Properties

Label 2205.4.a.q
Level $2205$
Weight $4$
Character orbit 2205.a
Self dual yes
Analytic conductor $130.099$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 4 q^{2} + 8 q^{4} - 5 q^{5} + O(q^{10}) \) \( q + 4 q^{2} + 8 q^{4} - 5 q^{5} - 20 q^{10} - 32 q^{11} + 38 q^{13} - 64 q^{16} + 26 q^{17} - 100 q^{19} - 40 q^{20} - 128 q^{22} + 78 q^{23} + 25 q^{25} + 152 q^{26} + 50 q^{29} + 108 q^{31} - 256 q^{32} + 104 q^{34} + 266 q^{37} - 400 q^{38} + 22 q^{41} + 442 q^{43} - 256 q^{44} + 312 q^{46} - 514 q^{47} + 100 q^{50} + 304 q^{52} - 2 q^{53} + 160 q^{55} + 200 q^{58} + 500 q^{59} + 518 q^{61} + 432 q^{62} - 512 q^{64} - 190 q^{65} + 126 q^{67} + 208 q^{68} - 412 q^{71} + 878 q^{73} + 1064 q^{74} - 800 q^{76} + 600 q^{79} + 320 q^{80} + 88 q^{82} + 282 q^{83} - 130 q^{85} + 1768 q^{86} - 150 q^{89} + 624 q^{92} - 2056 q^{94} + 500 q^{95} - 386 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 0 8.00000 −5.00000 0 0 0 0 −20.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2205.4.a.q 1
3.b odd 2 1 245.4.a.a 1
7.b odd 2 1 45.4.a.d 1
15.d odd 2 1 1225.4.a.k 1
21.c even 2 1 5.4.a.a 1
21.g even 6 2 245.4.e.f 2
21.h odd 6 2 245.4.e.g 2
28.d even 2 1 720.4.a.u 1
35.c odd 2 1 225.4.a.b 1
35.f even 4 2 225.4.b.c 2
63.l odd 6 2 405.4.e.c 2
63.o even 6 2 405.4.e.l 2
84.h odd 2 1 80.4.a.d 1
105.g even 2 1 25.4.a.c 1
105.k odd 4 2 25.4.b.a 2
168.e odd 2 1 320.4.a.h 1
168.i even 2 1 320.4.a.g 1
231.h odd 2 1 605.4.a.d 1
273.g even 2 1 845.4.a.b 1
336.v odd 4 2 1280.4.d.l 2
336.y even 4 2 1280.4.d.e 2
357.c even 2 1 1445.4.a.a 1
399.h odd 2 1 1805.4.a.h 1
420.o odd 2 1 400.4.a.m 1
420.w even 4 2 400.4.c.k 2
840.b odd 2 1 1600.4.a.s 1
840.u even 2 1 1600.4.a.bi 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.4.a.a 1 21.c even 2 1
25.4.a.c 1 105.g even 2 1
25.4.b.a 2 105.k odd 4 2
45.4.a.d 1 7.b odd 2 1
80.4.a.d 1 84.h odd 2 1
225.4.a.b 1 35.c odd 2 1
225.4.b.c 2 35.f even 4 2
245.4.a.a 1 3.b odd 2 1
245.4.e.f 2 21.g even 6 2
245.4.e.g 2 21.h odd 6 2
320.4.a.g 1 168.i even 2 1
320.4.a.h 1 168.e odd 2 1
400.4.a.m 1 420.o odd 2 1
400.4.c.k 2 420.w even 4 2
405.4.e.c 2 63.l odd 6 2
405.4.e.l 2 63.o even 6 2
605.4.a.d 1 231.h odd 2 1
720.4.a.u 1 28.d even 2 1
845.4.a.b 1 273.g even 2 1
1225.4.a.k 1 15.d odd 2 1
1280.4.d.e 2 336.y even 4 2
1280.4.d.l 2 336.v odd 4 2
1445.4.a.a 1 357.c even 2 1
1600.4.a.s 1 840.b odd 2 1
1600.4.a.bi 1 840.u even 2 1
1805.4.a.h 1 399.h odd 2 1
2205.4.a.q 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2205))\):

\( T_{2} - 4 \)
\( T_{11} + 32 \)
\( T_{13} - 38 \)
\( T_{17} - 26 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -4 + T \)
$3$ \( T \)
$5$ \( 5 + T \)
$7$ \( T \)
$11$ \( 32 + T \)
$13$ \( -38 + T \)
$17$ \( -26 + T \)
$19$ \( 100 + T \)
$23$ \( -78 + T \)
$29$ \( -50 + T \)
$31$ \( -108 + T \)
$37$ \( -266 + T \)
$41$ \( -22 + T \)
$43$ \( -442 + T \)
$47$ \( 514 + T \)
$53$ \( 2 + T \)
$59$ \( -500 + T \)
$61$ \( -518 + T \)
$67$ \( -126 + T \)
$71$ \( 412 + T \)
$73$ \( -878 + T \)
$79$ \( -600 + T \)
$83$ \( -282 + T \)
$89$ \( 150 + T \)
$97$ \( 386 + T \)
show more
show less