Properties

Label 2205.4.a.o.1.1
Level $2205$
Weight $4$
Character 2205.1
Self dual yes
Analytic conductor $130.099$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,4,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{4} +5.00000 q^{5} +O(q^{10})\) \(q-8.00000 q^{4} +5.00000 q^{5} -42.0000 q^{11} -20.0000 q^{13} +64.0000 q^{16} +66.0000 q^{17} -38.0000 q^{19} -40.0000 q^{20} -12.0000 q^{23} +25.0000 q^{25} +258.000 q^{29} -146.000 q^{31} +434.000 q^{37} -282.000 q^{41} +20.0000 q^{43} +336.000 q^{44} -72.0000 q^{47} +160.000 q^{52} -336.000 q^{53} -210.000 q^{55} -360.000 q^{59} +682.000 q^{61} -512.000 q^{64} -100.000 q^{65} +812.000 q^{67} -528.000 q^{68} -810.000 q^{71} +124.000 q^{73} +304.000 q^{76} +1136.00 q^{79} +320.000 q^{80} +156.000 q^{83} +330.000 q^{85} -1038.00 q^{89} +96.0000 q^{92} -190.000 q^{95} -1208.00 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −8.00000 −1.00000
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −42.0000 −1.15123 −0.575613 0.817723i \(-0.695236\pi\)
−0.575613 + 0.817723i \(0.695236\pi\)
\(12\) 0 0
\(13\) −20.0000 −0.426692 −0.213346 0.976977i \(-0.568436\pi\)
−0.213346 + 0.976977i \(0.568436\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) 66.0000 0.941609 0.470804 0.882238i \(-0.343964\pi\)
0.470804 + 0.882238i \(0.343964\pi\)
\(18\) 0 0
\(19\) −38.0000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) −40.0000 −0.447214
\(21\) 0 0
\(22\) 0 0
\(23\) −12.0000 −0.108790 −0.0543951 0.998519i \(-0.517323\pi\)
−0.0543951 + 0.998519i \(0.517323\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 258.000 1.65205 0.826024 0.563635i \(-0.190597\pi\)
0.826024 + 0.563635i \(0.190597\pi\)
\(30\) 0 0
\(31\) −146.000 −0.845883 −0.422942 0.906157i \(-0.639002\pi\)
−0.422942 + 0.906157i \(0.639002\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 434.000 1.92836 0.964178 0.265257i \(-0.0854567\pi\)
0.964178 + 0.265257i \(0.0854567\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −282.000 −1.07417 −0.537085 0.843528i \(-0.680475\pi\)
−0.537085 + 0.843528i \(0.680475\pi\)
\(42\) 0 0
\(43\) 20.0000 0.0709296 0.0354648 0.999371i \(-0.488709\pi\)
0.0354648 + 0.999371i \(0.488709\pi\)
\(44\) 336.000 1.15123
\(45\) 0 0
\(46\) 0 0
\(47\) −72.0000 −0.223453 −0.111726 0.993739i \(-0.535638\pi\)
−0.111726 + 0.993739i \(0.535638\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 160.000 0.426692
\(53\) −336.000 −0.870814 −0.435407 0.900234i \(-0.643396\pi\)
−0.435407 + 0.900234i \(0.643396\pi\)
\(54\) 0 0
\(55\) −210.000 −0.514844
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −360.000 −0.794373 −0.397187 0.917738i \(-0.630013\pi\)
−0.397187 + 0.917738i \(0.630013\pi\)
\(60\) 0 0
\(61\) 682.000 1.43149 0.715747 0.698360i \(-0.246086\pi\)
0.715747 + 0.698360i \(0.246086\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −512.000 −1.00000
\(65\) −100.000 −0.190823
\(66\) 0 0
\(67\) 812.000 1.48062 0.740310 0.672265i \(-0.234679\pi\)
0.740310 + 0.672265i \(0.234679\pi\)
\(68\) −528.000 −0.941609
\(69\) 0 0
\(70\) 0 0
\(71\) −810.000 −1.35393 −0.676967 0.736013i \(-0.736706\pi\)
−0.676967 + 0.736013i \(0.736706\pi\)
\(72\) 0 0
\(73\) 124.000 0.198810 0.0994048 0.995047i \(-0.468306\pi\)
0.0994048 + 0.995047i \(0.468306\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 304.000 0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) 1136.00 1.61785 0.808924 0.587913i \(-0.200050\pi\)
0.808924 + 0.587913i \(0.200050\pi\)
\(80\) 320.000 0.447214
\(81\) 0 0
\(82\) 0 0
\(83\) 156.000 0.206304 0.103152 0.994666i \(-0.467107\pi\)
0.103152 + 0.994666i \(0.467107\pi\)
\(84\) 0 0
\(85\) 330.000 0.421100
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1038.00 −1.23627 −0.618134 0.786073i \(-0.712111\pi\)
−0.618134 + 0.786073i \(0.712111\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 96.0000 0.108790
\(93\) 0 0
\(94\) 0 0
\(95\) −190.000 −0.205196
\(96\) 0 0
\(97\) −1208.00 −1.26447 −0.632236 0.774776i \(-0.717863\pi\)
−0.632236 + 0.774776i \(0.717863\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −200.000 −0.200000
\(101\) 546.000 0.537911 0.268956 0.963153i \(-0.413322\pi\)
0.268956 + 0.963153i \(0.413322\pi\)
\(102\) 0 0
\(103\) 520.000 0.497448 0.248724 0.968574i \(-0.419989\pi\)
0.248724 + 0.968574i \(0.419989\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1212.00 −1.09503 −0.547516 0.836795i \(-0.684427\pi\)
−0.547516 + 0.836795i \(0.684427\pi\)
\(108\) 0 0
\(109\) −1078.00 −0.947281 −0.473641 0.880718i \(-0.657060\pi\)
−0.473641 + 0.880718i \(0.657060\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1452.00 1.20878 0.604392 0.796687i \(-0.293416\pi\)
0.604392 + 0.796687i \(0.293416\pi\)
\(114\) 0 0
\(115\) −60.0000 −0.0486524
\(116\) −2064.00 −1.65205
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 433.000 0.325319
\(122\) 0 0
\(123\) 0 0
\(124\) 1168.00 0.845883
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1312.00 −0.916702 −0.458351 0.888771i \(-0.651560\pi\)
−0.458351 + 0.888771i \(0.651560\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1356.00 −0.904384 −0.452192 0.891921i \(-0.649358\pi\)
−0.452192 + 0.891921i \(0.649358\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 984.000 0.613641 0.306820 0.951767i \(-0.400735\pi\)
0.306820 + 0.951767i \(0.400735\pi\)
\(138\) 0 0
\(139\) 394.000 0.240422 0.120211 0.992748i \(-0.461643\pi\)
0.120211 + 0.992748i \(0.461643\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 840.000 0.491219
\(144\) 0 0
\(145\) 1290.00 0.738818
\(146\) 0 0
\(147\) 0 0
\(148\) −3472.00 −1.92836
\(149\) 1014.00 0.557518 0.278759 0.960361i \(-0.410077\pi\)
0.278759 + 0.960361i \(0.410077\pi\)
\(150\) 0 0
\(151\) −1996.00 −1.07571 −0.537855 0.843037i \(-0.680765\pi\)
−0.537855 + 0.843037i \(0.680765\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −730.000 −0.378290
\(156\) 0 0
\(157\) 2392.00 1.21594 0.607969 0.793960i \(-0.291984\pi\)
0.607969 + 0.793960i \(0.291984\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2036.00 0.978355 0.489177 0.872184i \(-0.337297\pi\)
0.489177 + 0.872184i \(0.337297\pi\)
\(164\) 2256.00 1.07417
\(165\) 0 0
\(166\) 0 0
\(167\) −3936.00 −1.82381 −0.911907 0.410398i \(-0.865390\pi\)
−0.911907 + 0.410398i \(0.865390\pi\)
\(168\) 0 0
\(169\) −1797.00 −0.817934
\(170\) 0 0
\(171\) 0 0
\(172\) −160.000 −0.0709296
\(173\) 378.000 0.166120 0.0830601 0.996545i \(-0.473531\pi\)
0.0830601 + 0.996545i \(0.473531\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2688.00 −1.15123
\(177\) 0 0
\(178\) 0 0
\(179\) 222.000 0.0926987 0.0463493 0.998925i \(-0.485241\pi\)
0.0463493 + 0.998925i \(0.485241\pi\)
\(180\) 0 0
\(181\) 2590.00 1.06361 0.531804 0.846867i \(-0.321514\pi\)
0.531804 + 0.846867i \(0.321514\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2170.00 0.862387
\(186\) 0 0
\(187\) −2772.00 −1.08400
\(188\) 576.000 0.223453
\(189\) 0 0
\(190\) 0 0
\(191\) −2214.00 −0.838740 −0.419370 0.907815i \(-0.637749\pi\)
−0.419370 + 0.907815i \(0.637749\pi\)
\(192\) 0 0
\(193\) 4178.00 1.55823 0.779117 0.626879i \(-0.215668\pi\)
0.779117 + 0.626879i \(0.215668\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3060.00 1.10668 0.553340 0.832955i \(-0.313353\pi\)
0.553340 + 0.832955i \(0.313353\pi\)
\(198\) 0 0
\(199\) −2666.00 −0.949687 −0.474844 0.880070i \(-0.657495\pi\)
−0.474844 + 0.880070i \(0.657495\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1410.00 −0.480384
\(206\) 0 0
\(207\) 0 0
\(208\) −1280.00 −0.426692
\(209\) 1596.00 0.528218
\(210\) 0 0
\(211\) −1348.00 −0.439811 −0.219906 0.975521i \(-0.570575\pi\)
−0.219906 + 0.975521i \(0.570575\pi\)
\(212\) 2688.00 0.870814
\(213\) 0 0
\(214\) 0 0
\(215\) 100.000 0.0317207
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 1680.00 0.514844
\(221\) −1320.00 −0.401777
\(222\) 0 0
\(223\) −3188.00 −0.957329 −0.478664 0.877998i \(-0.658879\pi\)
−0.478664 + 0.877998i \(0.658879\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3396.00 −0.992953 −0.496477 0.868050i \(-0.665373\pi\)
−0.496477 + 0.868050i \(0.665373\pi\)
\(228\) 0 0
\(229\) −5294.00 −1.52767 −0.763837 0.645409i \(-0.776687\pi\)
−0.763837 + 0.645409i \(0.776687\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −852.000 −0.239555 −0.119778 0.992801i \(-0.538218\pi\)
−0.119778 + 0.992801i \(0.538218\pi\)
\(234\) 0 0
\(235\) −360.000 −0.0999311
\(236\) 2880.00 0.794373
\(237\) 0 0
\(238\) 0 0
\(239\) −4866.00 −1.31697 −0.658484 0.752595i \(-0.728802\pi\)
−0.658484 + 0.752595i \(0.728802\pi\)
\(240\) 0 0
\(241\) 2050.00 0.547934 0.273967 0.961739i \(-0.411664\pi\)
0.273967 + 0.961739i \(0.411664\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −5456.00 −1.43149
\(245\) 0 0
\(246\) 0 0
\(247\) 760.000 0.195780
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1152.00 −0.289696 −0.144848 0.989454i \(-0.546269\pi\)
−0.144848 + 0.989454i \(0.546269\pi\)
\(252\) 0 0
\(253\) 504.000 0.125242
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) −6450.00 −1.56553 −0.782763 0.622321i \(-0.786190\pi\)
−0.782763 + 0.622321i \(0.786190\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 800.000 0.190823
\(261\) 0 0
\(262\) 0 0
\(263\) −1968.00 −0.461415 −0.230707 0.973023i \(-0.574104\pi\)
−0.230707 + 0.973023i \(0.574104\pi\)
\(264\) 0 0
\(265\) −1680.00 −0.389440
\(266\) 0 0
\(267\) 0 0
\(268\) −6496.00 −1.48062
\(269\) −3894.00 −0.882607 −0.441304 0.897358i \(-0.645484\pi\)
−0.441304 + 0.897358i \(0.645484\pi\)
\(270\) 0 0
\(271\) −7094.00 −1.59015 −0.795073 0.606513i \(-0.792568\pi\)
−0.795073 + 0.606513i \(0.792568\pi\)
\(272\) 4224.00 0.941609
\(273\) 0 0
\(274\) 0 0
\(275\) −1050.00 −0.230245
\(276\) 0 0
\(277\) −3310.00 −0.717973 −0.358987 0.933343i \(-0.616878\pi\)
−0.358987 + 0.933343i \(0.616878\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7158.00 −1.51961 −0.759805 0.650151i \(-0.774706\pi\)
−0.759805 + 0.650151i \(0.774706\pi\)
\(282\) 0 0
\(283\) 5164.00 1.08469 0.542346 0.840155i \(-0.317536\pi\)
0.542346 + 0.840155i \(0.317536\pi\)
\(284\) 6480.00 1.35393
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −557.000 −0.113373
\(290\) 0 0
\(291\) 0 0
\(292\) −992.000 −0.198810
\(293\) −8598.00 −1.71434 −0.857168 0.515037i \(-0.827778\pi\)
−0.857168 + 0.515037i \(0.827778\pi\)
\(294\) 0 0
\(295\) −1800.00 −0.355254
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 240.000 0.0464199
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −2432.00 −0.458831
\(305\) 3410.00 0.640184
\(306\) 0 0
\(307\) 448.000 0.0832857 0.0416429 0.999133i \(-0.486741\pi\)
0.0416429 + 0.999133i \(0.486741\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5832.00 −1.06335 −0.531676 0.846948i \(-0.678438\pi\)
−0.531676 + 0.846948i \(0.678438\pi\)
\(312\) 0 0
\(313\) −9848.00 −1.77841 −0.889204 0.457510i \(-0.848741\pi\)
−0.889204 + 0.457510i \(0.848741\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −9088.00 −1.61785
\(317\) 5616.00 0.995035 0.497517 0.867454i \(-0.334245\pi\)
0.497517 + 0.867454i \(0.334245\pi\)
\(318\) 0 0
\(319\) −10836.0 −1.90188
\(320\) −2560.00 −0.447214
\(321\) 0 0
\(322\) 0 0
\(323\) −2508.00 −0.432040
\(324\) 0 0
\(325\) −500.000 −0.0853385
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 452.000 0.0750579 0.0375290 0.999296i \(-0.488051\pi\)
0.0375290 + 0.999296i \(0.488051\pi\)
\(332\) −1248.00 −0.206304
\(333\) 0 0
\(334\) 0 0
\(335\) 4060.00 0.662154
\(336\) 0 0
\(337\) −2302.00 −0.372101 −0.186050 0.982540i \(-0.559569\pi\)
−0.186050 + 0.982540i \(0.559569\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −2640.00 −0.421100
\(341\) 6132.00 0.973802
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1584.00 −0.245054 −0.122527 0.992465i \(-0.539100\pi\)
−0.122527 + 0.992465i \(0.539100\pi\)
\(348\) 0 0
\(349\) −8174.00 −1.25371 −0.626854 0.779137i \(-0.715658\pi\)
−0.626854 + 0.779137i \(0.715658\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8610.00 1.29820 0.649099 0.760704i \(-0.275146\pi\)
0.649099 + 0.760704i \(0.275146\pi\)
\(354\) 0 0
\(355\) −4050.00 −0.605498
\(356\) 8304.00 1.23627
\(357\) 0 0
\(358\) 0 0
\(359\) 2154.00 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −5415.00 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 620.000 0.0889104
\(366\) 0 0
\(367\) −6644.00 −0.944997 −0.472499 0.881331i \(-0.656648\pi\)
−0.472499 + 0.881331i \(0.656648\pi\)
\(368\) −768.000 −0.108790
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 7958.00 1.10469 0.552345 0.833615i \(-0.313733\pi\)
0.552345 + 0.833615i \(0.313733\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5160.00 −0.704917
\(378\) 0 0
\(379\) 3440.00 0.466229 0.233115 0.972449i \(-0.425108\pi\)
0.233115 + 0.972449i \(0.425108\pi\)
\(380\) 1520.00 0.205196
\(381\) 0 0
\(382\) 0 0
\(383\) 12936.0 1.72585 0.862923 0.505336i \(-0.168631\pi\)
0.862923 + 0.505336i \(0.168631\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 9664.00 1.26447
\(389\) 14862.0 1.93710 0.968552 0.248812i \(-0.0800401\pi\)
0.968552 + 0.248812i \(0.0800401\pi\)
\(390\) 0 0
\(391\) −792.000 −0.102438
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5680.00 0.723524
\(396\) 0 0
\(397\) −10460.0 −1.32235 −0.661174 0.750232i \(-0.729942\pi\)
−0.661174 + 0.750232i \(0.729942\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1600.00 0.200000
\(401\) 9150.00 1.13947 0.569737 0.821827i \(-0.307045\pi\)
0.569737 + 0.821827i \(0.307045\pi\)
\(402\) 0 0
\(403\) 2920.00 0.360932
\(404\) −4368.00 −0.537911
\(405\) 0 0
\(406\) 0 0
\(407\) −18228.0 −2.21997
\(408\) 0 0
\(409\) 4894.00 0.591669 0.295835 0.955239i \(-0.404402\pi\)
0.295835 + 0.955239i \(0.404402\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4160.00 −0.497448
\(413\) 0 0
\(414\) 0 0
\(415\) 780.000 0.0922619
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1668.00 −0.194480 −0.0972400 0.995261i \(-0.531001\pi\)
−0.0972400 + 0.995261i \(0.531001\pi\)
\(420\) 0 0
\(421\) −12418.0 −1.43757 −0.718784 0.695233i \(-0.755301\pi\)
−0.718784 + 0.695233i \(0.755301\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1650.00 0.188322
\(426\) 0 0
\(427\) 0 0
\(428\) 9696.00 1.09503
\(429\) 0 0
\(430\) 0 0
\(431\) −15186.0 −1.69718 −0.848589 0.529052i \(-0.822548\pi\)
−0.848589 + 0.529052i \(0.822548\pi\)
\(432\) 0 0
\(433\) 5704.00 0.633064 0.316532 0.948582i \(-0.397482\pi\)
0.316532 + 0.948582i \(0.397482\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8624.00 0.947281
\(437\) 456.000 0.0499163
\(438\) 0 0
\(439\) 17206.0 1.87061 0.935305 0.353843i \(-0.115125\pi\)
0.935305 + 0.353843i \(0.115125\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3456.00 −0.370654 −0.185327 0.982677i \(-0.559334\pi\)
−0.185327 + 0.982677i \(0.559334\pi\)
\(444\) 0 0
\(445\) −5190.00 −0.552875
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −16074.0 −1.68949 −0.844743 0.535173i \(-0.820247\pi\)
−0.844743 + 0.535173i \(0.820247\pi\)
\(450\) 0 0
\(451\) 11844.0 1.23661
\(452\) −11616.0 −1.20878
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7526.00 0.770353 0.385177 0.922843i \(-0.374141\pi\)
0.385177 + 0.922843i \(0.374141\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 480.000 0.0486524
\(461\) −2274.00 −0.229741 −0.114871 0.993380i \(-0.536645\pi\)
−0.114871 + 0.993380i \(0.536645\pi\)
\(462\) 0 0
\(463\) −10024.0 −1.00617 −0.503083 0.864238i \(-0.667801\pi\)
−0.503083 + 0.864238i \(0.667801\pi\)
\(464\) 16512.0 1.65205
\(465\) 0 0
\(466\) 0 0
\(467\) −2460.00 −0.243759 −0.121879 0.992545i \(-0.538892\pi\)
−0.121879 + 0.992545i \(0.538892\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −840.000 −0.0816559
\(474\) 0 0
\(475\) −950.000 −0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19320.0 1.84291 0.921454 0.388486i \(-0.127002\pi\)
0.921454 + 0.388486i \(0.127002\pi\)
\(480\) 0 0
\(481\) −8680.00 −0.822815
\(482\) 0 0
\(483\) 0 0
\(484\) −3464.00 −0.325319
\(485\) −6040.00 −0.565489
\(486\) 0 0
\(487\) −12544.0 −1.16719 −0.583596 0.812044i \(-0.698355\pi\)
−0.583596 + 0.812044i \(0.698355\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15510.0 1.42557 0.712787 0.701381i \(-0.247433\pi\)
0.712787 + 0.701381i \(0.247433\pi\)
\(492\) 0 0
\(493\) 17028.0 1.55558
\(494\) 0 0
\(495\) 0 0
\(496\) −9344.00 −0.845883
\(497\) 0 0
\(498\) 0 0
\(499\) −14344.0 −1.28682 −0.643412 0.765520i \(-0.722482\pi\)
−0.643412 + 0.765520i \(0.722482\pi\)
\(500\) −1000.00 −0.0894427
\(501\) 0 0
\(502\) 0 0
\(503\) −21384.0 −1.89556 −0.947779 0.318929i \(-0.896677\pi\)
−0.947779 + 0.318929i \(0.896677\pi\)
\(504\) 0 0
\(505\) 2730.00 0.240561
\(506\) 0 0
\(507\) 0 0
\(508\) 10496.0 0.916702
\(509\) −7134.00 −0.621236 −0.310618 0.950535i \(-0.600536\pi\)
−0.310618 + 0.950535i \(0.600536\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2600.00 0.222465
\(516\) 0 0
\(517\) 3024.00 0.257244
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19122.0 −1.60797 −0.803983 0.594653i \(-0.797290\pi\)
−0.803983 + 0.594653i \(0.797290\pi\)
\(522\) 0 0
\(523\) 15640.0 1.30763 0.653814 0.756655i \(-0.273168\pi\)
0.653814 + 0.756655i \(0.273168\pi\)
\(524\) 10848.0 0.904384
\(525\) 0 0
\(526\) 0 0
\(527\) −9636.00 −0.796491
\(528\) 0 0
\(529\) −12023.0 −0.988165
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5640.00 0.458341
\(534\) 0 0
\(535\) −6060.00 −0.489713
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2846.00 0.226172 0.113086 0.993585i \(-0.463926\pi\)
0.113086 + 0.993585i \(0.463926\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5390.00 −0.423637
\(546\) 0 0
\(547\) −4444.00 −0.347371 −0.173685 0.984801i \(-0.555568\pi\)
−0.173685 + 0.984801i \(0.555568\pi\)
\(548\) −7872.00 −0.613641
\(549\) 0 0
\(550\) 0 0
\(551\) −9804.00 −0.758012
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −3152.00 −0.240422
\(557\) −18552.0 −1.41126 −0.705631 0.708579i \(-0.749337\pi\)
−0.705631 + 0.708579i \(0.749337\pi\)
\(558\) 0 0
\(559\) −400.000 −0.0302651
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16452.0 −1.23156 −0.615781 0.787918i \(-0.711159\pi\)
−0.615781 + 0.787918i \(0.711159\pi\)
\(564\) 0 0
\(565\) 7260.00 0.540585
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7722.00 −0.568933 −0.284467 0.958686i \(-0.591817\pi\)
−0.284467 + 0.958686i \(0.591817\pi\)
\(570\) 0 0
\(571\) 2576.00 0.188796 0.0943978 0.995535i \(-0.469907\pi\)
0.0943978 + 0.995535i \(0.469907\pi\)
\(572\) −6720.00 −0.491219
\(573\) 0 0
\(574\) 0 0
\(575\) −300.000 −0.0217580
\(576\) 0 0
\(577\) 2464.00 0.177778 0.0888888 0.996042i \(-0.471668\pi\)
0.0888888 + 0.996042i \(0.471668\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −10320.0 −0.738818
\(581\) 0 0
\(582\) 0 0
\(583\) 14112.0 1.00250
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1452.00 0.102096 0.0510481 0.998696i \(-0.483744\pi\)
0.0510481 + 0.998696i \(0.483744\pi\)
\(588\) 0 0
\(589\) 5548.00 0.388118
\(590\) 0 0
\(591\) 0 0
\(592\) 27776.0 1.92836
\(593\) 10698.0 0.740833 0.370417 0.928866i \(-0.379215\pi\)
0.370417 + 0.928866i \(0.379215\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8112.00 −0.557518
\(597\) 0 0
\(598\) 0 0
\(599\) 8730.00 0.595489 0.297745 0.954646i \(-0.403766\pi\)
0.297745 + 0.954646i \(0.403766\pi\)
\(600\) 0 0
\(601\) −1910.00 −0.129635 −0.0648174 0.997897i \(-0.520646\pi\)
−0.0648174 + 0.997897i \(0.520646\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 15968.0 1.07571
\(605\) 2165.00 0.145487
\(606\) 0 0
\(607\) 5596.00 0.374192 0.187096 0.982342i \(-0.440092\pi\)
0.187096 + 0.982342i \(0.440092\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1440.00 0.0953456
\(612\) 0 0
\(613\) 28586.0 1.88349 0.941744 0.336332i \(-0.109186\pi\)
0.941744 + 0.336332i \(0.109186\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19236.0 1.25513 0.627563 0.778566i \(-0.284053\pi\)
0.627563 + 0.778566i \(0.284053\pi\)
\(618\) 0 0
\(619\) −6734.00 −0.437257 −0.218629 0.975808i \(-0.570158\pi\)
−0.218629 + 0.975808i \(0.570158\pi\)
\(620\) 5840.00 0.378290
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) −19136.0 −1.21594
\(629\) 28644.0 1.81576
\(630\) 0 0
\(631\) 7184.00 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6560.00 −0.409962
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −510.000 −0.0314256 −0.0157128 0.999877i \(-0.505002\pi\)
−0.0157128 + 0.999877i \(0.505002\pi\)
\(642\) 0 0
\(643\) 20752.0 1.27275 0.636376 0.771379i \(-0.280433\pi\)
0.636376 + 0.771379i \(0.280433\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21072.0 1.28041 0.640205 0.768204i \(-0.278849\pi\)
0.640205 + 0.768204i \(0.278849\pi\)
\(648\) 0 0
\(649\) 15120.0 0.914502
\(650\) 0 0
\(651\) 0 0
\(652\) −16288.0 −0.978355
\(653\) −2892.00 −0.173312 −0.0866560 0.996238i \(-0.527618\pi\)
−0.0866560 + 0.996238i \(0.527618\pi\)
\(654\) 0 0
\(655\) −6780.00 −0.404453
\(656\) −18048.0 −1.07417
\(657\) 0 0
\(658\) 0 0
\(659\) −750.000 −0.0443336 −0.0221668 0.999754i \(-0.507056\pi\)
−0.0221668 + 0.999754i \(0.507056\pi\)
\(660\) 0 0
\(661\) −30062.0 −1.76895 −0.884475 0.466587i \(-0.845483\pi\)
−0.884475 + 0.466587i \(0.845483\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3096.00 −0.179727
\(668\) 31488.0 1.82381
\(669\) 0 0
\(670\) 0 0
\(671\) −28644.0 −1.64797
\(672\) 0 0
\(673\) 15446.0 0.884695 0.442347 0.896844i \(-0.354146\pi\)
0.442347 + 0.896844i \(0.354146\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 14376.0 0.817934
\(677\) −25110.0 −1.42549 −0.712744 0.701424i \(-0.752548\pi\)
−0.712744 + 0.701424i \(0.752548\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7968.00 −0.446394 −0.223197 0.974773i \(-0.571649\pi\)
−0.223197 + 0.974773i \(0.571649\pi\)
\(684\) 0 0
\(685\) 4920.00 0.274429
\(686\) 0 0
\(687\) 0 0
\(688\) 1280.00 0.0709296
\(689\) 6720.00 0.371570
\(690\) 0 0
\(691\) 14398.0 0.792657 0.396328 0.918109i \(-0.370284\pi\)
0.396328 + 0.918109i \(0.370284\pi\)
\(692\) −3024.00 −0.166120
\(693\) 0 0
\(694\) 0 0
\(695\) 1970.00 0.107520
\(696\) 0 0
\(697\) −18612.0 −1.01145
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9234.00 0.497523 0.248761 0.968565i \(-0.419977\pi\)
0.248761 + 0.968565i \(0.419977\pi\)
\(702\) 0 0
\(703\) −16492.0 −0.884790
\(704\) 21504.0 1.15123
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8030.00 0.425350 0.212675 0.977123i \(-0.431782\pi\)
0.212675 + 0.977123i \(0.431782\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1752.00 0.0920237
\(714\) 0 0
\(715\) 4200.00 0.219680
\(716\) −1776.00 −0.0926987
\(717\) 0 0
\(718\) 0 0
\(719\) 27060.0 1.40357 0.701786 0.712388i \(-0.252386\pi\)
0.701786 + 0.712388i \(0.252386\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) −20720.0 −1.06361
\(725\) 6450.00 0.330410
\(726\) 0 0
\(727\) 3724.00 0.189980 0.0949900 0.995478i \(-0.469718\pi\)
0.0949900 + 0.995478i \(0.469718\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1320.00 0.0667879
\(732\) 0 0
\(733\) 5668.00 0.285610 0.142805 0.989751i \(-0.454388\pi\)
0.142805 + 0.989751i \(0.454388\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −34104.0 −1.70453
\(738\) 0 0
\(739\) −16072.0 −0.800024 −0.400012 0.916510i \(-0.630994\pi\)
−0.400012 + 0.916510i \(0.630994\pi\)
\(740\) −17360.0 −0.862387
\(741\) 0 0
\(742\) 0 0
\(743\) 8256.00 0.407649 0.203825 0.979007i \(-0.434663\pi\)
0.203825 + 0.979007i \(0.434663\pi\)
\(744\) 0 0
\(745\) 5070.00 0.249329
\(746\) 0 0
\(747\) 0 0
\(748\) 22176.0 1.08400
\(749\) 0 0
\(750\) 0 0
\(751\) −6352.00 −0.308639 −0.154319 0.988021i \(-0.549318\pi\)
−0.154319 + 0.988021i \(0.549318\pi\)
\(752\) −4608.00 −0.223453
\(753\) 0 0
\(754\) 0 0
\(755\) −9980.00 −0.481072
\(756\) 0 0
\(757\) 11558.0 0.554931 0.277465 0.960736i \(-0.410506\pi\)
0.277465 + 0.960736i \(0.410506\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7770.00 0.370121 0.185061 0.982727i \(-0.440752\pi\)
0.185061 + 0.982727i \(0.440752\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 17712.0 0.838740
\(765\) 0 0
\(766\) 0 0
\(767\) 7200.00 0.338953
\(768\) 0 0
\(769\) −22646.0 −1.06194 −0.530972 0.847389i \(-0.678173\pi\)
−0.530972 + 0.847389i \(0.678173\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −33424.0 −1.55823
\(773\) −35502.0 −1.65190 −0.825950 0.563744i \(-0.809361\pi\)
−0.825950 + 0.563744i \(0.809361\pi\)
\(774\) 0 0
\(775\) −3650.00 −0.169177
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10716.0 0.492863
\(780\) 0 0
\(781\) 34020.0 1.55868
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11960.0 0.543784
\(786\) 0 0
\(787\) 17080.0 0.773617 0.386808 0.922160i \(-0.373578\pi\)
0.386808 + 0.922160i \(0.373578\pi\)
\(788\) −24480.0 −1.10668
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −13640.0 −0.610808
\(794\) 0 0
\(795\) 0 0
\(796\) 21328.0 0.949687
\(797\) 5730.00 0.254664 0.127332 0.991860i \(-0.459359\pi\)
0.127332 + 0.991860i \(0.459359\pi\)
\(798\) 0 0
\(799\) −4752.00 −0.210405
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5208.00 −0.228875
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2550.00 −0.110820 −0.0554099 0.998464i \(-0.517647\pi\)
−0.0554099 + 0.998464i \(0.517647\pi\)
\(810\) 0 0
\(811\) 27538.0 1.19234 0.596171 0.802857i \(-0.296688\pi\)
0.596171 + 0.802857i \(0.296688\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10180.0 0.437534
\(816\) 0 0
\(817\) −760.000 −0.0325447
\(818\) 0 0
\(819\) 0 0
\(820\) 11280.0 0.480384
\(821\) 19242.0 0.817966 0.408983 0.912542i \(-0.365883\pi\)
0.408983 + 0.912542i \(0.365883\pi\)
\(822\) 0 0
\(823\) −11752.0 −0.497751 −0.248875 0.968536i \(-0.580061\pi\)
−0.248875 + 0.968536i \(0.580061\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28692.0 1.20643 0.603216 0.797578i \(-0.293886\pi\)
0.603216 + 0.797578i \(0.293886\pi\)
\(828\) 0 0
\(829\) −28442.0 −1.19159 −0.595797 0.803135i \(-0.703164\pi\)
−0.595797 + 0.803135i \(0.703164\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 10240.0 0.426692
\(833\) 0 0
\(834\) 0 0
\(835\) −19680.0 −0.815634
\(836\) −12768.0 −0.528218
\(837\) 0 0
\(838\) 0 0
\(839\) 20172.0 0.830053 0.415027 0.909809i \(-0.363772\pi\)
0.415027 + 0.909809i \(0.363772\pi\)
\(840\) 0 0
\(841\) 42175.0 1.72926
\(842\) 0 0
\(843\) 0 0
\(844\) 10784.0 0.439811
\(845\) −8985.00 −0.365791
\(846\) 0 0
\(847\) 0 0
\(848\) −21504.0 −0.870814
\(849\) 0 0
\(850\) 0 0
\(851\) −5208.00 −0.209786
\(852\) 0 0
\(853\) −19820.0 −0.795573 −0.397787 0.917478i \(-0.630222\pi\)
−0.397787 + 0.917478i \(0.630222\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10290.0 −0.410151 −0.205076 0.978746i \(-0.565744\pi\)
−0.205076 + 0.978746i \(0.565744\pi\)
\(858\) 0 0
\(859\) 31606.0 1.25539 0.627697 0.778458i \(-0.283998\pi\)
0.627697 + 0.778458i \(0.283998\pi\)
\(860\) −800.000 −0.0317207
\(861\) 0 0
\(862\) 0 0
\(863\) −23172.0 −0.914002 −0.457001 0.889466i \(-0.651076\pi\)
−0.457001 + 0.889466i \(0.651076\pi\)
\(864\) 0 0
\(865\) 1890.00 0.0742912
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −47712.0 −1.86251
\(870\) 0 0
\(871\) −16240.0 −0.631770
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −15550.0 −0.598730 −0.299365 0.954139i \(-0.596775\pi\)
−0.299365 + 0.954139i \(0.596775\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −13440.0 −0.514844
\(881\) 28530.0 1.09103 0.545517 0.838100i \(-0.316334\pi\)
0.545517 + 0.838100i \(0.316334\pi\)
\(882\) 0 0
\(883\) −28780.0 −1.09686 −0.548428 0.836198i \(-0.684774\pi\)
−0.548428 + 0.836198i \(0.684774\pi\)
\(884\) 10560.0 0.401777
\(885\) 0 0
\(886\) 0 0
\(887\) 22872.0 0.865802 0.432901 0.901441i \(-0.357490\pi\)
0.432901 + 0.901441i \(0.357490\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 25504.0 0.957329
\(893\) 2736.00 0.102527
\(894\) 0 0
\(895\) 1110.00 0.0414561
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −37668.0 −1.39744
\(900\) 0 0
\(901\) −22176.0 −0.819966
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12950.0 0.475660
\(906\) 0 0
\(907\) −10708.0 −0.392010 −0.196005 0.980603i \(-0.562797\pi\)
−0.196005 + 0.980603i \(0.562797\pi\)
\(908\) 27168.0 0.992953
\(909\) 0 0
\(910\) 0 0
\(911\) −1326.00 −0.0482243 −0.0241122 0.999709i \(-0.507676\pi\)
−0.0241122 + 0.999709i \(0.507676\pi\)
\(912\) 0 0
\(913\) −6552.00 −0.237502
\(914\) 0 0
\(915\) 0 0
\(916\) 42352.0 1.52767
\(917\) 0 0
\(918\) 0 0
\(919\) −13696.0 −0.491610 −0.245805 0.969319i \(-0.579052\pi\)
−0.245805 + 0.969319i \(0.579052\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16200.0 0.577713
\(924\) 0 0
\(925\) 10850.0 0.385671
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 42354.0 1.49579 0.747895 0.663817i \(-0.231064\pi\)
0.747895 + 0.663817i \(0.231064\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6816.00 0.239555
\(933\) 0 0
\(934\) 0 0
\(935\) −13860.0 −0.484781
\(936\) 0 0
\(937\) −6644.00 −0.231644 −0.115822 0.993270i \(-0.536950\pi\)
−0.115822 + 0.993270i \(0.536950\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2880.00 0.0999311
\(941\) 1350.00 0.0467681 0.0233840 0.999727i \(-0.492556\pi\)
0.0233840 + 0.999727i \(0.492556\pi\)
\(942\) 0 0
\(943\) 3384.00 0.116859
\(944\) −23040.0 −0.794373
\(945\) 0 0
\(946\) 0 0
\(947\) −49320.0 −1.69238 −0.846190 0.532881i \(-0.821109\pi\)
−0.846190 + 0.532881i \(0.821109\pi\)
\(948\) 0 0
\(949\) −2480.00 −0.0848306
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5940.00 −0.201905 −0.100953 0.994891i \(-0.532189\pi\)
−0.100953 + 0.994891i \(0.532189\pi\)
\(954\) 0 0
\(955\) −11070.0 −0.375096
\(956\) 38928.0 1.31697
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −8475.00 −0.284482
\(962\) 0 0
\(963\) 0 0
\(964\) −16400.0 −0.547934
\(965\) 20890.0 0.696863
\(966\) 0 0
\(967\) 47216.0 1.57018 0.785090 0.619382i \(-0.212617\pi\)
0.785090 + 0.619382i \(0.212617\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12552.0 0.414843 0.207422 0.978252i \(-0.433493\pi\)
0.207422 + 0.978252i \(0.433493\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 43648.0 1.43149
\(977\) −46908.0 −1.53605 −0.768025 0.640420i \(-0.778760\pi\)
−0.768025 + 0.640420i \(0.778760\pi\)
\(978\) 0 0
\(979\) 43596.0 1.42322
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −46128.0 −1.49670 −0.748349 0.663305i \(-0.769153\pi\)
−0.748349 + 0.663305i \(0.769153\pi\)
\(984\) 0 0
\(985\) 15300.0 0.494922
\(986\) 0 0
\(987\) 0 0
\(988\) −6080.00 −0.195780
\(989\) −240.000 −0.00771644
\(990\) 0 0
\(991\) −12184.0 −0.390552 −0.195276 0.980748i \(-0.562560\pi\)
−0.195276 + 0.980748i \(0.562560\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −13330.0 −0.424713
\(996\) 0 0
\(997\) 5164.00 0.164038 0.0820188 0.996631i \(-0.473863\pi\)
0.0820188 + 0.996631i \(0.473863\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.4.a.o.1.1 1
3.2 odd 2 735.4.a.c.1.1 1
7.6 odd 2 315.4.a.d.1.1 1
21.20 even 2 105.4.a.a.1.1 1
35.34 odd 2 1575.4.a.f.1.1 1
84.83 odd 2 1680.4.a.s.1.1 1
105.62 odd 4 525.4.d.f.274.2 2
105.83 odd 4 525.4.d.f.274.1 2
105.104 even 2 525.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.a.1.1 1 21.20 even 2
315.4.a.d.1.1 1 7.6 odd 2
525.4.a.e.1.1 1 105.104 even 2
525.4.d.f.274.1 2 105.83 odd 4
525.4.d.f.274.2 2 105.62 odd 4
735.4.a.c.1.1 1 3.2 odd 2
1575.4.a.f.1.1 1 35.34 odd 2
1680.4.a.s.1.1 1 84.83 odd 2
2205.4.a.o.1.1 1 1.1 even 1 trivial