0
\(103\) −1321.99 −1.26466 −0.632329 0.774700i \(-0.717901\pi\)
−0.632329 + 0.774700i \(0.717901\pi\)
\(104\) −60.3152 −0.0568691
\(105\) 0 0
\(106\) 2309.41 2.11613
\(107\) −1745.71 −1.57724 −0.788619 0.614883i \(-0.789203\pi\)
−0.788619 + 0.614883i \(0.789203\pi\)
\(108\) 0 0
\(109\) 476.856 0.419032 0.209516 0.977805i \(-0.432811\pi\)
0.209516 + 0.977805i \(0.432811\pi\)
\(110\) −431.868 −0.374336
\(111\) 0 0
\(112\) 0 0
\(113\) −1641.65 −1.36666 −0.683332 0.730108i \(-0.739470\pi\)
−0.683332 + 0.730108i \(0.739470\pi\)
\(114\) 0 0
\(115\) −246.887 −0.200194
\(116\) 3652.75 2.92370
\(117\) 0 0
\(118\) 377.829 0.294763
\(119\) 0 0
\(120\) 0 0
\(121\) −967.630 −0.726995
\(122\) −23.8016 −0.0176631
\(123\) 0 0
\(124\) −3061.45 −2.21715
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −844.016 −0.589719 −0.294859 0.955541i \(-0.595273\pi\)
−0.294859 + 0.955541i \(0.595273\pi\)
\(128\) 2206.46 1.52363
\(129\) 0 0
\(130\) −66.5564 −0.0449030
\(131\) −2796.20 −1.86493 −0.932463 0.361265i \(-0.882345\pi\)
−0.932463 + 0.361265i \(0.882345\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −933.377 −0.601728
\(135\) 0 0
\(136\) 133.413 0.0841179
\(137\) 2057.13 1.28287 0.641433 0.767179i \(-0.278340\pi\)
0.641433 + 0.767179i \(0.278340\pi\)
\(138\) 0 0
\(139\) 1745.12 1.06489 0.532444 0.846465i \(-0.321274\pi\)
0.532444 + 0.846465i \(0.321274\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4550.65 2.68931
\(143\) 56.0000 0.0327479
\(144\) 0 0
\(145\) 1457.47 0.834734
\(146\) −4564.15 −2.58720
\(147\) 0 0
\(148\) −2420.02 −1.34408
\(149\) 1173.57 0.645254 0.322627 0.946526i \(-0.395434\pi\)
0.322627 + 0.946526i \(0.395434\pi\)
\(150\) 0 0
\(151\) 1540.07 0.829994 0.414997 0.909823i \(-0.363783\pi\)
0.414997 + 0.909823i \(0.363783\pi\)
\(152\) −111.603 −0.0595540
\(153\) 0 0
\(154\) 0 0
\(155\) −1221.54 −0.633008
\(156\) 0 0
\(157\) 2544.53 1.29348 0.646738 0.762712i \(-0.276133\pi\)
0.646738 + 0.762712i \(0.276133\pi\)
\(158\) 3911.44 1.96948
\(159\) 0 0
\(160\) 984.815 0.486603
\(161\) 0 0
\(162\) 0 0
\(163\) −594.708 −0.285774 −0.142887 0.989739i \(-0.545639\pi\)
−0.142887 + 0.989739i \(0.545639\pi\)
\(164\) 3948.72 1.88014
\(165\) 0 0
\(166\) −6047.81 −2.82772
\(167\) 928.498 0.430236 0.215118 0.976588i \(-0.430986\pi\)
0.215118 + 0.976588i \(0.430986\pi\)
\(168\) 0 0
\(169\) −2188.37 −0.996072
\(170\) 147.218 0.0664182
\(171\) 0 0
\(172\) −3771.82 −1.67209
\(173\) −315.642 −0.138716 −0.0693578 0.997592i \(-0.522095\pi\)
−0.0693578 + 0.997592i \(0.522095\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −137.626 −0.0589431
\(177\) 0 0
\(178\) −1478.28 −0.622480
\(179\) 1445.49 0.603581 0.301791 0.953374i \(-0.402416\pi\)
0.301791 + 0.953374i \(0.402416\pi\)
\(180\) 0 0
\(181\) 1843.81 0.757180 0.378590 0.925564i \(-0.376409\pi\)
0.378590 + 0.925564i \(0.376409\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1013.77 0.406176
\(185\) −965.603 −0.383744
\(186\) 0 0
\(187\) −123.868 −0.0484391
\(188\) 1084.02 0.420532
\(189\) 0 0
\(190\) −123.152 −0.0470229
\(191\) 244.074 0.0924637 0.0462318 0.998931i \(-0.485279\pi\)
0.0462318 + 0.998931i \(0.485279\pi\)
\(192\) 0 0
\(193\) −1733.03 −0.646355 −0.323178 0.946338i \(-0.604751\pi\)
−0.323178 + 0.946338i \(0.604751\pi\)
\(194\) 6918.01 2.56023
\(195\) 0 0
\(196\) 0 0
\(197\) −358.230 −0.129557 −0.0647787 0.997900i \(-0.520634\pi\)
−0.0647787 + 0.997900i \(0.520634\pi\)
\(198\) 0 0
\(199\) 3203.63 1.14120 0.570601 0.821227i \(-0.306710\pi\)
0.570601 + 0.821227i \(0.306710\pi\)
\(200\) −513.278 −0.181471
\(201\) 0 0
\(202\) −438.938 −0.152889
\(203\) 0 0
\(204\) 0 0
\(205\) 1575.56 0.536791
\(206\) 5990.12 2.02598
\(207\) 0 0
\(208\) −21.2100 −0.00707044
\(209\) 103.619 0.0342940
\(210\) 0 0
\(211\) 4943.16 1.61280 0.806401 0.591369i \(-0.201412\pi\)
0.806401 + 0.591369i \(0.201412\pi\)
\(212\) −6386.83 −2.06910
\(213\) 0 0
\(214\) 7910.05 2.52673
\(215\) −1504.98 −0.477390
\(216\) 0 0
\(217\) 0 0
\(218\) −2160.70 −0.671288
\(219\) 0 0
\(220\) 1194.36 0.366016
\(221\) −19.0896 −0.00581044
\(222\) 0 0
\(223\) −3160.15 −0.948965 −0.474482 0.880265i \(-0.657365\pi\)
−0.474482 + 0.880265i \(0.657365\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 7438.51 2.18939
\(227\) −3651.11 −1.06755 −0.533773 0.845628i \(-0.679226\pi\)
−0.533773 + 0.845628i \(0.679226\pi\)
\(228\) 0 0
\(229\) 4083.70 1.17842 0.589210 0.807980i \(-0.299439\pi\)
0.589210 + 0.807980i \(0.299439\pi\)
\(230\) 1118.68 0.320710
\(231\) 0 0
\(232\) −5984.70 −1.69360
\(233\) 3682.51 1.03540 0.517702 0.855561i \(-0.326788\pi\)
0.517702 + 0.855561i \(0.326788\pi\)
\(234\) 0 0
\(235\) 432.529 0.120064
\(236\) −1044.91 −0.288211
\(237\) 0 0
\(238\) 0 0
\(239\) −2658.78 −0.719591 −0.359796 0.933031i \(-0.617154\pi\)
−0.359796 + 0.933031i \(0.617154\pi\)
\(240\) 0 0
\(241\) 4820.39 1.28842 0.644209 0.764850i \(-0.277187\pi\)
0.644209 + 0.764850i \(0.277187\pi\)
\(242\) 4384.46 1.16464
\(243\) 0 0
\(244\) 65.8249 0.0172705
\(245\) 0 0
\(246\) 0 0
\(247\) 15.9690 0.00411369
\(248\) 5015.91 1.28432
\(249\) 0 0
\(250\) −566.391 −0.143287
\(251\) 1672.27 0.420530 0.210265 0.977644i \(-0.432567\pi\)
0.210265 + 0.977644i \(0.432567\pi\)
\(252\) 0 0
\(253\) −941.245 −0.233896
\(254\) 3824.34 0.944727
\(255\) 0 0
\(256\) −3320.09 −0.810569
\(257\) −3697.74 −0.897506 −0.448753 0.893656i \(-0.648132\pi\)
−0.448753 + 0.893656i \(0.648132\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 184.066 0.0439050
\(261\) 0 0
\(262\) 12670.0 2.98760
\(263\) −7319.00 −1.71600 −0.858002 0.513646i \(-0.828294\pi\)
−0.858002 + 0.513646i \(0.828294\pi\)
\(264\) 0 0
\(265\) −2548.39 −0.590740
\(266\) 0 0
\(267\) 0 0
\(268\) 2581.32 0.588354
\(269\) −815.097 −0.184749 −0.0923743 0.995724i \(-0.529446\pi\)
−0.0923743 + 0.995724i \(0.529446\pi\)
\(270\) 0 0
\(271\) 5106.02 1.14453 0.572267 0.820068i \(-0.306064\pi\)
0.572267 + 0.820068i \(0.306064\pi\)
\(272\) 46.9150 0.0104582
\(273\) 0 0
\(274\) −9321.13 −2.05515
\(275\) 476.556 0.104500
\(276\) 0 0
\(277\) 1398.72 0.303398 0.151699 0.988427i \(-0.451526\pi\)
0.151699 + 0.988427i \(0.451526\pi\)
\(278\) −7907.39 −1.70595
\(279\) 0 0
\(280\) 0 0
\(281\) 7102.38 1.50780 0.753901 0.656988i \(-0.228170\pi\)
0.753901 + 0.656988i \(0.228170\pi\)
\(282\) 0 0
\(283\) −4465.18 −0.937907 −0.468953 0.883223i \(-0.655369\pi\)
−0.468953 + 0.883223i \(0.655369\pi\)
\(284\) −12585.1 −2.62954
\(285\) 0 0
\(286\) −253.743 −0.0524621
\(287\) 0 0
\(288\) 0 0
\(289\) −4870.78 −0.991405
\(290\) −6603.99 −1.33724
\(291\) 0 0
\(292\) 12622.5 2.52970
\(293\) 7590.61 1.51348 0.756738 0.653718i \(-0.226792\pi\)
0.756738 + 0.653718i \(0.226792\pi\)
\(294\) 0 0
\(295\) −416.926 −0.0822860
\(296\) 3964.98 0.778581
\(297\) 0 0
\(298\) −5317.61 −1.03369
\(299\) −145.058 −0.0280566
\(300\) 0 0
\(301\) 0 0
\(302\) −6978.26 −1.32965
\(303\) 0 0
\(304\) −39.2456 −0.00740425
\(305\) 26.2645 0.00493083
\(306\) 0 0
\(307\) −9480.12 −1.76241 −0.881203 0.472737i \(-0.843266\pi\)
−0.881203 + 0.472737i \(0.843266\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 5534.94 1.01408
\(311\) 7078.01 1.29054 0.645268 0.763956i \(-0.276746\pi\)
0.645268 + 0.763956i \(0.276746\pi\)
\(312\) 0 0
\(313\) −5593.84 −1.01017 −0.505084 0.863070i \(-0.668539\pi\)
−0.505084 + 0.863070i \(0.668539\pi\)
\(314\) −11529.6 −2.07214
\(315\) 0 0
\(316\) −10817.3 −1.92571
\(317\) −3567.81 −0.632139 −0.316070 0.948736i \(-0.602363\pi\)
−0.316070 + 0.948736i \(0.602363\pi\)
\(318\) 0 0
\(319\) 5556.54 0.975255
\(320\) −4173.53 −0.729086
\(321\) 0 0
\(322\) 0 0
\(323\) −35.3222 −0.00608477
\(324\) 0 0
\(325\) 73.4436 0.0125351
\(326\) 2694.70 0.457809
\(327\) 0 0
\(328\) −6469.62 −1.08910
\(329\) 0 0
\(330\) 0 0
\(331\) −4389.67 −0.728936 −0.364468 0.931216i \(-0.618749\pi\)
−0.364468 + 0.931216i \(0.618749\pi\)
\(332\) 16725.6 2.76487
\(333\) 0 0
\(334\) −4207.14 −0.689236
\(335\) 1029.96 0.167978
\(336\) 0 0
\(337\) 2348.83 0.379671 0.189835 0.981816i \(-0.439205\pi\)
0.189835 + 0.981816i \(0.439205\pi\)
\(338\) 9915.79 1.59570
\(339\) 0 0
\(340\) −407.140 −0.0649420
\(341\) −4657.05 −0.739570
\(342\) 0 0
\(343\) 0 0
\(344\) 6179.79 0.968581
\(345\) 0 0
\(346\) 1430.21 0.222222
\(347\) −558.436 −0.0863931 −0.0431965 0.999067i \(-0.513754\pi\)
−0.0431965 + 0.999067i \(0.513754\pi\)
\(348\) 0 0
\(349\) −3233.89 −0.496006 −0.248003 0.968759i \(-0.579774\pi\)
−0.248003 + 0.968759i \(0.579774\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3754.56 0.568519
\(353\) −7516.35 −1.13330 −0.566650 0.823959i \(-0.691761\pi\)
−0.566650 + 0.823959i \(0.691761\pi\)
\(354\) 0 0
\(355\) −5021.54 −0.750748
\(356\) 4088.27 0.608646
\(357\) 0 0
\(358\) −6549.70 −0.966935
\(359\) 6577.76 0.967021 0.483511 0.875338i \(-0.339361\pi\)
0.483511 + 0.875338i \(0.339361\pi\)
\(360\) 0 0
\(361\) −6829.45 −0.995692
\(362\) −8354.56 −1.21300
\(363\) 0 0
\(364\) 0 0
\(365\) 5036.44 0.722245
\(366\) 0 0
\(367\) −8307.17 −1.18155 −0.590777 0.806835i \(-0.701179\pi\)
−0.590777 + 0.806835i \(0.701179\pi\)
\(368\) 356.497 0.0504992
\(369\) 0 0
\(370\) 4375.27 0.614756
\(371\) 0 0
\(372\) 0 0
\(373\) −4551.09 −0.631760 −0.315880 0.948799i \(-0.602300\pi\)
−0.315880 + 0.948799i \(0.602300\pi\)
\(374\) 561.261 0.0775992
\(375\) 0 0
\(376\) −1776.06 −0.243599
\(377\) 856.335 0.116985
\(378\) 0 0
\(379\) −1788.29 −0.242370 −0.121185 0.992630i \(-0.538669\pi\)
−0.121185 + 0.992630i \(0.538669\pi\)
\(380\) 340.584 0.0459778
\(381\) 0 0
\(382\) −1105.93 −0.148126
\(383\) −1358.47 −0.181240 −0.0906199 0.995886i \(-0.528885\pi\)
−0.0906199 + 0.995886i \(0.528885\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7852.60 1.03546
\(387\) 0 0
\(388\) −19132.2 −2.50333
\(389\) −9722.54 −1.26723 −0.633615 0.773649i \(-0.718430\pi\)
−0.633615 + 0.773649i \(0.718430\pi\)
\(390\) 0 0
\(391\) 320.858 0.0414999
\(392\) 0 0
\(393\) 0 0
\(394\) 1623.19 0.207551
\(395\) −4316.19 −0.549800
\(396\) 0 0
\(397\) 4788.04 0.605302 0.302651 0.953101i \(-0.402128\pi\)
0.302651 + 0.953101i \(0.402128\pi\)
\(398\) −14516.1 −1.82820
\(399\) 0 0
\(400\) −180.496 −0.0225620
\(401\) −9681.41 −1.20565 −0.602826 0.797873i \(-0.705959\pi\)
−0.602826 + 0.797873i \(0.705959\pi\)
\(402\) 0 0
\(403\) −717.712 −0.0887141
\(404\) 1213.91 0.149491
\(405\) 0 0
\(406\) 0 0
\(407\) −3681.32 −0.448344
\(408\) 0 0
\(409\) −11113.1 −1.34353 −0.671767 0.740763i \(-0.734464\pi\)
−0.671767 + 0.740763i \(0.734464\pi\)
\(410\) −7139.09 −0.859937
\(411\) 0 0
\(412\) −16566.1 −1.98095
\(413\) 0 0
\(414\) 0 0
\(415\) 6673.62 0.789386
\(416\) 578.627 0.0681959
\(417\) 0 0
\(418\) −469.510 −0.0549389
\(419\) −1230.09 −0.143421 −0.0717107 0.997425i \(-0.522846\pi\)
−0.0717107 + 0.997425i \(0.522846\pi\)
\(420\) 0 0
\(421\) −12356.5 −1.43044 −0.715222 0.698897i \(-0.753674\pi\)
−0.715222 + 0.698897i \(0.753674\pi\)
\(422\) −22398.1 −2.58370
\(423\) 0 0
\(424\) 10464.2 1.19856
\(425\) −162.452 −0.0185413
\(426\) 0 0
\(427\) 0 0
\(428\) −21875.7 −2.47057
\(429\) 0 0
\(430\) 6819.26 0.764777
\(431\) 7375.27 0.824256 0.412128 0.911126i \(-0.364786\pi\)
0.412128 + 0.911126i \(0.364786\pi\)
\(432\) 0 0
\(433\) 690.067 0.0765877 0.0382939 0.999267i \(-0.487808\pi\)
0.0382939 + 0.999267i \(0.487808\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 5975.55 0.656369
\(437\) −268.406 −0.0293812
\(438\) 0 0
\(439\) −8408.79 −0.914191 −0.457095 0.889418i \(-0.651110\pi\)
−0.457095 + 0.889418i \(0.651110\pi\)
\(440\) −1956.85 −0.212021
\(441\) 0 0
\(442\) 86.4976 0.00930830
\(443\) −6568.55 −0.704473 −0.352236 0.935911i \(-0.614579\pi\)
−0.352236 + 0.935911i \(0.614579\pi\)
\(444\) 0 0
\(445\) 1631.25 0.173772
\(446\) 14319.0 1.52024
\(447\) 0 0
\(448\) 0 0
\(449\) −2954.55 −0.310543 −0.155271 0.987872i \(-0.549625\pi\)
−0.155271 + 0.987872i \(0.549625\pi\)
\(450\) 0 0
\(451\) 6006.76 0.627156
\(452\) −20571.7 −2.14073
\(453\) 0 0
\(454\) 16543.7 1.71020
\(455\) 0 0
\(456\) 0 0
\(457\) −8144.84 −0.833697 −0.416849 0.908976i \(-0.636865\pi\)
−0.416849 + 0.908976i \(0.636865\pi\)
\(458\) −18503.8 −1.88782
\(459\) 0 0
\(460\) −3093.77 −0.313583
\(461\) 2495.26 0.252095 0.126048 0.992024i \(-0.459771\pi\)
0.126048 + 0.992024i \(0.459771\pi\)
\(462\) 0 0
\(463\) −5755.66 −0.577728 −0.288864 0.957370i \(-0.593278\pi\)
−0.288864 + 0.957370i \(0.593278\pi\)
\(464\) −2104.54 −0.210562
\(465\) 0 0
\(466\) −16685.9 −1.65871
\(467\) −4143.73 −0.410598 −0.205299 0.978699i \(-0.565817\pi\)
−0.205299 + 0.978699i \(0.565817\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1959.84 −0.192342
\(471\) 0 0
\(472\) 1711.99 0.166951
\(473\) −5737.67 −0.557755
\(474\) 0 0
\(475\) 135.895 0.0131269
\(476\) 0 0
\(477\) 0 0
\(478\) 12047.3 1.15278
\(479\) −6765.96 −0.645396 −0.322698 0.946502i \(-0.604590\pi\)
−0.322698 + 0.946502i \(0.604590\pi\)
\(480\) 0 0
\(481\) −567.339 −0.0537805
\(482\) −21841.8 −2.06404
\(483\) 0 0
\(484\) −12125.5 −1.13876
\(485\) −7633.87 −0.714714
\(486\) 0 0
\(487\) 6360.42 0.591824 0.295912 0.955215i \(-0.404377\pi\)
0.295912 + 0.955215i \(0.404377\pi\)
\(488\) −107.848 −0.0100042
\(489\) 0 0
\(490\) 0 0
\(491\) 7072.54 0.650060 0.325030 0.945704i \(-0.394626\pi\)
0.325030 + 0.945704i \(0.394626\pi\)
\(492\) 0 0
\(493\) −1894.15 −0.173039
\(494\) −72.3576 −0.00659012
\(495\) 0 0
\(496\) 1763.86 0.159677
\(497\) 0 0
\(498\) 0 0
\(499\) −18473.9 −1.65732 −0.828661 0.559751i \(-0.810897\pi\)
−0.828661 + 0.559751i \(0.810897\pi\)
\(500\) 1566.39 0.140102
\(501\) 0 0
\(502\) −7577.28 −0.673687
\(503\) 11379.2 1.00869 0.504347 0.863501i \(-0.331733\pi\)
0.504347 + 0.863501i \(0.331733\pi\)
\(504\) 0 0
\(505\) 484.358 0.0426805
\(506\) 4264.90 0.374700
\(507\) 0 0
\(508\) −10576.5 −0.923730
\(509\) 6064.48 0.528101 0.264051 0.964509i \(-0.414941\pi\)
0.264051 + 0.964509i \(0.414941\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −2607.89 −0.225105
\(513\) 0 0
\(514\) 16755.0 1.43780
\(515\) −6609.96 −0.565572
\(516\) 0 0
\(517\) 1649.00 0.140276
\(518\) 0 0
\(519\) 0 0
\(520\) −301.576 −0.0254326
\(521\) 2682.88 0.225603 0.112801 0.993618i \(-0.464018\pi\)
0.112801 + 0.993618i \(0.464018\pi\)
\(522\) 0 0
\(523\) 4309.02 0.360268 0.180134 0.983642i \(-0.442347\pi\)
0.180134 + 0.983642i \(0.442347\pi\)
\(524\) −35039.6 −2.92120
\(525\) 0 0
\(526\) 33163.3 2.74903
\(527\) 1587.52 0.131221
\(528\) 0 0
\(529\) −9728.87 −0.799611
\(530\) 11547.1 0.946363
\(531\) 0 0
\(532\) 0 0
\(533\) 925.720 0.0752296
\(534\) 0 0
\(535\) −8728.56 −0.705362
\(536\) −4229.25 −0.340813
\(537\) 0 0
\(538\) 3693.31 0.295966
\(539\) 0 0
\(540\) 0 0
\(541\) 4081.47 0.324355 0.162178 0.986762i \(-0.448148\pi\)
0.162178 + 0.986762i \(0.448148\pi\)
\(542\) −23136.0 −1.83354
\(543\) 0 0
\(544\) −1279.88 −0.100872
\(545\) 2384.28 0.187397
\(546\) 0 0
\(547\) 8844.82 0.691366 0.345683 0.938351i \(-0.387647\pi\)
0.345683 + 0.938351i \(0.387647\pi\)
\(548\) 25778.2 2.00947
\(549\) 0 0
\(550\) −2159.34 −0.167408
\(551\) 1584.51 0.122509
\(552\) 0 0
\(553\) 0 0
\(554\) −6337.80 −0.486042
\(555\) 0 0
\(556\) 21868.4 1.66803
\(557\) 11144.7 0.847787 0.423894 0.905712i \(-0.360663\pi\)
0.423894 + 0.905712i \(0.360663\pi\)
\(558\) 0 0
\(559\) −884.249 −0.0669047
\(560\) 0 0
\(561\) 0 0
\(562\) −32181.8 −2.41549
\(563\) −21857.5 −1.63621 −0.818104 0.575071i \(-0.804975\pi\)
−0.818104 + 0.575071i \(0.804975\pi\)
\(564\) 0 0
\(565\) −8208.23 −0.611191
\(566\) 20232.3 1.50252
\(567\) 0 0
\(568\) 20619.6 1.52320
\(569\) −23496.4 −1.73115 −0.865573 0.500783i \(-0.833046\pi\)
−0.865573 + 0.500783i \(0.833046\pi\)
\(570\) 0 0
\(571\) 11067.8 0.811164 0.405582 0.914059i \(-0.367069\pi\)
0.405582 + 0.914059i \(0.367069\pi\)
\(572\) 701.743 0.0512961
\(573\) 0 0
\(574\) 0 0
\(575\) −1234.44 −0.0895296
\(576\) 0 0
\(577\) −20482.9 −1.47784 −0.738922 0.673791i \(-0.764665\pi\)
−0.738922 + 0.673791i \(0.764665\pi\)
\(578\) 22070.1 1.58823
\(579\) 0 0
\(580\) 18263.8 1.30752
\(581\) 0 0
\(582\) 0 0
\(583\) −9715.60 −0.690187
\(584\) −20680.8 −1.46537
\(585\) 0 0
\(586\) −34394.1 −2.42458
\(587\) −23444.3 −1.64847 −0.824235 0.566248i \(-0.808394\pi\)
−0.824235 + 0.566248i \(0.808394\pi\)
\(588\) 0 0
\(589\) −1328.01 −0.0929025
\(590\) 1889.14 0.131822
\(591\) 0 0
\(592\) 1394.30 0.0967996
\(593\) 4404.69 0.305024 0.152512 0.988302i \(-0.451264\pi\)
0.152512 + 0.988302i \(0.451264\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 14706.2 1.01072
\(597\) 0 0
\(598\) 657.277 0.0449466
\(599\) −3327.05 −0.226945 −0.113472 0.993541i \(-0.536197\pi\)
−0.113472 + 0.993541i \(0.536197\pi\)
\(600\) 0 0
\(601\) 14244.8 0.966818 0.483409 0.875395i \(-0.339398\pi\)
0.483409 + 0.875395i \(0.339398\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19298.8 1.30010
\(605\) −4838.15 −0.325122
\(606\) 0 0
\(607\) −11446.5 −0.765402 −0.382701 0.923872i \(-0.625006\pi\)
−0.382701 + 0.923872i \(0.625006\pi\)
\(608\) 1070.65 0.0714156
\(609\) 0 0
\(610\) −119.008 −0.00789917
\(611\) 254.132 0.0168266
\(612\) 0 0
\(613\) −19436.4 −1.28063 −0.640316 0.768111i \(-0.721197\pi\)
−0.640316 + 0.768111i \(0.721197\pi\)
\(614\) 42955.6 2.82337
\(615\) 0 0
\(616\) 0 0
\(617\) 20530.1 1.33956 0.669781 0.742558i \(-0.266388\pi\)
0.669781 + 0.742558i \(0.266388\pi\)
\(618\) 0 0
\(619\) −5833.35 −0.378776 −0.189388 0.981902i \(-0.560650\pi\)
−0.189388 + 0.981902i \(0.560650\pi\)
\(620\) −15307.2 −0.991538
\(621\) 0 0
\(622\) −32071.4 −2.06744
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 25346.4 1.61829
\(627\) 0 0
\(628\) 31885.9 2.02609
\(629\) 1254.91 0.0795493
\(630\) 0 0
\(631\) 24776.6 1.56314 0.781568 0.623820i \(-0.214420\pi\)
0.781568 + 0.623820i \(0.214420\pi\)
\(632\) 17723.2 1.11549
\(633\) 0 0
\(634\) 16166.2 1.01268
\(635\) −4220.08 −0.263730
\(636\) 0 0
\(637\) 0 0
\(638\) −25177.4 −1.56235
\(639\) 0 0
\(640\) 11032.3 0.681390
\(641\) −27219.4 −1.67723 −0.838613 0.544728i \(-0.816633\pi\)
−0.838613 + 0.544728i \(0.816633\pi\)
\(642\) 0 0
\(643\) −7091.79 −0.434950 −0.217475 0.976066i \(-0.569782\pi\)
−0.217475 + 0.976066i \(0.569782\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 160.049 0.00974777
\(647\) 27773.0 1.68758 0.843792 0.536670i \(-0.180318\pi\)
0.843792 + 0.536670i \(0.180318\pi\)
\(648\) 0 0
\(649\) −1589.51 −0.0961382
\(650\) −332.782 −0.0200812
\(651\) 0 0
\(652\) −7452.37 −0.447634
\(653\) −21380.4 −1.28129 −0.640643 0.767839i \(-0.721332\pi\)
−0.640643 + 0.767839i \(0.721332\pi\)
\(654\) 0 0
\(655\) −13981.0 −0.834020
\(656\) −2275.06 −0.135406
\(657\) 0 0
\(658\) 0 0
\(659\) 17232.3 1.01863 0.509315 0.860580i \(-0.329899\pi\)
0.509315 + 0.860580i \(0.329899\pi\)
\(660\) 0 0
\(661\) −26577.7 −1.56392 −0.781962 0.623326i \(-0.785781\pi\)
−0.781962 + 0.623326i \(0.785781\pi\)
\(662\) 19890.1 1.16775
\(663\) 0 0
\(664\) −27403.4 −1.60159
\(665\) 0 0
\(666\) 0 0
\(667\) −14393.2 −0.835544
\(668\) 11635.1 0.673917
\(669\) 0 0
\(670\) −4666.89 −0.269101
\(671\) 100.132 0.00576090
\(672\) 0 0
\(673\) −31695.2 −1.81540 −0.907698 0.419624i \(-0.862162\pi\)
−0.907698 + 0.419624i \(0.862162\pi\)
\(674\) −10642.9 −0.608231
\(675\) 0 0
\(676\) −27422.7 −1.56024
\(677\) 20440.3 1.16039 0.580195 0.814477i \(-0.302976\pi\)
0.580195 + 0.814477i \(0.302976\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 667.063 0.0376187
\(681\) 0 0
\(682\) 21101.7 1.18479
\(683\) 22896.9 1.28276 0.641381 0.767223i \(-0.278362\pi\)
0.641381 + 0.767223i \(0.278362\pi\)
\(684\) 0 0
\(685\) 10285.7 0.573715
\(686\) 0 0
\(687\) 0 0
\(688\) 2173.14 0.120422
\(689\) −1497.30 −0.0827904
\(690\) 0 0
\(691\) 23764.0 1.30829 0.654143 0.756371i \(-0.273029\pi\)
0.654143 + 0.756371i \(0.273029\pi\)
\(692\) −3955.35 −0.217283
\(693\) 0 0
\(694\) 2530.34 0.138401
\(695\) 8725.62 0.476233
\(696\) 0 0
\(697\) −2047.62 −0.111276
\(698\) 14653.2 0.794600
\(699\) 0 0
\(700\) 0 0
\(701\) −26259.5 −1.41485 −0.707423 0.706791i \(-0.750142\pi\)
−0.707423 + 0.706791i \(0.750142\pi\)
\(702\) 0 0
\(703\) −1049.77 −0.0563196
\(704\) −15911.4 −0.851822
\(705\) 0 0
\(706\) 34057.6 1.81554
\(707\) 0 0
\(708\) 0 0
\(709\) 12783.0 0.677116 0.338558 0.940945i \(-0.390061\pi\)
0.338558 + 0.940945i \(0.390061\pi\)
\(710\) 22753.2 1.20270
\(711\) 0 0
\(712\) −6698.26 −0.352567
\(713\) 12063.3 0.633623
\(714\) 0 0
\(715\) 280.000 0.0146453
\(716\) 18113.6 0.945444
\(717\) 0 0
\(718\) −29804.7 −1.54916
\(719\) −27609.0 −1.43205 −0.716025 0.698075i \(-0.754040\pi\)
−0.716025 + 0.698075i \(0.754040\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 30945.1 1.59509
\(723\) 0 0
\(724\) 23105.1 1.18604
\(725\) 7287.35 0.373304
\(726\) 0 0
\(727\) −31306.2 −1.59709 −0.798544 0.601937i \(-0.794396\pi\)
−0.798544 + 0.601937i \(0.794396\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −22820.8 −1.15703
\(731\) 1955.89 0.0989621
\(732\) 0 0
\(733\) 15765.8 0.794441 0.397220 0.917723i \(-0.369975\pi\)
0.397220 + 0.917723i \(0.369975\pi\)
\(734\) 37640.8 1.89285
\(735\) 0 0
\(736\) −9725.53 −0.487076
\(737\) 3926.68 0.196256
\(738\) 0 0
\(739\) 3966.51 0.197443 0.0987216 0.995115i \(-0.468525\pi\)
0.0987216 + 0.995115i \(0.468525\pi\)
\(740\) −12100.1 −0.601093
\(741\) 0 0
\(742\) 0 0
\(743\) −8224.50 −0.406094 −0.203047 0.979169i \(-0.565084\pi\)
−0.203047 + 0.979169i \(0.565084\pi\)
\(744\) 0 0
\(745\) 5867.86 0.288566
\(746\) 20621.6 1.01208
\(747\) 0 0
\(748\) −1552.20 −0.0758745
\(749\) 0 0
\(750\) 0 0
\(751\) 18929.2 0.919754 0.459877 0.887983i \(-0.347894\pi\)
0.459877 + 0.887983i \(0.347894\pi\)
\(752\) −624.558 −0.0302863
\(753\) 0 0
\(754\) −3880.16 −0.187410
\(755\) 7700.35 0.371185
\(756\) 0 0
\(757\) −34906.8 −1.67597 −0.837984 0.545695i \(-0.816266\pi\)
−0.837984 + 0.545695i \(0.816266\pi\)
\(758\) 8102.96 0.388276
\(759\) 0 0
\(760\) −558.016 −0.0266334
\(761\) −13683.4 −0.651803 −0.325902 0.945404i \(-0.605668\pi\)
−0.325902 + 0.945404i \(0.605668\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3058.52 0.144834
\(765\) 0 0
\(766\) 6155.42 0.290345
\(767\) −244.964 −0.0115321
\(768\) 0 0
\(769\) −41837.3 −1.96189 −0.980943 0.194294i \(-0.937758\pi\)
−0.980943 + 0.194294i \(0.937758\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −21716.9 −1.01245
\(773\) 19640.0 0.913843 0.456921 0.889507i \(-0.348952\pi\)
0.456921 + 0.889507i \(0.348952\pi\)
\(774\) 0 0
\(775\) −6107.69 −0.283090
\(776\) 31346.4 1.45009
\(777\) 0 0
\(778\) 44054.1 2.03010
\(779\) 1712.89 0.0787814
\(780\) 0 0
\(781\) −19144.4 −0.877131
\(782\) −1453.85 −0.0664827
\(783\) 0 0
\(784\) 0 0
\(785\) 12722.7 0.578460
\(786\) 0 0
\(787\) −24935.3 −1.12941 −0.564705 0.825293i \(-0.691010\pi\)
−0.564705 + 0.825293i \(0.691010\pi\)
\(788\) −4489.02 −0.202938
\(789\) 0 0
\(790\) 19557.2 0.880777
\(791\) 0 0
\(792\) 0 0
\(793\) 15.4317 0.000691041 0
\(794\) −21695.2 −0.969692
\(795\) 0 0
\(796\) 40145.1 1.78757
\(797\) −1168.33 −0.0519251 −0.0259625 0.999663i \(-0.508265\pi\)
−0.0259625 + 0.999663i \(0.508265\pi\)
\(798\) 0 0
\(799\) −562.120 −0.0248891
\(800\) 4924.08 0.217615
\(801\) 0 0
\(802\) 43867.7 1.93145
\(803\) 19201.2 0.843829
\(804\) 0 0
\(805\) 0 0
\(806\) 3252.05 0.142120
\(807\) 0 0
\(808\) −1988.88 −0.0865949
\(809\) 35175.7 1.52869 0.764345 0.644807i \(-0.223062\pi\)
0.764345 + 0.644807i \(0.223062\pi\)
\(810\) 0 0
\(811\) 15256.5 0.660577 0.330288 0.943880i \(-0.392854\pi\)
0.330288 + 0.943880i \(0.392854\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 16680.5 0.718245
\(815\) −2973.54 −0.127802
\(816\) 0 0
\(817\) −1636.16 −0.0700635
\(818\) 50354.7 2.15233
\(819\) 0 0
\(820\) 19743.6 0.840825
\(821\) 15971.9 0.678956 0.339478 0.940614i \(-0.389750\pi\)
0.339478 + 0.940614i \(0.389750\pi\)
\(822\) 0 0
\(823\) 2312.41 0.0979409 0.0489705 0.998800i \(-0.484406\pi\)
0.0489705 + 0.998800i \(0.484406\pi\)
\(824\) 27142.0 1.14750
\(825\) 0 0
\(826\) 0 0
\(827\) −10422.4 −0.438238 −0.219119 0.975698i \(-0.570318\pi\)
−0.219119 + 0.975698i \(0.570318\pi\)
\(828\) 0 0
\(829\) 13213.4 0.553584 0.276792 0.960930i \(-0.410729\pi\)
0.276792 + 0.960930i \(0.410729\pi\)
\(830\) −30239.0 −1.26459
\(831\) 0 0
\(832\) −2452.15 −0.102179
\(833\) 0 0
\(834\) 0 0
\(835\) 4642.49 0.192407
\(836\) 1298.46 0.0537179
\(837\) 0 0
\(838\) 5573.67 0.229761
\(839\) −10119.6 −0.416409 −0.208205 0.978085i \(-0.566762\pi\)
−0.208205 + 0.978085i \(0.566762\pi\)
\(840\) 0 0
\(841\) 60579.9 2.48390
\(842\) 55988.7 2.29157
\(843\) 0 0
\(844\) 61943.4 2.52628
\(845\) −10941.8 −0.445457
\(846\) 0 0
\(847\) 0 0
\(848\) 3679.79 0.149015
\(849\) 0 0
\(850\) 736.089 0.0297031
\(851\) 9535.80 0.384116
\(852\) 0 0
\(853\) −35378.1 −1.42007 −0.710037 0.704165i \(-0.751322\pi\)
−0.710037 + 0.704165i \(0.751322\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 35841.4 1.43112
\(857\) 6697.57 0.266960 0.133480 0.991052i \(-0.457385\pi\)
0.133480 + 0.991052i \(0.457385\pi\)
\(858\) 0 0
\(859\) 24298.4 0.965135 0.482568 0.875859i \(-0.339704\pi\)
0.482568 + 0.875859i \(0.339704\pi\)
\(860\) −18859.1 −0.747779
\(861\) 0 0
\(862\) −33418.3 −1.32045
\(863\) −24942.9 −0.983853 −0.491926 0.870637i \(-0.663707\pi\)
−0.491926 + 0.870637i \(0.663707\pi\)
\(864\) 0 0
\(865\) −1578.21 −0.0620355
\(866\) −3126.78 −0.122693
\(867\) 0 0
\(868\) 0 0
\(869\) −16455.3 −0.642355
\(870\) 0 0
\(871\) 605.152 0.0235417
\(872\) −9790.39 −0.380212
\(873\) 0 0
\(874\) 1216.18 0.0470686
\(875\) 0 0
\(876\) 0 0
\(877\) −16276.6 −0.626705 −0.313353 0.949637i \(-0.601452\pi\)
−0.313353 + 0.949637i \(0.601452\pi\)
\(878\) 38101.3 1.46453
\(879\) 0 0
\(880\) −688.132 −0.0263602
\(881\) 26636.5 1.01862 0.509311 0.860582i \(-0.329900\pi\)
0.509311 + 0.860582i \(0.329900\pi\)
\(882\) 0 0
\(883\) −21788.3 −0.830392 −0.415196 0.909732i \(-0.636287\pi\)
−0.415196 + 0.909732i \(0.636287\pi\)
\(884\) −239.215 −0.00910142
\(885\) 0 0
\(886\) 29763.0 1.12856
\(887\) −26813.2 −1.01499 −0.507496 0.861654i \(-0.669429\pi\)
−0.507496 + 0.861654i \(0.669429\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −7391.38 −0.278382
\(891\) 0 0
\(892\) −39600.2 −1.48645
\(893\) 470.229 0.0176211
\(894\) 0 0
\(895\) 7227.45 0.269930
\(896\) 0 0
\(897\) 0 0
\(898\) 13387.4 0.497488
\(899\) −71214.2 −2.64196
\(900\) 0 0
\(901\) 3311.91 0.122459
\(902\) −27217.4 −1.00470
\(903\) 0 0
\(904\) 33704.8 1.24005
\(905\) 9219.07 0.338621
\(906\) 0 0
\(907\) 15543.0 0.569014 0.284507 0.958674i \(-0.408170\pi\)
0.284507 + 0.958674i \(0.408170\pi\)
\(908\) −45752.6 −1.67219
\(909\) 0 0
\(910\) 0 0
\(911\) −48711.1 −1.77154 −0.885768 0.464128i \(-0.846368\pi\)
−0.885768 + 0.464128i \(0.846368\pi\)
\(912\) 0 0
\(913\) 25442.8 0.922273
\(914\) 36905.3 1.33558
\(915\) 0 0
\(916\) 51173.3 1.84587
\(917\) 0 0
\(918\) 0 0
\(919\) 1030.47 0.0369883 0.0184941 0.999829i \(-0.494113\pi\)
0.0184941 + 0.999829i \(0.494113\pi\)
\(920\) 5068.87 0.181648
\(921\) 0 0
\(922\) −11306.3 −0.403855
\(923\) −2950.40 −0.105215
\(924\) 0 0
\(925\) −4828.02 −0.171615
\(926\) 26079.6 0.925518
\(927\) 0 0
\(928\) 57413.6 2.03092
\(929\) 879.756 0.0310698 0.0155349 0.999879i \(-0.495055\pi\)
0.0155349 + 0.999879i \(0.495055\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 46146.0 1.62185
\(933\) 0 0
\(934\) 18775.8 0.657776
\(935\) −619.339 −0.0216626
\(936\) 0 0
\(937\) 18668.1 0.650864 0.325432 0.945565i \(-0.394490\pi\)
0.325432 + 0.945565i \(0.394490\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 5420.08 0.188067
\(941\) 29613.4 1.02590 0.512948 0.858420i \(-0.328553\pi\)
0.512948 + 0.858420i \(0.328553\pi\)
\(942\) 0 0
\(943\) −15559.5 −0.537313
\(944\) 602.028 0.0207567
\(945\) 0 0
\(946\) 25998.1 0.893521
\(947\) −20738.9 −0.711640 −0.355820 0.934554i \(-0.615798\pi\)
−0.355820 + 0.934554i \(0.615798\pi\)
\(948\) 0 0
\(949\) 2959.15 0.101220
\(950\) −615.758 −0.0210293
\(951\) 0 0
\(952\) 0 0
\(953\) 45776.5 1.55598 0.777988 0.628279i \(-0.216240\pi\)
0.777988 + 0.628279i \(0.216240\pi\)
\(954\) 0 0
\(955\) 1220.37 0.0413510
\(956\) −33317.5 −1.12716
\(957\) 0 0
\(958\) 30657.4 1.03392
\(959\) 0 0
\(960\) 0 0
\(961\) 29895.1 1.00349
\(962\) 2570.68 0.0861561
\(963\) 0 0
\(964\) 60404.9 2.01817
\(965\) −8665.17 −0.289059
\(966\) 0 0
\(967\) 34461.0 1.14601 0.573005 0.819552i \(-0.305778\pi\)
0.573005 + 0.819552i \(0.305778\pi\)
\(968\) 19866.5 0.659643
\(969\) 0 0
\(970\) 34590.1 1.14497
\(971\) −22762.8 −0.752309 −0.376154 0.926557i \(-0.622754\pi\)
−0.376154 + 0.926557i \(0.622754\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −28819.9 −0.948099
\(975\) 0 0
\(976\) −37.9251 −0.00124381
\(977\) −4809.57 −0.157494 −0.0787470 0.996895i \(-0.525092\pi\)
−0.0787470 + 0.996895i \(0.525092\pi\)
\(978\) 0 0
\(979\) 6219.04 0.203025
\(980\) 0 0
\(981\) 0 0
\(982\) −32046.6 −1.04139
\(983\) −27591.6 −0.895256 −0.447628 0.894220i \(-0.647731\pi\)
−0.447628 + 0.894220i \(0.647731\pi\)
\(984\) 0 0
\(985\) −1791.15 −0.0579399
\(986\) 8582.63 0.277207
\(987\) 0 0
\(988\) 200.109 0.00644365
\(989\) 14862.4 0.477854
\(990\) 0 0
\(991\) −22263.4 −0.713643 −0.356822 0.934173i \(-0.616140\pi\)
−0.356822 + 0.934173i \(0.616140\pi\)
\(992\) −48119.5 −1.54012
\(993\) 0 0
\(994\) 0 0
\(995\) 16018.2 0.510361
\(996\) 0 0
\(997\) −30378.2 −0.964983 −0.482491 0.875901i \(-0.660268\pi\)
−0.482491 + 0.875901i \(0.660268\pi\)
\(998\) 83707.4 2.65502
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.4.a.z.1.1 2
3.2 odd 2 735.4.a.p.1.2 2
7.6 odd 2 315.4.a.i.1.1 2
21.20 even 2 105.4.a.f.1.2 2
35.34 odd 2 1575.4.a.w.1.2 2
84.83 odd 2 1680.4.a.bg.1.2 2
105.62 odd 4 525.4.d.h.274.4 4
105.83 odd 4 525.4.d.h.274.1 4
105.104 even 2 525.4.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.f.1.2 2 21.20 even 2
315.4.a.i.1.1 2 7.6 odd 2
525.4.a.k.1.1 2 105.104 even 2
525.4.d.h.274.1 4 105.83 odd 4
525.4.d.h.274.4 4 105.62 odd 4
735.4.a.p.1.2 2 3.2 odd 2
1575.4.a.w.1.2 2 35.34 odd 2
1680.4.a.bg.1.2 2 84.83 odd 2
2205.4.a.z.1.1 2 1.1 even 1 trivial