Properties

Label 2205.4.a.bm.1.3
Level $2205$
Weight $4$
Character 2205.1
Self dual yes
Analytic conductor $130.099$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,4,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.62456\) of defining polynomial
Character \(\chi\) \(=\) 2205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.62456 q^{2} +13.3866 q^{4} +5.00000 q^{5} +24.9107 q^{8} +23.1228 q^{10} +30.1117 q^{11} -88.9295 q^{13} +8.10818 q^{16} -4.73699 q^{17} -124.818 q^{19} +66.9330 q^{20} +139.253 q^{22} -20.2680 q^{23} +25.0000 q^{25} -411.260 q^{26} -134.088 q^{29} +2.03767 q^{31} -161.788 q^{32} -21.9065 q^{34} -141.137 q^{37} -577.228 q^{38} +124.553 q^{40} +95.2784 q^{41} -298.646 q^{43} +403.093 q^{44} -93.7305 q^{46} -129.054 q^{47} +115.614 q^{50} -1190.46 q^{52} -388.429 q^{53} +150.558 q^{55} -620.098 q^{58} +838.501 q^{59} -389.422 q^{61} +9.42333 q^{62} -813.067 q^{64} -444.647 q^{65} +697.794 q^{67} -63.4122 q^{68} +523.450 q^{71} -66.4684 q^{73} -652.699 q^{74} -1670.89 q^{76} -526.982 q^{79} +40.5409 q^{80} +440.621 q^{82} +70.0265 q^{83} -23.6850 q^{85} -1381.11 q^{86} +750.101 q^{88} -9.27925 q^{89} -271.319 q^{92} -596.817 q^{94} -624.089 q^{95} +4.19493 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 13 q^{4} + 15 q^{5} + 15 q^{8} + 15 q^{10} + 74 q^{11} - 44 q^{13} - 79 q^{16} - 52 q^{17} - 168 q^{19} + 65 q^{20} + 184 q^{22} + 124 q^{23} + 75 q^{25} - 446 q^{26} - 332 q^{29} - 320 q^{31}+ \cdots - 100 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.62456 1.63503 0.817515 0.575907i \(-0.195351\pi\)
0.817515 + 0.575907i \(0.195351\pi\)
\(3\) 0 0
\(4\) 13.3866 1.67332
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 24.9107 1.10091
\(9\) 0 0
\(10\) 23.1228 0.731208
\(11\) 30.1117 0.825364 0.412682 0.910875i \(-0.364592\pi\)
0.412682 + 0.910875i \(0.364592\pi\)
\(12\) 0 0
\(13\) −88.9295 −1.89728 −0.948639 0.316362i \(-0.897539\pi\)
−0.948639 + 0.316362i \(0.897539\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 8.10818 0.126690
\(17\) −4.73699 −0.0675817 −0.0337909 0.999429i \(-0.510758\pi\)
−0.0337909 + 0.999429i \(0.510758\pi\)
\(18\) 0 0
\(19\) −124.818 −1.50711 −0.753557 0.657382i \(-0.771664\pi\)
−0.753557 + 0.657382i \(0.771664\pi\)
\(20\) 66.9330 0.748333
\(21\) 0 0
\(22\) 139.253 1.34950
\(23\) −20.2680 −0.183746 −0.0918731 0.995771i \(-0.529285\pi\)
−0.0918731 + 0.995771i \(0.529285\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −411.260 −3.10211
\(27\) 0 0
\(28\) 0 0
\(29\) −134.088 −0.858603 −0.429301 0.903161i \(-0.641240\pi\)
−0.429301 + 0.903161i \(0.641240\pi\)
\(30\) 0 0
\(31\) 2.03767 0.0118057 0.00590284 0.999983i \(-0.498121\pi\)
0.00590284 + 0.999983i \(0.498121\pi\)
\(32\) −161.788 −0.893764
\(33\) 0 0
\(34\) −21.9065 −0.110498
\(35\) 0 0
\(36\) 0 0
\(37\) −141.137 −0.627104 −0.313552 0.949571i \(-0.601519\pi\)
−0.313552 + 0.949571i \(0.601519\pi\)
\(38\) −577.228 −2.46418
\(39\) 0 0
\(40\) 124.553 0.492340
\(41\) 95.2784 0.362927 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(42\) 0 0
\(43\) −298.646 −1.05914 −0.529571 0.848266i \(-0.677647\pi\)
−0.529571 + 0.848266i \(0.677647\pi\)
\(44\) 403.093 1.38110
\(45\) 0 0
\(46\) −93.7305 −0.300431
\(47\) −129.054 −0.400519 −0.200260 0.979743i \(-0.564179\pi\)
−0.200260 + 0.979743i \(0.564179\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 115.614 0.327006
\(51\) 0 0
\(52\) −1190.46 −3.17476
\(53\) −388.429 −1.00669 −0.503347 0.864084i \(-0.667898\pi\)
−0.503347 + 0.864084i \(0.667898\pi\)
\(54\) 0 0
\(55\) 150.558 0.369114
\(56\) 0 0
\(57\) 0 0
\(58\) −620.098 −1.40384
\(59\) 838.501 1.85023 0.925114 0.379688i \(-0.123969\pi\)
0.925114 + 0.379688i \(0.123969\pi\)
\(60\) 0 0
\(61\) −389.422 −0.817384 −0.408692 0.912672i \(-0.634015\pi\)
−0.408692 + 0.912672i \(0.634015\pi\)
\(62\) 9.42333 0.0193027
\(63\) 0 0
\(64\) −813.067 −1.58802
\(65\) −444.647 −0.848488
\(66\) 0 0
\(67\) 697.794 1.27237 0.636187 0.771534i \(-0.280510\pi\)
0.636187 + 0.771534i \(0.280510\pi\)
\(68\) −63.4122 −0.113086
\(69\) 0 0
\(70\) 0 0
\(71\) 523.450 0.874959 0.437479 0.899228i \(-0.355871\pi\)
0.437479 + 0.899228i \(0.355871\pi\)
\(72\) 0 0
\(73\) −66.4684 −0.106569 −0.0532845 0.998579i \(-0.516969\pi\)
−0.0532845 + 0.998579i \(0.516969\pi\)
\(74\) −652.699 −1.02533
\(75\) 0 0
\(76\) −1670.89 −2.52189
\(77\) 0 0
\(78\) 0 0
\(79\) −526.982 −0.750508 −0.375254 0.926922i \(-0.622444\pi\)
−0.375254 + 0.926922i \(0.622444\pi\)
\(80\) 40.5409 0.0566576
\(81\) 0 0
\(82\) 440.621 0.593396
\(83\) 70.0265 0.0926074 0.0463037 0.998927i \(-0.485256\pi\)
0.0463037 + 0.998927i \(0.485256\pi\)
\(84\) 0 0
\(85\) −23.6850 −0.0302235
\(86\) −1381.11 −1.73173
\(87\) 0 0
\(88\) 750.101 0.908649
\(89\) −9.27925 −0.0110517 −0.00552584 0.999985i \(-0.501759\pi\)
−0.00552584 + 0.999985i \(0.501759\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −271.319 −0.307467
\(93\) 0 0
\(94\) −596.817 −0.654861
\(95\) −624.089 −0.674002
\(96\) 0 0
\(97\) 4.19493 0.00439104 0.00219552 0.999998i \(-0.499301\pi\)
0.00219552 + 0.999998i \(0.499301\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 334.665 0.334665
\(101\) −865.844 −0.853016 −0.426508 0.904484i \(-0.640256\pi\)
−0.426508 + 0.904484i \(0.640256\pi\)
\(102\) 0 0
\(103\) 1166.12 1.11554 0.557771 0.829995i \(-0.311657\pi\)
0.557771 + 0.829995i \(0.311657\pi\)
\(104\) −2215.29 −2.08872
\(105\) 0 0
\(106\) −1796.31 −1.64598
\(107\) −56.9652 −0.0514676 −0.0257338 0.999669i \(-0.508192\pi\)
−0.0257338 + 0.999669i \(0.508192\pi\)
\(108\) 0 0
\(109\) −1358.89 −1.19411 −0.597055 0.802200i \(-0.703663\pi\)
−0.597055 + 0.802200i \(0.703663\pi\)
\(110\) 696.267 0.603513
\(111\) 0 0
\(112\) 0 0
\(113\) −436.038 −0.363000 −0.181500 0.983391i \(-0.558095\pi\)
−0.181500 + 0.983391i \(0.558095\pi\)
\(114\) 0 0
\(115\) −101.340 −0.0821738
\(116\) −1794.98 −1.43672
\(117\) 0 0
\(118\) 3877.70 3.02518
\(119\) 0 0
\(120\) 0 0
\(121\) −424.288 −0.318774
\(122\) −1800.91 −1.33645
\(123\) 0 0
\(124\) 27.2775 0.0197547
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1186.69 0.829144 0.414572 0.910017i \(-0.363931\pi\)
0.414572 + 0.910017i \(0.363931\pi\)
\(128\) −2465.77 −1.70270
\(129\) 0 0
\(130\) −2056.30 −1.38730
\(131\) 1034.56 0.689997 0.344999 0.938603i \(-0.387879\pi\)
0.344999 + 0.938603i \(0.387879\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3226.99 2.08037
\(135\) 0 0
\(136\) −118.002 −0.0744011
\(137\) −646.219 −0.402994 −0.201497 0.979489i \(-0.564581\pi\)
−0.201497 + 0.979489i \(0.564581\pi\)
\(138\) 0 0
\(139\) −506.484 −0.309061 −0.154530 0.987988i \(-0.549386\pi\)
−0.154530 + 0.987988i \(0.549386\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2420.73 1.43058
\(143\) −2677.81 −1.56594
\(144\) 0 0
\(145\) −670.439 −0.383979
\(146\) −307.387 −0.174244
\(147\) 0 0
\(148\) −1889.35 −1.04935
\(149\) 1828.12 1.00513 0.502567 0.864538i \(-0.332389\pi\)
0.502567 + 0.864538i \(0.332389\pi\)
\(150\) 0 0
\(151\) 2975.17 1.60342 0.801708 0.597716i \(-0.203925\pi\)
0.801708 + 0.597716i \(0.203925\pi\)
\(152\) −3109.29 −1.65919
\(153\) 0 0
\(154\) 0 0
\(155\) 10.1883 0.00527966
\(156\) 0 0
\(157\) 2131.74 1.08364 0.541820 0.840495i \(-0.317736\pi\)
0.541820 + 0.840495i \(0.317736\pi\)
\(158\) −2437.06 −1.22710
\(159\) 0 0
\(160\) −808.942 −0.399703
\(161\) 0 0
\(162\) 0 0
\(163\) −593.939 −0.285404 −0.142702 0.989766i \(-0.545579\pi\)
−0.142702 + 0.989766i \(0.545579\pi\)
\(164\) 1275.45 0.607294
\(165\) 0 0
\(166\) 323.842 0.151416
\(167\) −2936.30 −1.36059 −0.680293 0.732941i \(-0.738147\pi\)
−0.680293 + 0.732941i \(0.738147\pi\)
\(168\) 0 0
\(169\) 5711.45 2.59966
\(170\) −109.533 −0.0494163
\(171\) 0 0
\(172\) −3997.85 −1.77229
\(173\) 2347.31 1.03158 0.515788 0.856716i \(-0.327499\pi\)
0.515788 + 0.856716i \(0.327499\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 244.151 0.104566
\(177\) 0 0
\(178\) −42.9125 −0.0180698
\(179\) −3036.56 −1.26795 −0.633975 0.773354i \(-0.718578\pi\)
−0.633975 + 0.773354i \(0.718578\pi\)
\(180\) 0 0
\(181\) 899.776 0.369502 0.184751 0.982785i \(-0.440852\pi\)
0.184751 + 0.982785i \(0.440852\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −504.888 −0.202287
\(185\) −705.687 −0.280449
\(186\) 0 0
\(187\) −142.639 −0.0557796
\(188\) −1727.59 −0.670199
\(189\) 0 0
\(190\) −2886.14 −1.10201
\(191\) −416.168 −0.157659 −0.0788294 0.996888i \(-0.525118\pi\)
−0.0788294 + 0.996888i \(0.525118\pi\)
\(192\) 0 0
\(193\) −5181.05 −1.93233 −0.966166 0.257922i \(-0.916962\pi\)
−0.966166 + 0.257922i \(0.916962\pi\)
\(194\) 19.3997 0.00717948
\(195\) 0 0
\(196\) 0 0
\(197\) −1452.34 −0.525255 −0.262627 0.964897i \(-0.584589\pi\)
−0.262627 + 0.964897i \(0.584589\pi\)
\(198\) 0 0
\(199\) 1277.23 0.454978 0.227489 0.973781i \(-0.426948\pi\)
0.227489 + 0.973781i \(0.426948\pi\)
\(200\) 622.766 0.220181
\(201\) 0 0
\(202\) −4004.15 −1.39471
\(203\) 0 0
\(204\) 0 0
\(205\) 476.392 0.162306
\(206\) 5392.78 1.82395
\(207\) 0 0
\(208\) −721.056 −0.240367
\(209\) −3758.47 −1.24392
\(210\) 0 0
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) −5199.74 −1.68453
\(213\) 0 0
\(214\) −263.439 −0.0841511
\(215\) −1493.23 −0.473663
\(216\) 0 0
\(217\) 0 0
\(218\) −6284.27 −1.95241
\(219\) 0 0
\(220\) 2015.46 0.617648
\(221\) 421.258 0.128221
\(222\) 0 0
\(223\) −4373.35 −1.31328 −0.656639 0.754205i \(-0.728023\pi\)
−0.656639 + 0.754205i \(0.728023\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2016.48 −0.593516
\(227\) −61.1145 −0.0178692 −0.00893461 0.999960i \(-0.502844\pi\)
−0.00893461 + 0.999960i \(0.502844\pi\)
\(228\) 0 0
\(229\) −3019.41 −0.871302 −0.435651 0.900116i \(-0.643482\pi\)
−0.435651 + 0.900116i \(0.643482\pi\)
\(230\) −468.653 −0.134357
\(231\) 0 0
\(232\) −3340.22 −0.945241
\(233\) 3531.17 0.992851 0.496426 0.868079i \(-0.334646\pi\)
0.496426 + 0.868079i \(0.334646\pi\)
\(234\) 0 0
\(235\) −645.268 −0.179118
\(236\) 11224.7 3.09603
\(237\) 0 0
\(238\) 0 0
\(239\) −2282.62 −0.617785 −0.308893 0.951097i \(-0.599958\pi\)
−0.308893 + 0.951097i \(0.599958\pi\)
\(240\) 0 0
\(241\) 2215.68 0.592217 0.296109 0.955154i \(-0.404311\pi\)
0.296109 + 0.955154i \(0.404311\pi\)
\(242\) −1962.15 −0.521205
\(243\) 0 0
\(244\) −5213.04 −1.36775
\(245\) 0 0
\(246\) 0 0
\(247\) 11100.0 2.85941
\(248\) 50.7597 0.0129970
\(249\) 0 0
\(250\) 578.071 0.146242
\(251\) −3082.55 −0.775174 −0.387587 0.921833i \(-0.626691\pi\)
−0.387587 + 0.921833i \(0.626691\pi\)
\(252\) 0 0
\(253\) −610.302 −0.151658
\(254\) 5487.90 1.35568
\(255\) 0 0
\(256\) −4898.58 −1.19594
\(257\) −6032.40 −1.46417 −0.732083 0.681215i \(-0.761452\pi\)
−0.732083 + 0.681215i \(0.761452\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −5952.32 −1.41980
\(261\) 0 0
\(262\) 4784.37 1.12817
\(263\) −5923.81 −1.38889 −0.694445 0.719546i \(-0.744350\pi\)
−0.694445 + 0.719546i \(0.744350\pi\)
\(264\) 0 0
\(265\) −1942.14 −0.450207
\(266\) 0 0
\(267\) 0 0
\(268\) 9341.09 2.12910
\(269\) 3252.80 0.737273 0.368637 0.929574i \(-0.379825\pi\)
0.368637 + 0.929574i \(0.379825\pi\)
\(270\) 0 0
\(271\) 6246.26 1.40012 0.700061 0.714083i \(-0.253156\pi\)
0.700061 + 0.714083i \(0.253156\pi\)
\(272\) −38.4084 −0.00856195
\(273\) 0 0
\(274\) −2988.48 −0.658907
\(275\) 752.792 0.165073
\(276\) 0 0
\(277\) −1572.17 −0.341020 −0.170510 0.985356i \(-0.554541\pi\)
−0.170510 + 0.985356i \(0.554541\pi\)
\(278\) −2342.27 −0.505324
\(279\) 0 0
\(280\) 0 0
\(281\) 7846.03 1.66567 0.832837 0.553518i \(-0.186715\pi\)
0.832837 + 0.553518i \(0.186715\pi\)
\(282\) 0 0
\(283\) −6265.58 −1.31608 −0.658039 0.752984i \(-0.728614\pi\)
−0.658039 + 0.752984i \(0.728614\pi\)
\(284\) 7007.21 1.46409
\(285\) 0 0
\(286\) −12383.7 −2.56037
\(287\) 0 0
\(288\) 0 0
\(289\) −4890.56 −0.995433
\(290\) −3100.49 −0.627817
\(291\) 0 0
\(292\) −889.785 −0.178325
\(293\) −7264.99 −1.44855 −0.724276 0.689511i \(-0.757826\pi\)
−0.724276 + 0.689511i \(0.757826\pi\)
\(294\) 0 0
\(295\) 4192.50 0.827448
\(296\) −3515.83 −0.690382
\(297\) 0 0
\(298\) 8454.24 1.64343
\(299\) 1802.42 0.348617
\(300\) 0 0
\(301\) 0 0
\(302\) 13758.9 2.62163
\(303\) 0 0
\(304\) −1012.05 −0.190937
\(305\) −1947.11 −0.365545
\(306\) 0 0
\(307\) −1328.32 −0.246943 −0.123471 0.992348i \(-0.539403\pi\)
−0.123471 + 0.992348i \(0.539403\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 47.1167 0.00863241
\(311\) 4868.68 0.887709 0.443855 0.896099i \(-0.353611\pi\)
0.443855 + 0.896099i \(0.353611\pi\)
\(312\) 0 0
\(313\) −7733.39 −1.39654 −0.698270 0.715835i \(-0.746046\pi\)
−0.698270 + 0.715835i \(0.746046\pi\)
\(314\) 9858.37 1.77178
\(315\) 0 0
\(316\) −7054.49 −1.25584
\(317\) 8175.03 1.44844 0.724220 0.689569i \(-0.242200\pi\)
0.724220 + 0.689569i \(0.242200\pi\)
\(318\) 0 0
\(319\) −4037.61 −0.708660
\(320\) −4065.33 −0.710184
\(321\) 0 0
\(322\) 0 0
\(323\) 591.261 0.101853
\(324\) 0 0
\(325\) −2223.24 −0.379455
\(326\) −2746.71 −0.466644
\(327\) 0 0
\(328\) 2373.45 0.399548
\(329\) 0 0
\(330\) 0 0
\(331\) −2040.76 −0.338884 −0.169442 0.985540i \(-0.554197\pi\)
−0.169442 + 0.985540i \(0.554197\pi\)
\(332\) 937.417 0.154962
\(333\) 0 0
\(334\) −13579.1 −2.22460
\(335\) 3488.97 0.569023
\(336\) 0 0
\(337\) 7349.73 1.18803 0.594013 0.804455i \(-0.297543\pi\)
0.594013 + 0.804455i \(0.297543\pi\)
\(338\) 26413.0 4.25052
\(339\) 0 0
\(340\) −317.061 −0.0505737
\(341\) 61.3576 0.00974399
\(342\) 0 0
\(343\) 0 0
\(344\) −7439.47 −1.16602
\(345\) 0 0
\(346\) 10855.3 1.68666
\(347\) 12069.9 1.86728 0.933642 0.358207i \(-0.116612\pi\)
0.933642 + 0.358207i \(0.116612\pi\)
\(348\) 0 0
\(349\) 4484.96 0.687892 0.343946 0.938989i \(-0.388236\pi\)
0.343946 + 0.938989i \(0.388236\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4871.72 −0.737681
\(353\) −12762.5 −1.92430 −0.962151 0.272517i \(-0.912144\pi\)
−0.962151 + 0.272517i \(0.912144\pi\)
\(354\) 0 0
\(355\) 2617.25 0.391293
\(356\) −124.218 −0.0184930
\(357\) 0 0
\(358\) −14042.8 −2.07314
\(359\) 2419.42 0.355689 0.177844 0.984059i \(-0.443088\pi\)
0.177844 + 0.984059i \(0.443088\pi\)
\(360\) 0 0
\(361\) 8720.49 1.27139
\(362\) 4161.07 0.604147
\(363\) 0 0
\(364\) 0 0
\(365\) −332.342 −0.0476591
\(366\) 0 0
\(367\) 7129.74 1.01409 0.507043 0.861921i \(-0.330739\pi\)
0.507043 + 0.861921i \(0.330739\pi\)
\(368\) −164.336 −0.0232789
\(369\) 0 0
\(370\) −3263.50 −0.458543
\(371\) 0 0
\(372\) 0 0
\(373\) 11596.9 1.60983 0.804914 0.593391i \(-0.202211\pi\)
0.804914 + 0.593391i \(0.202211\pi\)
\(374\) −659.642 −0.0912013
\(375\) 0 0
\(376\) −3214.81 −0.440934
\(377\) 11924.4 1.62901
\(378\) 0 0
\(379\) −12770.8 −1.73085 −0.865424 0.501040i \(-0.832951\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(380\) −8354.43 −1.12782
\(381\) 0 0
\(382\) −1924.59 −0.257777
\(383\) 7470.10 0.996617 0.498308 0.867000i \(-0.333955\pi\)
0.498308 + 0.867000i \(0.333955\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −23960.1 −3.15942
\(387\) 0 0
\(388\) 56.1558 0.00734763
\(389\) −8749.77 −1.14044 −0.570220 0.821492i \(-0.693142\pi\)
−0.570220 + 0.821492i \(0.693142\pi\)
\(390\) 0 0
\(391\) 96.0092 0.0124179
\(392\) 0 0
\(393\) 0 0
\(394\) −6716.46 −0.858808
\(395\) −2634.91 −0.335637
\(396\) 0 0
\(397\) −5375.25 −0.679537 −0.339769 0.940509i \(-0.610349\pi\)
−0.339769 + 0.940509i \(0.610349\pi\)
\(398\) 5906.65 0.743903
\(399\) 0 0
\(400\) 202.704 0.0253381
\(401\) −7361.33 −0.916727 −0.458363 0.888765i \(-0.651564\pi\)
−0.458363 + 0.888765i \(0.651564\pi\)
\(402\) 0 0
\(403\) −181.209 −0.0223987
\(404\) −11590.7 −1.42737
\(405\) 0 0
\(406\) 0 0
\(407\) −4249.88 −0.517589
\(408\) 0 0
\(409\) 2612.45 0.315837 0.157919 0.987452i \(-0.449522\pi\)
0.157919 + 0.987452i \(0.449522\pi\)
\(410\) 2203.11 0.265375
\(411\) 0 0
\(412\) 15610.3 1.86667
\(413\) 0 0
\(414\) 0 0
\(415\) 350.133 0.0414153
\(416\) 14387.8 1.69572
\(417\) 0 0
\(418\) −17381.3 −2.03384
\(419\) 4398.21 0.512808 0.256404 0.966570i \(-0.417462\pi\)
0.256404 + 0.966570i \(0.417462\pi\)
\(420\) 0 0
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) −15071.9 −1.73859
\(423\) 0 0
\(424\) −9676.01 −1.10828
\(425\) −118.425 −0.0135163
\(426\) 0 0
\(427\) 0 0
\(428\) −762.570 −0.0861220
\(429\) 0 0
\(430\) −6905.54 −0.774453
\(431\) 14314.5 1.59978 0.799892 0.600144i \(-0.204890\pi\)
0.799892 + 0.600144i \(0.204890\pi\)
\(432\) 0 0
\(433\) 2373.62 0.263438 0.131719 0.991287i \(-0.457950\pi\)
0.131719 + 0.991287i \(0.457950\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −18190.9 −1.99813
\(437\) 2529.80 0.276927
\(438\) 0 0
\(439\) 9533.46 1.03646 0.518231 0.855240i \(-0.326591\pi\)
0.518231 + 0.855240i \(0.326591\pi\)
\(440\) 3750.51 0.406360
\(441\) 0 0
\(442\) 1948.14 0.209646
\(443\) −6647.94 −0.712987 −0.356493 0.934298i \(-0.616028\pi\)
−0.356493 + 0.934298i \(0.616028\pi\)
\(444\) 0 0
\(445\) −46.3963 −0.00494246
\(446\) −20224.8 −2.14725
\(447\) 0 0
\(448\) 0 0
\(449\) 768.256 0.0807489 0.0403744 0.999185i \(-0.487145\pi\)
0.0403744 + 0.999185i \(0.487145\pi\)
\(450\) 0 0
\(451\) 2868.99 0.299547
\(452\) −5837.06 −0.607416
\(453\) 0 0
\(454\) −282.628 −0.0292167
\(455\) 0 0
\(456\) 0 0
\(457\) −3323.50 −0.340190 −0.170095 0.985428i \(-0.554407\pi\)
−0.170095 + 0.985428i \(0.554407\pi\)
\(458\) −13963.5 −1.42461
\(459\) 0 0
\(460\) −1356.60 −0.137503
\(461\) −18840.7 −1.90347 −0.951733 0.306926i \(-0.900700\pi\)
−0.951733 + 0.306926i \(0.900700\pi\)
\(462\) 0 0
\(463\) −10759.1 −1.07995 −0.539977 0.841679i \(-0.681567\pi\)
−0.539977 + 0.841679i \(0.681567\pi\)
\(464\) −1087.21 −0.108777
\(465\) 0 0
\(466\) 16330.1 1.62334
\(467\) 7441.70 0.737390 0.368695 0.929550i \(-0.379805\pi\)
0.368695 + 0.929550i \(0.379805\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2984.08 −0.292863
\(471\) 0 0
\(472\) 20887.6 2.03693
\(473\) −8992.73 −0.874178
\(474\) 0 0
\(475\) −3120.45 −0.301423
\(476\) 0 0
\(477\) 0 0
\(478\) −10556.1 −1.01010
\(479\) 5691.97 0.542949 0.271475 0.962446i \(-0.412489\pi\)
0.271475 + 0.962446i \(0.412489\pi\)
\(480\) 0 0
\(481\) 12551.3 1.18979
\(482\) 10246.5 0.968293
\(483\) 0 0
\(484\) −5679.77 −0.533412
\(485\) 20.9746 0.00196373
\(486\) 0 0
\(487\) −2020.25 −0.187980 −0.0939899 0.995573i \(-0.529962\pi\)
−0.0939899 + 0.995573i \(0.529962\pi\)
\(488\) −9700.77 −0.899863
\(489\) 0 0
\(490\) 0 0
\(491\) −7636.02 −0.701851 −0.350925 0.936403i \(-0.614133\pi\)
−0.350925 + 0.936403i \(0.614133\pi\)
\(492\) 0 0
\(493\) 635.173 0.0580259
\(494\) 51332.6 4.67523
\(495\) 0 0
\(496\) 16.5218 0.00149567
\(497\) 0 0
\(498\) 0 0
\(499\) 6284.56 0.563799 0.281900 0.959444i \(-0.409036\pi\)
0.281900 + 0.959444i \(0.409036\pi\)
\(500\) 1673.32 0.149667
\(501\) 0 0
\(502\) −14255.4 −1.26743
\(503\) 11310.9 1.00264 0.501319 0.865262i \(-0.332848\pi\)
0.501319 + 0.865262i \(0.332848\pi\)
\(504\) 0 0
\(505\) −4329.22 −0.381481
\(506\) −2822.38 −0.247965
\(507\) 0 0
\(508\) 15885.7 1.38743
\(509\) 10712.7 0.932876 0.466438 0.884554i \(-0.345537\pi\)
0.466438 + 0.884554i \(0.345537\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −2927.65 −0.252705
\(513\) 0 0
\(514\) −27897.2 −2.39396
\(515\) 5830.58 0.498886
\(516\) 0 0
\(517\) −3886.02 −0.330574
\(518\) 0 0
\(519\) 0 0
\(520\) −11076.5 −0.934106
\(521\) 17721.9 1.49023 0.745116 0.666935i \(-0.232394\pi\)
0.745116 + 0.666935i \(0.232394\pi\)
\(522\) 0 0
\(523\) −237.193 −0.0198312 −0.00991562 0.999951i \(-0.503156\pi\)
−0.00991562 + 0.999951i \(0.503156\pi\)
\(524\) 13849.2 1.15459
\(525\) 0 0
\(526\) −27395.0 −2.27088
\(527\) −9.65243 −0.000797849 0
\(528\) 0 0
\(529\) −11756.2 −0.966237
\(530\) −8981.57 −0.736103
\(531\) 0 0
\(532\) 0 0
\(533\) −8473.06 −0.688572
\(534\) 0 0
\(535\) −284.826 −0.0230170
\(536\) 17382.5 1.40077
\(537\) 0 0
\(538\) 15042.8 1.20546
\(539\) 0 0
\(540\) 0 0
\(541\) −5352.94 −0.425399 −0.212699 0.977118i \(-0.568226\pi\)
−0.212699 + 0.977118i \(0.568226\pi\)
\(542\) 28886.2 2.28924
\(543\) 0 0
\(544\) 766.391 0.0604021
\(545\) −6794.45 −0.534022
\(546\) 0 0
\(547\) −192.162 −0.0150206 −0.00751030 0.999972i \(-0.502391\pi\)
−0.00751030 + 0.999972i \(0.502391\pi\)
\(548\) −8650.67 −0.674340
\(549\) 0 0
\(550\) 3481.33 0.269899
\(551\) 16736.5 1.29401
\(552\) 0 0
\(553\) 0 0
\(554\) −7270.60 −0.557578
\(555\) 0 0
\(556\) −6780.10 −0.517159
\(557\) 4850.62 0.368990 0.184495 0.982833i \(-0.440935\pi\)
0.184495 + 0.982833i \(0.440935\pi\)
\(558\) 0 0
\(559\) 26558.4 2.00949
\(560\) 0 0
\(561\) 0 0
\(562\) 36284.4 2.72343
\(563\) 9699.11 0.726055 0.363027 0.931778i \(-0.381743\pi\)
0.363027 + 0.931778i \(0.381743\pi\)
\(564\) 0 0
\(565\) −2180.19 −0.162338
\(566\) −28975.6 −2.15183
\(567\) 0 0
\(568\) 13039.5 0.963247
\(569\) −3109.53 −0.229100 −0.114550 0.993417i \(-0.536543\pi\)
−0.114550 + 0.993417i \(0.536543\pi\)
\(570\) 0 0
\(571\) −14476.2 −1.06097 −0.530483 0.847695i \(-0.677990\pi\)
−0.530483 + 0.847695i \(0.677990\pi\)
\(572\) −35846.8 −2.62033
\(573\) 0 0
\(574\) 0 0
\(575\) −506.699 −0.0367492
\(576\) 0 0
\(577\) 2208.23 0.159323 0.0796617 0.996822i \(-0.474616\pi\)
0.0796617 + 0.996822i \(0.474616\pi\)
\(578\) −22616.7 −1.62756
\(579\) 0 0
\(580\) −8974.90 −0.642521
\(581\) 0 0
\(582\) 0 0
\(583\) −11696.2 −0.830889
\(584\) −1655.77 −0.117322
\(585\) 0 0
\(586\) −33597.4 −2.36843
\(587\) −23988.7 −1.68675 −0.843374 0.537327i \(-0.819434\pi\)
−0.843374 + 0.537327i \(0.819434\pi\)
\(588\) 0 0
\(589\) −254.338 −0.0177925
\(590\) 19388.5 1.35290
\(591\) 0 0
\(592\) −1144.37 −0.0794480
\(593\) −15869.4 −1.09895 −0.549474 0.835511i \(-0.685172\pi\)
−0.549474 + 0.835511i \(0.685172\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24472.2 1.68192
\(597\) 0 0
\(598\) 8335.41 0.570000
\(599\) 15236.6 1.03932 0.519660 0.854373i \(-0.326059\pi\)
0.519660 + 0.854373i \(0.326059\pi\)
\(600\) 0 0
\(601\) −12258.8 −0.832026 −0.416013 0.909359i \(-0.636573\pi\)
−0.416013 + 0.909359i \(0.636573\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 39827.4 2.68303
\(605\) −2121.44 −0.142560
\(606\) 0 0
\(607\) −23487.2 −1.57054 −0.785269 0.619155i \(-0.787475\pi\)
−0.785269 + 0.619155i \(0.787475\pi\)
\(608\) 20194.1 1.34700
\(609\) 0 0
\(610\) −9004.54 −0.597678
\(611\) 11476.7 0.759896
\(612\) 0 0
\(613\) −22305.3 −1.46966 −0.734830 0.678251i \(-0.762738\pi\)
−0.734830 + 0.678251i \(0.762738\pi\)
\(614\) −6142.92 −0.403759
\(615\) 0 0
\(616\) 0 0
\(617\) −3285.91 −0.214402 −0.107201 0.994237i \(-0.534189\pi\)
−0.107201 + 0.994237i \(0.534189\pi\)
\(618\) 0 0
\(619\) 11613.1 0.754069 0.377035 0.926199i \(-0.376944\pi\)
0.377035 + 0.926199i \(0.376944\pi\)
\(620\) 136.387 0.00883459
\(621\) 0 0
\(622\) 22515.5 1.45143
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −35763.5 −2.28338
\(627\) 0 0
\(628\) 28536.7 1.81328
\(629\) 668.567 0.0423808
\(630\) 0 0
\(631\) 6890.91 0.434743 0.217372 0.976089i \(-0.430252\pi\)
0.217372 + 0.976089i \(0.430252\pi\)
\(632\) −13127.5 −0.826238
\(633\) 0 0
\(634\) 37805.9 2.36824
\(635\) 5933.43 0.370804
\(636\) 0 0
\(637\) 0 0
\(638\) −18672.2 −1.15868
\(639\) 0 0
\(640\) −12328.9 −0.761470
\(641\) −18769.3 −1.15654 −0.578269 0.815846i \(-0.696272\pi\)
−0.578269 + 0.815846i \(0.696272\pi\)
\(642\) 0 0
\(643\) 3142.30 0.192722 0.0963609 0.995346i \(-0.469280\pi\)
0.0963609 + 0.995346i \(0.469280\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2734.33 0.166533
\(647\) 19038.1 1.15683 0.578413 0.815744i \(-0.303672\pi\)
0.578413 + 0.815744i \(0.303672\pi\)
\(648\) 0 0
\(649\) 25248.7 1.52711
\(650\) −10281.5 −0.620421
\(651\) 0 0
\(652\) −7950.82 −0.477574
\(653\) 20538.6 1.23084 0.615420 0.788199i \(-0.288986\pi\)
0.615420 + 0.788199i \(0.288986\pi\)
\(654\) 0 0
\(655\) 5172.78 0.308576
\(656\) 772.534 0.0459793
\(657\) 0 0
\(658\) 0 0
\(659\) 937.046 0.0553902 0.0276951 0.999616i \(-0.491183\pi\)
0.0276951 + 0.999616i \(0.491183\pi\)
\(660\) 0 0
\(661\) −21116.5 −1.24257 −0.621283 0.783586i \(-0.713388\pi\)
−0.621283 + 0.783586i \(0.713388\pi\)
\(662\) −9437.65 −0.554085
\(663\) 0 0
\(664\) 1744.41 0.101952
\(665\) 0 0
\(666\) 0 0
\(667\) 2717.69 0.157765
\(668\) −39307.1 −2.27670
\(669\) 0 0
\(670\) 16135.0 0.930371
\(671\) −11726.2 −0.674640
\(672\) 0 0
\(673\) 13825.9 0.791903 0.395952 0.918271i \(-0.370415\pi\)
0.395952 + 0.918271i \(0.370415\pi\)
\(674\) 33989.3 1.94246
\(675\) 0 0
\(676\) 76456.9 4.35008
\(677\) −16928.4 −0.961021 −0.480510 0.876989i \(-0.659549\pi\)
−0.480510 + 0.876989i \(0.659549\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −590.008 −0.0332732
\(681\) 0 0
\(682\) 283.752 0.0159317
\(683\) 13817.3 0.774091 0.387045 0.922061i \(-0.373496\pi\)
0.387045 + 0.922061i \(0.373496\pi\)
\(684\) 0 0
\(685\) −3231.09 −0.180224
\(686\) 0 0
\(687\) 0 0
\(688\) −2421.47 −0.134183
\(689\) 34542.8 1.90998
\(690\) 0 0
\(691\) 23671.6 1.30320 0.651600 0.758563i \(-0.274098\pi\)
0.651600 + 0.758563i \(0.274098\pi\)
\(692\) 31422.5 1.72616
\(693\) 0 0
\(694\) 55818.2 3.05307
\(695\) −2532.42 −0.138216
\(696\) 0 0
\(697\) −451.333 −0.0245272
\(698\) 20741.0 1.12472
\(699\) 0 0
\(700\) 0 0
\(701\) 17009.7 0.916472 0.458236 0.888831i \(-0.348481\pi\)
0.458236 + 0.888831i \(0.348481\pi\)
\(702\) 0 0
\(703\) 17616.5 0.945117
\(704\) −24482.8 −1.31070
\(705\) 0 0
\(706\) −59020.9 −3.14629
\(707\) 0 0
\(708\) 0 0
\(709\) 22038.9 1.16740 0.583701 0.811969i \(-0.301604\pi\)
0.583701 + 0.811969i \(0.301604\pi\)
\(710\) 12103.6 0.639777
\(711\) 0 0
\(712\) −231.152 −0.0121669
\(713\) −41.2994 −0.00216925
\(714\) 0 0
\(715\) −13389.1 −0.700312
\(716\) −40649.2 −2.12169
\(717\) 0 0
\(718\) 11188.8 0.581562
\(719\) 7287.44 0.377991 0.188996 0.981978i \(-0.439477\pi\)
0.188996 + 0.981978i \(0.439477\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 40328.5 2.07877
\(723\) 0 0
\(724\) 12044.9 0.618297
\(725\) −3352.20 −0.171721
\(726\) 0 0
\(727\) 29676.7 1.51396 0.756980 0.653438i \(-0.226674\pi\)
0.756980 + 0.653438i \(0.226674\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1536.94 −0.0779241
\(731\) 1414.68 0.0715786
\(732\) 0 0
\(733\) −23111.8 −1.16460 −0.582300 0.812974i \(-0.697847\pi\)
−0.582300 + 0.812974i \(0.697847\pi\)
\(734\) 32971.9 1.65806
\(735\) 0 0
\(736\) 3279.12 0.164226
\(737\) 21011.7 1.05017
\(738\) 0 0
\(739\) −31171.4 −1.55164 −0.775818 0.630957i \(-0.782662\pi\)
−0.775818 + 0.630957i \(0.782662\pi\)
\(740\) −9446.75 −0.469283
\(741\) 0 0
\(742\) 0 0
\(743\) 31324.4 1.54668 0.773338 0.633993i \(-0.218585\pi\)
0.773338 + 0.633993i \(0.218585\pi\)
\(744\) 0 0
\(745\) 9140.58 0.449510
\(746\) 53630.7 2.63212
\(747\) 0 0
\(748\) −1909.45 −0.0933373
\(749\) 0 0
\(750\) 0 0
\(751\) 4032.20 0.195922 0.0979608 0.995190i \(-0.468768\pi\)
0.0979608 + 0.995190i \(0.468768\pi\)
\(752\) −1046.39 −0.0507419
\(753\) 0 0
\(754\) 55145.0 2.66348
\(755\) 14875.8 0.717069
\(756\) 0 0
\(757\) 34263.7 1.64509 0.822546 0.568699i \(-0.192553\pi\)
0.822546 + 0.568699i \(0.192553\pi\)
\(758\) −59059.3 −2.82999
\(759\) 0 0
\(760\) −15546.5 −0.742013
\(761\) 7265.88 0.346108 0.173054 0.984912i \(-0.444637\pi\)
0.173054 + 0.984912i \(0.444637\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −5571.07 −0.263814
\(765\) 0 0
\(766\) 34546.0 1.62950
\(767\) −74567.5 −3.51040
\(768\) 0 0
\(769\) −38116.2 −1.78739 −0.893695 0.448674i \(-0.851896\pi\)
−0.893695 + 0.448674i \(0.851896\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −69356.6 −3.23342
\(773\) 16158.2 0.751838 0.375919 0.926652i \(-0.377327\pi\)
0.375919 + 0.926652i \(0.377327\pi\)
\(774\) 0 0
\(775\) 50.9417 0.00236114
\(776\) 104.498 0.00483412
\(777\) 0 0
\(778\) −40463.9 −1.86465
\(779\) −11892.4 −0.546972
\(780\) 0 0
\(781\) 15761.9 0.722160
\(782\) 444.001 0.0203036
\(783\) 0 0
\(784\) 0 0
\(785\) 10658.7 0.484618
\(786\) 0 0
\(787\) −5092.49 −0.230658 −0.115329 0.993327i \(-0.536792\pi\)
−0.115329 + 0.993327i \(0.536792\pi\)
\(788\) −19441.9 −0.878922
\(789\) 0 0
\(790\) −12185.3 −0.548777
\(791\) 0 0
\(792\) 0 0
\(793\) 34631.1 1.55080
\(794\) −24858.2 −1.11106
\(795\) 0 0
\(796\) 17097.8 0.761326
\(797\) −34666.2 −1.54070 −0.770350 0.637621i \(-0.779919\pi\)
−0.770350 + 0.637621i \(0.779919\pi\)
\(798\) 0 0
\(799\) 611.326 0.0270678
\(800\) −4044.71 −0.178753
\(801\) 0 0
\(802\) −34043.0 −1.49888
\(803\) −2001.47 −0.0879582
\(804\) 0 0
\(805\) 0 0
\(806\) −838.012 −0.0366225
\(807\) 0 0
\(808\) −21568.7 −0.939091
\(809\) −15126.2 −0.657365 −0.328683 0.944440i \(-0.606605\pi\)
−0.328683 + 0.944440i \(0.606605\pi\)
\(810\) 0 0
\(811\) −29416.5 −1.27368 −0.636840 0.770996i \(-0.719759\pi\)
−0.636840 + 0.770996i \(0.719759\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −19653.9 −0.846274
\(815\) −2969.69 −0.127637
\(816\) 0 0
\(817\) 37276.3 1.59625
\(818\) 12081.5 0.516404
\(819\) 0 0
\(820\) 6377.27 0.271590
\(821\) 15334.4 0.651856 0.325928 0.945395i \(-0.394323\pi\)
0.325928 + 0.945395i \(0.394323\pi\)
\(822\) 0 0
\(823\) −11003.7 −0.466056 −0.233028 0.972470i \(-0.574863\pi\)
−0.233028 + 0.972470i \(0.574863\pi\)
\(824\) 29048.7 1.22811
\(825\) 0 0
\(826\) 0 0
\(827\) 3261.59 0.137142 0.0685711 0.997646i \(-0.478156\pi\)
0.0685711 + 0.997646i \(0.478156\pi\)
\(828\) 0 0
\(829\) −5163.30 −0.216319 −0.108160 0.994134i \(-0.534496\pi\)
−0.108160 + 0.994134i \(0.534496\pi\)
\(830\) 1619.21 0.0677152
\(831\) 0 0
\(832\) 72305.6 3.01292
\(833\) 0 0
\(834\) 0 0
\(835\) −14681.5 −0.608472
\(836\) −50313.1 −2.08148
\(837\) 0 0
\(838\) 20339.8 0.838457
\(839\) −5641.70 −0.232149 −0.116075 0.993241i \(-0.537031\pi\)
−0.116075 + 0.993241i \(0.537031\pi\)
\(840\) 0 0
\(841\) −6409.46 −0.262801
\(842\) 44966.1 1.84042
\(843\) 0 0
\(844\) −43628.1 −1.77931
\(845\) 28557.3 1.16260
\(846\) 0 0
\(847\) 0 0
\(848\) −3149.45 −0.127538
\(849\) 0 0
\(850\) −547.663 −0.0220996
\(851\) 2860.57 0.115228
\(852\) 0 0
\(853\) 7799.52 0.313072 0.156536 0.987672i \(-0.449967\pi\)
0.156536 + 0.987672i \(0.449967\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1419.04 −0.0566610
\(857\) −21540.0 −0.858568 −0.429284 0.903170i \(-0.641234\pi\)
−0.429284 + 0.903170i \(0.641234\pi\)
\(858\) 0 0
\(859\) −4447.97 −0.176674 −0.0883370 0.996091i \(-0.528155\pi\)
−0.0883370 + 0.996091i \(0.528155\pi\)
\(860\) −19989.3 −0.792591
\(861\) 0 0
\(862\) 66198.5 2.61569
\(863\) 9425.21 0.371770 0.185885 0.982571i \(-0.440485\pi\)
0.185885 + 0.982571i \(0.440485\pi\)
\(864\) 0 0
\(865\) 11736.5 0.461335
\(866\) 10977.0 0.430730
\(867\) 0 0
\(868\) 0 0
\(869\) −15868.3 −0.619442
\(870\) 0 0
\(871\) −62054.5 −2.41405
\(872\) −33850.8 −1.31460
\(873\) 0 0
\(874\) 11699.2 0.452783
\(875\) 0 0
\(876\) 0 0
\(877\) 22346.1 0.860403 0.430201 0.902733i \(-0.358443\pi\)
0.430201 + 0.902733i \(0.358443\pi\)
\(878\) 44088.1 1.69465
\(879\) 0 0
\(880\) 1220.75 0.0467632
\(881\) 12074.9 0.461762 0.230881 0.972982i \(-0.425839\pi\)
0.230881 + 0.972982i \(0.425839\pi\)
\(882\) 0 0
\(883\) −30499.6 −1.16239 −0.581196 0.813764i \(-0.697415\pi\)
−0.581196 + 0.813764i \(0.697415\pi\)
\(884\) 5639.22 0.214556
\(885\) 0 0
\(886\) −30743.8 −1.16576
\(887\) 23344.2 0.883675 0.441838 0.897095i \(-0.354327\pi\)
0.441838 + 0.897095i \(0.354327\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −214.562 −0.00808107
\(891\) 0 0
\(892\) −58544.3 −2.19754
\(893\) 16108.2 0.603628
\(894\) 0 0
\(895\) −15182.8 −0.567044
\(896\) 0 0
\(897\) 0 0
\(898\) 3552.85 0.132027
\(899\) −273.227 −0.0101364
\(900\) 0 0
\(901\) 1839.98 0.0680341
\(902\) 13267.8 0.489768
\(903\) 0 0
\(904\) −10862.0 −0.399629
\(905\) 4498.88 0.165246
\(906\) 0 0
\(907\) −15092.5 −0.552523 −0.276262 0.961082i \(-0.589096\pi\)
−0.276262 + 0.961082i \(0.589096\pi\)
\(908\) −818.115 −0.0299010
\(909\) 0 0
\(910\) 0 0
\(911\) 15207.8 0.553081 0.276541 0.961002i \(-0.410812\pi\)
0.276541 + 0.961002i \(0.410812\pi\)
\(912\) 0 0
\(913\) 2108.62 0.0764348
\(914\) −15369.7 −0.556221
\(915\) 0 0
\(916\) −40419.6 −1.45797
\(917\) 0 0
\(918\) 0 0
\(919\) 24818.1 0.890831 0.445415 0.895324i \(-0.353056\pi\)
0.445415 + 0.895324i \(0.353056\pi\)
\(920\) −2524.44 −0.0904656
\(921\) 0 0
\(922\) −87130.0 −3.11223
\(923\) −46550.1 −1.66004
\(924\) 0 0
\(925\) −3528.44 −0.125421
\(926\) −49756.3 −1.76576
\(927\) 0 0
\(928\) 21693.9 0.767388
\(929\) 39906.4 1.40935 0.704675 0.709530i \(-0.251093\pi\)
0.704675 + 0.709530i \(0.251093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 47270.3 1.66136
\(933\) 0 0
\(934\) 34414.6 1.20565
\(935\) −713.194 −0.0249454
\(936\) 0 0
\(937\) −16923.0 −0.590020 −0.295010 0.955494i \(-0.595323\pi\)
−0.295010 + 0.955494i \(0.595323\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −8637.94 −0.299722
\(941\) −53014.1 −1.83657 −0.918285 0.395921i \(-0.870426\pi\)
−0.918285 + 0.395921i \(0.870426\pi\)
\(942\) 0 0
\(943\) −1931.10 −0.0666864
\(944\) 6798.71 0.234406
\(945\) 0 0
\(946\) −41587.4 −1.42931
\(947\) 25798.9 0.885271 0.442636 0.896702i \(-0.354043\pi\)
0.442636 + 0.896702i \(0.354043\pi\)
\(948\) 0 0
\(949\) 5911.00 0.202191
\(950\) −14430.7 −0.492836
\(951\) 0 0
\(952\) 0 0
\(953\) 17942.7 0.609885 0.304943 0.952371i \(-0.401363\pi\)
0.304943 + 0.952371i \(0.401363\pi\)
\(954\) 0 0
\(955\) −2080.84 −0.0705072
\(956\) −30556.6 −1.03375
\(957\) 0 0
\(958\) 26322.9 0.887739
\(959\) 0 0
\(960\) 0 0
\(961\) −29786.8 −0.999861
\(962\) 58044.2 1.94534
\(963\) 0 0
\(964\) 29660.4 0.990971
\(965\) −25905.2 −0.864165
\(966\) 0 0
\(967\) 19668.3 0.654073 0.327036 0.945012i \(-0.393950\pi\)
0.327036 + 0.945012i \(0.393950\pi\)
\(968\) −10569.3 −0.350940
\(969\) 0 0
\(970\) 96.9986 0.00321076
\(971\) 6332.97 0.209304 0.104652 0.994509i \(-0.466627\pi\)
0.104652 + 0.994509i \(0.466627\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −9342.76 −0.307353
\(975\) 0 0
\(976\) −3157.51 −0.103555
\(977\) 11334.1 0.371145 0.185573 0.982631i \(-0.440586\pi\)
0.185573 + 0.982631i \(0.440586\pi\)
\(978\) 0 0
\(979\) −279.414 −0.00912166
\(980\) 0 0
\(981\) 0 0
\(982\) −35313.3 −1.14755
\(983\) −37654.3 −1.22175 −0.610877 0.791725i \(-0.709183\pi\)
−0.610877 + 0.791725i \(0.709183\pi\)
\(984\) 0 0
\(985\) −7261.72 −0.234901
\(986\) 2937.40 0.0948741
\(987\) 0 0
\(988\) 148591. 4.78473
\(989\) 6052.95 0.194613
\(990\) 0 0
\(991\) −53441.5 −1.71304 −0.856522 0.516111i \(-0.827379\pi\)
−0.856522 + 0.516111i \(0.827379\pi\)
\(992\) −329.671 −0.0105515
\(993\) 0 0
\(994\) 0 0
\(995\) 6386.16 0.203472
\(996\) 0 0
\(997\) −37919.3 −1.20453 −0.602266 0.798296i \(-0.705735\pi\)
−0.602266 + 0.798296i \(0.705735\pi\)
\(998\) 29063.4 0.921829
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.4.a.bm.1.3 3
3.2 odd 2 245.4.a.l.1.1 3
7.6 odd 2 315.4.a.p.1.3 3
15.14 odd 2 1225.4.a.y.1.3 3
21.2 odd 6 245.4.e.n.116.3 6
21.5 even 6 245.4.e.m.116.3 6
21.11 odd 6 245.4.e.n.226.3 6
21.17 even 6 245.4.e.m.226.3 6
21.20 even 2 35.4.a.c.1.1 3
35.34 odd 2 1575.4.a.ba.1.1 3
84.83 odd 2 560.4.a.u.1.3 3
105.62 odd 4 175.4.b.e.99.1 6
105.83 odd 4 175.4.b.e.99.6 6
105.104 even 2 175.4.a.f.1.3 3
168.83 odd 2 2240.4.a.bv.1.1 3
168.125 even 2 2240.4.a.bt.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.1 3 21.20 even 2
175.4.a.f.1.3 3 105.104 even 2
175.4.b.e.99.1 6 105.62 odd 4
175.4.b.e.99.6 6 105.83 odd 4
245.4.a.l.1.1 3 3.2 odd 2
245.4.e.m.116.3 6 21.5 even 6
245.4.e.m.226.3 6 21.17 even 6
245.4.e.n.116.3 6 21.2 odd 6
245.4.e.n.226.3 6 21.11 odd 6
315.4.a.p.1.3 3 7.6 odd 2
560.4.a.u.1.3 3 84.83 odd 2
1225.4.a.y.1.3 3 15.14 odd 2
1575.4.a.ba.1.1 3 35.34 odd 2
2205.4.a.bm.1.3 3 1.1 even 1 trivial
2240.4.a.bt.1.3 3 168.125 even 2
2240.4.a.bv.1.1 3 168.83 odd 2