Properties

Label 2205.4.a.ba.1.2
Level $2205$
Weight $4$
Character 2205.1
Self dual yes
Analytic conductor $130.099$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,4,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 315)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 2205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155 q^{2} -1.43845 q^{4} -5.00000 q^{5} -24.1771 q^{8} +O(q^{10})\) \(q+2.56155 q^{2} -1.43845 q^{4} -5.00000 q^{5} -24.1771 q^{8} -12.8078 q^{10} +6.24621 q^{11} +56.3542 q^{13} -50.4233 q^{16} -24.6004 q^{17} +90.7083 q^{19} +7.19224 q^{20} +16.0000 q^{22} -69.8617 q^{23} +25.0000 q^{25} +144.354 q^{26} -228.847 q^{29} +67.8920 q^{31} +64.2547 q^{32} -63.0152 q^{34} -58.8466 q^{37} +232.354 q^{38} +120.885 q^{40} -19.2007 q^{41} +365.218 q^{43} -8.98485 q^{44} -178.955 q^{46} +195.153 q^{47} +64.0388 q^{50} -81.0625 q^{52} -511.201 q^{53} -31.2311 q^{55} -586.203 q^{58} +284.000 q^{59} +123.460 q^{61} +173.909 q^{62} +567.978 q^{64} -281.771 q^{65} +144.968 q^{67} +35.3863 q^{68} -73.0284 q^{71} -638.850 q^{73} -150.739 q^{74} -130.479 q^{76} +976.189 q^{79} +252.116 q^{80} -49.1837 q^{82} +484.466 q^{83} +123.002 q^{85} +935.525 q^{86} -151.015 q^{88} -1017.30 q^{89} +100.492 q^{92} +499.896 q^{94} -453.542 q^{95} -1806.67 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 7 q^{4} - 10 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - 7 q^{4} - 10 q^{5} - 3 q^{8} - 5 q^{10} - 4 q^{11} + 22 q^{13} - 39 q^{16} + 58 q^{17} + 35 q^{20} + 32 q^{22} - 82 q^{23} + 50 q^{25} + 198 q^{26} - 334 q^{29} + 210 q^{31} - 123 q^{32} - 192 q^{34} + 6 q^{37} + 374 q^{38} + 15 q^{40} + 176 q^{41} + 46 q^{43} + 48 q^{44} - 160 q^{46} + 514 q^{47} + 25 q^{50} + 110 q^{52} - 808 q^{53} + 20 q^{55} - 422 q^{58} + 568 q^{59} + 618 q^{61} - 48 q^{62} + 769 q^{64} - 110 q^{65} + 694 q^{67} - 424 q^{68} - 814 q^{71} - 82 q^{73} - 252 q^{74} + 374 q^{76} + 600 q^{79} + 195 q^{80} - 354 q^{82} - 268 q^{83} - 290 q^{85} + 1434 q^{86} - 368 q^{88} - 72 q^{89} + 168 q^{92} + 2 q^{94} - 1626 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.56155 0.905646 0.452823 0.891601i \(-0.350417\pi\)
0.452823 + 0.891601i \(0.350417\pi\)
\(3\) 0 0
\(4\) −1.43845 −0.179806
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) −24.1771 −1.06849
\(9\) 0 0
\(10\) −12.8078 −0.405017
\(11\) 6.24621 0.171209 0.0856047 0.996329i \(-0.472718\pi\)
0.0856047 + 0.996329i \(0.472718\pi\)
\(12\) 0 0
\(13\) 56.3542 1.20229 0.601147 0.799138i \(-0.294710\pi\)
0.601147 + 0.799138i \(0.294710\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −50.4233 −0.787864
\(17\) −24.6004 −0.350969 −0.175484 0.984482i \(-0.556149\pi\)
−0.175484 + 0.984482i \(0.556149\pi\)
\(18\) 0 0
\(19\) 90.7083 1.09526 0.547629 0.836721i \(-0.315530\pi\)
0.547629 + 0.836721i \(0.315530\pi\)
\(20\) 7.19224 0.0804116
\(21\) 0 0
\(22\) 16.0000 0.155055
\(23\) −69.8617 −0.633356 −0.316678 0.948533i \(-0.602567\pi\)
−0.316678 + 0.948533i \(0.602567\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 144.354 1.08885
\(27\) 0 0
\(28\) 0 0
\(29\) −228.847 −1.46537 −0.732685 0.680568i \(-0.761733\pi\)
−0.732685 + 0.680568i \(0.761733\pi\)
\(30\) 0 0
\(31\) 67.8920 0.393347 0.196674 0.980469i \(-0.436986\pi\)
0.196674 + 0.980469i \(0.436986\pi\)
\(32\) 64.2547 0.354961
\(33\) 0 0
\(34\) −63.0152 −0.317853
\(35\) 0 0
\(36\) 0 0
\(37\) −58.8466 −0.261468 −0.130734 0.991417i \(-0.541733\pi\)
−0.130734 + 0.991417i \(0.541733\pi\)
\(38\) 232.354 0.991916
\(39\) 0 0
\(40\) 120.885 0.477842
\(41\) −19.2007 −0.0731379 −0.0365689 0.999331i \(-0.511643\pi\)
−0.0365689 + 0.999331i \(0.511643\pi\)
\(42\) 0 0
\(43\) 365.218 1.29524 0.647618 0.761965i \(-0.275765\pi\)
0.647618 + 0.761965i \(0.275765\pi\)
\(44\) −8.98485 −0.0307845
\(45\) 0 0
\(46\) −178.955 −0.573596
\(47\) 195.153 0.605661 0.302830 0.953044i \(-0.402068\pi\)
0.302830 + 0.953044i \(0.402068\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 64.0388 0.181129
\(51\) 0 0
\(52\) −81.0625 −0.216180
\(53\) −511.201 −1.32488 −0.662442 0.749113i \(-0.730480\pi\)
−0.662442 + 0.749113i \(0.730480\pi\)
\(54\) 0 0
\(55\) −31.2311 −0.0765672
\(56\) 0 0
\(57\) 0 0
\(58\) −586.203 −1.32711
\(59\) 284.000 0.626672 0.313336 0.949642i \(-0.398553\pi\)
0.313336 + 0.949642i \(0.398553\pi\)
\(60\) 0 0
\(61\) 123.460 0.259139 0.129569 0.991570i \(-0.458641\pi\)
0.129569 + 0.991570i \(0.458641\pi\)
\(62\) 173.909 0.356233
\(63\) 0 0
\(64\) 567.978 1.10933
\(65\) −281.771 −0.537683
\(66\) 0 0
\(67\) 144.968 0.264338 0.132169 0.991227i \(-0.457806\pi\)
0.132169 + 0.991227i \(0.457806\pi\)
\(68\) 35.3863 0.0631062
\(69\) 0 0
\(70\) 0 0
\(71\) −73.0284 −0.122069 −0.0610344 0.998136i \(-0.519440\pi\)
−0.0610344 + 0.998136i \(0.519440\pi\)
\(72\) 0 0
\(73\) −638.850 −1.02427 −0.512135 0.858905i \(-0.671145\pi\)
−0.512135 + 0.858905i \(0.671145\pi\)
\(74\) −150.739 −0.236797
\(75\) 0 0
\(76\) −130.479 −0.196934
\(77\) 0 0
\(78\) 0 0
\(79\) 976.189 1.39025 0.695126 0.718888i \(-0.255349\pi\)
0.695126 + 0.718888i \(0.255349\pi\)
\(80\) 252.116 0.352343
\(81\) 0 0
\(82\) −49.1837 −0.0662370
\(83\) 484.466 0.640687 0.320344 0.947301i \(-0.396202\pi\)
0.320344 + 0.947301i \(0.396202\pi\)
\(84\) 0 0
\(85\) 123.002 0.156958
\(86\) 935.525 1.17303
\(87\) 0 0
\(88\) −151.015 −0.182935
\(89\) −1017.30 −1.21161 −0.605806 0.795612i \(-0.707149\pi\)
−0.605806 + 0.795612i \(0.707149\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 100.492 0.113881
\(93\) 0 0
\(94\) 499.896 0.548514
\(95\) −453.542 −0.489815
\(96\) 0 0
\(97\) −1806.67 −1.89113 −0.945564 0.325437i \(-0.894489\pi\)
−0.945564 + 0.325437i \(0.894489\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −35.9612 −0.0359612
\(101\) −483.053 −0.475897 −0.237948 0.971278i \(-0.576475\pi\)
−0.237948 + 0.971278i \(0.576475\pi\)
\(102\) 0 0
\(103\) 339.049 0.324345 0.162172 0.986762i \(-0.448150\pi\)
0.162172 + 0.986762i \(0.448150\pi\)
\(104\) −1362.48 −1.28464
\(105\) 0 0
\(106\) −1309.47 −1.19987
\(107\) 450.847 0.407336 0.203668 0.979040i \(-0.434714\pi\)
0.203668 + 0.979040i \(0.434714\pi\)
\(108\) 0 0
\(109\) −1841.70 −1.61838 −0.809189 0.587548i \(-0.800093\pi\)
−0.809189 + 0.587548i \(0.800093\pi\)
\(110\) −80.0000 −0.0693427
\(111\) 0 0
\(112\) 0 0
\(113\) −1874.72 −1.56069 −0.780347 0.625347i \(-0.784958\pi\)
−0.780347 + 0.625347i \(0.784958\pi\)
\(114\) 0 0
\(115\) 349.309 0.283245
\(116\) 329.184 0.263482
\(117\) 0 0
\(118\) 727.481 0.567543
\(119\) 0 0
\(120\) 0 0
\(121\) −1291.98 −0.970687
\(122\) 316.250 0.234688
\(123\) 0 0
\(124\) −97.6591 −0.0707262
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −38.0984 −0.0266196 −0.0133098 0.999911i \(-0.504237\pi\)
−0.0133098 + 0.999911i \(0.504237\pi\)
\(128\) 940.868 0.649702
\(129\) 0 0
\(130\) −721.771 −0.486950
\(131\) −1551.51 −1.03478 −0.517389 0.855750i \(-0.673096\pi\)
−0.517389 + 0.855750i \(0.673096\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 371.343 0.239396
\(135\) 0 0
\(136\) 594.765 0.375005
\(137\) 1203.24 0.750364 0.375182 0.926951i \(-0.377580\pi\)
0.375182 + 0.926951i \(0.377580\pi\)
\(138\) 0 0
\(139\) −1897.00 −1.15756 −0.578781 0.815483i \(-0.696471\pi\)
−0.578781 + 0.815483i \(0.696471\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −187.066 −0.110551
\(143\) 352.000 0.205844
\(144\) 0 0
\(145\) 1144.23 0.655334
\(146\) −1636.45 −0.927626
\(147\) 0 0
\(148\) 84.6477 0.0470135
\(149\) −704.888 −0.387562 −0.193781 0.981045i \(-0.562075\pi\)
−0.193781 + 0.981045i \(0.562075\pi\)
\(150\) 0 0
\(151\) −3035.21 −1.63578 −0.817888 0.575378i \(-0.804855\pi\)
−0.817888 + 0.575378i \(0.804855\pi\)
\(152\) −2193.06 −1.17027
\(153\) 0 0
\(154\) 0 0
\(155\) −339.460 −0.175910
\(156\) 0 0
\(157\) −2713.65 −1.37944 −0.689722 0.724074i \(-0.742267\pi\)
−0.689722 + 0.724074i \(0.742267\pi\)
\(158\) 2500.56 1.25908
\(159\) 0 0
\(160\) −321.274 −0.158743
\(161\) 0 0
\(162\) 0 0
\(163\) −465.259 −0.223570 −0.111785 0.993732i \(-0.535657\pi\)
−0.111785 + 0.993732i \(0.535657\pi\)
\(164\) 27.6193 0.0131506
\(165\) 0 0
\(166\) 1240.98 0.580236
\(167\) −4156.06 −1.92578 −0.962891 0.269892i \(-0.913012\pi\)
−0.962891 + 0.269892i \(0.913012\pi\)
\(168\) 0 0
\(169\) 978.792 0.445513
\(170\) 315.076 0.142148
\(171\) 0 0
\(172\) −525.346 −0.232891
\(173\) 4241.17 1.86387 0.931936 0.362622i \(-0.118119\pi\)
0.931936 + 0.362622i \(0.118119\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −314.955 −0.134890
\(177\) 0 0
\(178\) −2605.87 −1.09729
\(179\) −2940.35 −1.22778 −0.613889 0.789392i \(-0.710396\pi\)
−0.613889 + 0.789392i \(0.710396\pi\)
\(180\) 0 0
\(181\) 1986.35 0.815716 0.407858 0.913045i \(-0.366276\pi\)
0.407858 + 0.913045i \(0.366276\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1689.05 0.676732
\(185\) 294.233 0.116932
\(186\) 0 0
\(187\) −153.659 −0.0600891
\(188\) −280.718 −0.108901
\(189\) 0 0
\(190\) −1161.77 −0.443598
\(191\) 1615.88 0.612150 0.306075 0.952007i \(-0.400984\pi\)
0.306075 + 0.952007i \(0.400984\pi\)
\(192\) 0 0
\(193\) −2052.44 −0.765482 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(194\) −4627.88 −1.71269
\(195\) 0 0
\(196\) 0 0
\(197\) −4468.58 −1.61611 −0.808054 0.589108i \(-0.799479\pi\)
−0.808054 + 0.589108i \(0.799479\pi\)
\(198\) 0 0
\(199\) −1543.07 −0.549675 −0.274838 0.961491i \(-0.588624\pi\)
−0.274838 + 0.961491i \(0.588624\pi\)
\(200\) −604.427 −0.213697
\(201\) 0 0
\(202\) −1237.37 −0.430994
\(203\) 0 0
\(204\) 0 0
\(205\) 96.0037 0.0327083
\(206\) 868.492 0.293741
\(207\) 0 0
\(208\) −2841.56 −0.947245
\(209\) 566.583 0.187519
\(210\) 0 0
\(211\) 1284.02 0.418937 0.209469 0.977815i \(-0.432827\pi\)
0.209469 + 0.977815i \(0.432827\pi\)
\(212\) 735.335 0.238222
\(213\) 0 0
\(214\) 1154.87 0.368902
\(215\) −1826.09 −0.579248
\(216\) 0 0
\(217\) 0 0
\(218\) −4717.62 −1.46568
\(219\) 0 0
\(220\) 44.9242 0.0137672
\(221\) −1386.33 −0.421968
\(222\) 0 0
\(223\) −3815.31 −1.14571 −0.572853 0.819658i \(-0.694163\pi\)
−0.572853 + 0.819658i \(0.694163\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4802.18 −1.41344
\(227\) 2271.53 0.664172 0.332086 0.943249i \(-0.392248\pi\)
0.332086 + 0.943249i \(0.392248\pi\)
\(228\) 0 0
\(229\) 2367.54 0.683195 0.341598 0.939846i \(-0.389032\pi\)
0.341598 + 0.939846i \(0.389032\pi\)
\(230\) 894.773 0.256520
\(231\) 0 0
\(232\) 5532.84 1.56573
\(233\) 1617.71 0.454849 0.227425 0.973796i \(-0.426970\pi\)
0.227425 + 0.973796i \(0.426970\pi\)
\(234\) 0 0
\(235\) −975.767 −0.270860
\(236\) −408.519 −0.112679
\(237\) 0 0
\(238\) 0 0
\(239\) −1935.29 −0.523781 −0.261891 0.965098i \(-0.584346\pi\)
−0.261891 + 0.965098i \(0.584346\pi\)
\(240\) 0 0
\(241\) −477.901 −0.127736 −0.0638679 0.997958i \(-0.520344\pi\)
−0.0638679 + 0.997958i \(0.520344\pi\)
\(242\) −3309.49 −0.879099
\(243\) 0 0
\(244\) −177.591 −0.0465947
\(245\) 0 0
\(246\) 0 0
\(247\) 5111.79 1.31682
\(248\) −1641.43 −0.420286
\(249\) 0 0
\(250\) −320.194 −0.0810034
\(251\) 4769.70 1.19944 0.599722 0.800208i \(-0.295278\pi\)
0.599722 + 0.800208i \(0.295278\pi\)
\(252\) 0 0
\(253\) −436.371 −0.108436
\(254\) −97.5910 −0.0241079
\(255\) 0 0
\(256\) −2133.74 −0.520933
\(257\) 682.524 0.165660 0.0828302 0.996564i \(-0.473604\pi\)
0.0828302 + 0.996564i \(0.473604\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 405.312 0.0966785
\(261\) 0 0
\(262\) −3974.27 −0.937142
\(263\) −3029.11 −0.710202 −0.355101 0.934828i \(-0.615553\pi\)
−0.355101 + 0.934828i \(0.615553\pi\)
\(264\) 0 0
\(265\) 2556.00 0.592506
\(266\) 0 0
\(267\) 0 0
\(268\) −208.529 −0.0475295
\(269\) 6187.33 1.40241 0.701205 0.712960i \(-0.252646\pi\)
0.701205 + 0.712960i \(0.252646\pi\)
\(270\) 0 0
\(271\) 7558.90 1.69436 0.847178 0.531309i \(-0.178300\pi\)
0.847178 + 0.531309i \(0.178300\pi\)
\(272\) 1240.43 0.276516
\(273\) 0 0
\(274\) 3082.17 0.679564
\(275\) 156.155 0.0342419
\(276\) 0 0
\(277\) 3685.36 0.799393 0.399697 0.916647i \(-0.369115\pi\)
0.399697 + 0.916647i \(0.369115\pi\)
\(278\) −4859.26 −1.04834
\(279\) 0 0
\(280\) 0 0
\(281\) −7969.11 −1.69180 −0.845902 0.533338i \(-0.820937\pi\)
−0.845902 + 0.533338i \(0.820937\pi\)
\(282\) 0 0
\(283\) 2479.73 0.520864 0.260432 0.965492i \(-0.416135\pi\)
0.260432 + 0.965492i \(0.416135\pi\)
\(284\) 105.048 0.0219487
\(285\) 0 0
\(286\) 901.667 0.186422
\(287\) 0 0
\(288\) 0 0
\(289\) −4307.82 −0.876821
\(290\) 2931.01 0.593500
\(291\) 0 0
\(292\) 918.952 0.184170
\(293\) −5950.02 −1.18636 −0.593181 0.805069i \(-0.702128\pi\)
−0.593181 + 0.805069i \(0.702128\pi\)
\(294\) 0 0
\(295\) −1420.00 −0.280256
\(296\) 1422.74 0.279375
\(297\) 0 0
\(298\) −1805.61 −0.350994
\(299\) −3937.00 −0.761480
\(300\) 0 0
\(301\) 0 0
\(302\) −7774.86 −1.48143
\(303\) 0 0
\(304\) −4573.81 −0.862915
\(305\) −617.301 −0.115890
\(306\) 0 0
\(307\) 3129.90 0.581865 0.290933 0.956744i \(-0.406034\pi\)
0.290933 + 0.956744i \(0.406034\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −869.545 −0.159312
\(311\) 7261.25 1.32395 0.661973 0.749527i \(-0.269719\pi\)
0.661973 + 0.749527i \(0.269719\pi\)
\(312\) 0 0
\(313\) 2310.83 0.417303 0.208652 0.977990i \(-0.433093\pi\)
0.208652 + 0.977990i \(0.433093\pi\)
\(314\) −6951.16 −1.24929
\(315\) 0 0
\(316\) −1404.20 −0.249975
\(317\) −4701.40 −0.832987 −0.416494 0.909139i \(-0.636741\pi\)
−0.416494 + 0.909139i \(0.636741\pi\)
\(318\) 0 0
\(319\) −1429.42 −0.250885
\(320\) −2839.89 −0.496109
\(321\) 0 0
\(322\) 0 0
\(323\) −2231.46 −0.384401
\(324\) 0 0
\(325\) 1408.85 0.240459
\(326\) −1191.79 −0.202475
\(327\) 0 0
\(328\) 464.218 0.0781468
\(329\) 0 0
\(330\) 0 0
\(331\) 1366.18 0.226864 0.113432 0.993546i \(-0.463816\pi\)
0.113432 + 0.993546i \(0.463816\pi\)
\(332\) −696.879 −0.115199
\(333\) 0 0
\(334\) −10646.0 −1.74408
\(335\) −724.839 −0.118215
\(336\) 0 0
\(337\) −740.632 −0.119718 −0.0598588 0.998207i \(-0.519065\pi\)
−0.0598588 + 0.998207i \(0.519065\pi\)
\(338\) 2507.23 0.403477
\(339\) 0 0
\(340\) −176.932 −0.0282220
\(341\) 424.068 0.0673448
\(342\) 0 0
\(343\) 0 0
\(344\) −8829.90 −1.38394
\(345\) 0 0
\(346\) 10864.0 1.68801
\(347\) 2605.56 0.403094 0.201547 0.979479i \(-0.435403\pi\)
0.201547 + 0.979479i \(0.435403\pi\)
\(348\) 0 0
\(349\) −4665.07 −0.715517 −0.357758 0.933814i \(-0.616459\pi\)
−0.357758 + 0.933814i \(0.616459\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 401.349 0.0607726
\(353\) 2964.75 0.447019 0.223509 0.974702i \(-0.428249\pi\)
0.223509 + 0.974702i \(0.428249\pi\)
\(354\) 0 0
\(355\) 365.142 0.0545908
\(356\) 1463.33 0.217855
\(357\) 0 0
\(358\) −7531.87 −1.11193
\(359\) −4267.55 −0.627389 −0.313695 0.949524i \(-0.601567\pi\)
−0.313695 + 0.949524i \(0.601567\pi\)
\(360\) 0 0
\(361\) 1369.00 0.199592
\(362\) 5088.15 0.738749
\(363\) 0 0
\(364\) 0 0
\(365\) 3194.25 0.458068
\(366\) 0 0
\(367\) 9280.33 1.31997 0.659985 0.751279i \(-0.270562\pi\)
0.659985 + 0.751279i \(0.270562\pi\)
\(368\) 3522.66 0.498998
\(369\) 0 0
\(370\) 753.693 0.105899
\(371\) 0 0
\(372\) 0 0
\(373\) 10781.1 1.49657 0.748286 0.663376i \(-0.230877\pi\)
0.748286 + 0.663376i \(0.230877\pi\)
\(374\) −393.606 −0.0544195
\(375\) 0 0
\(376\) −4718.24 −0.647140
\(377\) −12896.5 −1.76181
\(378\) 0 0
\(379\) −5914.16 −0.801557 −0.400779 0.916175i \(-0.631260\pi\)
−0.400779 + 0.916175i \(0.631260\pi\)
\(380\) 652.396 0.0880716
\(381\) 0 0
\(382\) 4139.15 0.554391
\(383\) −11513.9 −1.53612 −0.768059 0.640379i \(-0.778777\pi\)
−0.768059 + 0.640379i \(0.778777\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5257.44 −0.693256
\(387\) 0 0
\(388\) 2598.80 0.340036
\(389\) −5399.73 −0.703797 −0.351898 0.936038i \(-0.614464\pi\)
−0.351898 + 0.936038i \(0.614464\pi\)
\(390\) 0 0
\(391\) 1718.62 0.222288
\(392\) 0 0
\(393\) 0 0
\(394\) −11446.5 −1.46362
\(395\) −4880.95 −0.621739
\(396\) 0 0
\(397\) −2622.13 −0.331488 −0.165744 0.986169i \(-0.553003\pi\)
−0.165744 + 0.986169i \(0.553003\pi\)
\(398\) −3952.66 −0.497811
\(399\) 0 0
\(400\) −1260.58 −0.157573
\(401\) 11119.1 1.38469 0.692344 0.721568i \(-0.256578\pi\)
0.692344 + 0.721568i \(0.256578\pi\)
\(402\) 0 0
\(403\) 3826.00 0.472920
\(404\) 694.846 0.0855690
\(405\) 0 0
\(406\) 0 0
\(407\) −367.568 −0.0447658
\(408\) 0 0
\(409\) 6589.18 0.796611 0.398305 0.917253i \(-0.369598\pi\)
0.398305 + 0.917253i \(0.369598\pi\)
\(410\) 245.919 0.0296221
\(411\) 0 0
\(412\) −487.704 −0.0583191
\(413\) 0 0
\(414\) 0 0
\(415\) −2422.33 −0.286524
\(416\) 3621.02 0.426767
\(417\) 0 0
\(418\) 1451.33 0.169825
\(419\) −11871.6 −1.38416 −0.692081 0.721820i \(-0.743306\pi\)
−0.692081 + 0.721820i \(0.743306\pi\)
\(420\) 0 0
\(421\) −1731.57 −0.200455 −0.100227 0.994965i \(-0.531957\pi\)
−0.100227 + 0.994965i \(0.531957\pi\)
\(422\) 3289.09 0.379409
\(423\) 0 0
\(424\) 12359.3 1.41562
\(425\) −615.009 −0.0701937
\(426\) 0 0
\(427\) 0 0
\(428\) −648.519 −0.0732415
\(429\) 0 0
\(430\) −4677.62 −0.524593
\(431\) −10653.8 −1.19066 −0.595330 0.803481i \(-0.702979\pi\)
−0.595330 + 0.803481i \(0.702979\pi\)
\(432\) 0 0
\(433\) −2642.01 −0.293226 −0.146613 0.989194i \(-0.546837\pi\)
−0.146613 + 0.989194i \(0.546837\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2649.19 0.290994
\(437\) −6337.04 −0.693688
\(438\) 0 0
\(439\) −8858.21 −0.963051 −0.481525 0.876432i \(-0.659917\pi\)
−0.481525 + 0.876432i \(0.659917\pi\)
\(440\) 755.076 0.0818110
\(441\) 0 0
\(442\) −3551.17 −0.382153
\(443\) 6621.73 0.710176 0.355088 0.934833i \(-0.384451\pi\)
0.355088 + 0.934833i \(0.384451\pi\)
\(444\) 0 0
\(445\) 5086.50 0.541849
\(446\) −9773.13 −1.03760
\(447\) 0 0
\(448\) 0 0
\(449\) −13081.7 −1.37497 −0.687487 0.726196i \(-0.741286\pi\)
−0.687487 + 0.726196i \(0.741286\pi\)
\(450\) 0 0
\(451\) −119.932 −0.0125219
\(452\) 2696.68 0.280622
\(453\) 0 0
\(454\) 5818.65 0.601504
\(455\) 0 0
\(456\) 0 0
\(457\) 12167.0 1.24540 0.622699 0.782461i \(-0.286036\pi\)
0.622699 + 0.782461i \(0.286036\pi\)
\(458\) 6064.59 0.618733
\(459\) 0 0
\(460\) −502.462 −0.0509292
\(461\) 11283.8 1.14000 0.570000 0.821645i \(-0.306943\pi\)
0.570000 + 0.821645i \(0.306943\pi\)
\(462\) 0 0
\(463\) 16542.9 1.66051 0.830254 0.557385i \(-0.188195\pi\)
0.830254 + 0.557385i \(0.188195\pi\)
\(464\) 11539.2 1.15451
\(465\) 0 0
\(466\) 4143.85 0.411932
\(467\) −10266.9 −1.01734 −0.508668 0.860963i \(-0.669862\pi\)
−0.508668 + 0.860963i \(0.669862\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2499.48 −0.245303
\(471\) 0 0
\(472\) −6866.29 −0.669590
\(473\) 2281.23 0.221757
\(474\) 0 0
\(475\) 2267.71 0.219052
\(476\) 0 0
\(477\) 0 0
\(478\) −4957.36 −0.474360
\(479\) −7967.98 −0.760055 −0.380027 0.924975i \(-0.624085\pi\)
−0.380027 + 0.924975i \(0.624085\pi\)
\(480\) 0 0
\(481\) −3316.25 −0.314362
\(482\) −1224.17 −0.115683
\(483\) 0 0
\(484\) 1858.45 0.174535
\(485\) 9033.34 0.845738
\(486\) 0 0
\(487\) 9956.62 0.926443 0.463221 0.886243i \(-0.346694\pi\)
0.463221 + 0.886243i \(0.346694\pi\)
\(488\) −2984.91 −0.276886
\(489\) 0 0
\(490\) 0 0
\(491\) 18660.8 1.71518 0.857589 0.514336i \(-0.171962\pi\)
0.857589 + 0.514336i \(0.171962\pi\)
\(492\) 0 0
\(493\) 5629.71 0.514299
\(494\) 13094.1 1.19258
\(495\) 0 0
\(496\) −3423.34 −0.309904
\(497\) 0 0
\(498\) 0 0
\(499\) 4074.21 0.365504 0.182752 0.983159i \(-0.441499\pi\)
0.182752 + 0.983159i \(0.441499\pi\)
\(500\) 179.806 0.0160823
\(501\) 0 0
\(502\) 12217.8 1.08627
\(503\) −4255.51 −0.377224 −0.188612 0.982052i \(-0.560399\pi\)
−0.188612 + 0.982052i \(0.560399\pi\)
\(504\) 0 0
\(505\) 2415.26 0.212827
\(506\) −1117.79 −0.0982050
\(507\) 0 0
\(508\) 54.8025 0.00478636
\(509\) 10171.8 0.885771 0.442885 0.896578i \(-0.353955\pi\)
0.442885 + 0.896578i \(0.353955\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −12992.6 −1.12148
\(513\) 0 0
\(514\) 1748.32 0.150030
\(515\) −1695.25 −0.145051
\(516\) 0 0
\(517\) 1218.97 0.103695
\(518\) 0 0
\(519\) 0 0
\(520\) 6812.40 0.574506
\(521\) 1680.39 0.141303 0.0706517 0.997501i \(-0.477492\pi\)
0.0706517 + 0.997501i \(0.477492\pi\)
\(522\) 0 0
\(523\) −13211.8 −1.10461 −0.552305 0.833642i \(-0.686251\pi\)
−0.552305 + 0.833642i \(0.686251\pi\)
\(524\) 2231.76 0.186059
\(525\) 0 0
\(526\) −7759.23 −0.643191
\(527\) −1670.17 −0.138053
\(528\) 0 0
\(529\) −7286.34 −0.598861
\(530\) 6547.34 0.536600
\(531\) 0 0
\(532\) 0 0
\(533\) −1082.04 −0.0879333
\(534\) 0 0
\(535\) −2254.23 −0.182166
\(536\) −3504.90 −0.282441
\(537\) 0 0
\(538\) 15849.2 1.27009
\(539\) 0 0
\(540\) 0 0
\(541\) 9650.84 0.766954 0.383477 0.923551i \(-0.374727\pi\)
0.383477 + 0.923551i \(0.374727\pi\)
\(542\) 19362.5 1.53449
\(543\) 0 0
\(544\) −1580.69 −0.124580
\(545\) 9208.52 0.723761
\(546\) 0 0
\(547\) −23864.3 −1.86538 −0.932689 0.360682i \(-0.882544\pi\)
−0.932689 + 0.360682i \(0.882544\pi\)
\(548\) −1730.80 −0.134920
\(549\) 0 0
\(550\) 400.000 0.0310110
\(551\) −20758.3 −1.60496
\(552\) 0 0
\(553\) 0 0
\(554\) 9440.25 0.723967
\(555\) 0 0
\(556\) 2728.73 0.208136
\(557\) 2314.22 0.176044 0.0880221 0.996119i \(-0.471945\pi\)
0.0880221 + 0.996119i \(0.471945\pi\)
\(558\) 0 0
\(559\) 20581.5 1.55726
\(560\) 0 0
\(561\) 0 0
\(562\) −20413.3 −1.53218
\(563\) −7017.86 −0.525342 −0.262671 0.964885i \(-0.584603\pi\)
−0.262671 + 0.964885i \(0.584603\pi\)
\(564\) 0 0
\(565\) 9373.58 0.697964
\(566\) 6351.95 0.471718
\(567\) 0 0
\(568\) 1765.61 0.130429
\(569\) −5302.37 −0.390662 −0.195331 0.980737i \(-0.562578\pi\)
−0.195331 + 0.980737i \(0.562578\pi\)
\(570\) 0 0
\(571\) 17767.2 1.30216 0.651082 0.759008i \(-0.274315\pi\)
0.651082 + 0.759008i \(0.274315\pi\)
\(572\) −506.333 −0.0370120
\(573\) 0 0
\(574\) 0 0
\(575\) −1746.54 −0.126671
\(576\) 0 0
\(577\) 6089.57 0.439363 0.219681 0.975572i \(-0.429498\pi\)
0.219681 + 0.975572i \(0.429498\pi\)
\(578\) −11034.7 −0.794089
\(579\) 0 0
\(580\) −1645.92 −0.117833
\(581\) 0 0
\(582\) 0 0
\(583\) −3193.07 −0.226833
\(584\) 15445.5 1.09442
\(585\) 0 0
\(586\) −15241.3 −1.07442
\(587\) −26543.9 −1.86641 −0.933205 0.359344i \(-0.883000\pi\)
−0.933205 + 0.359344i \(0.883000\pi\)
\(588\) 0 0
\(589\) 6158.37 0.430817
\(590\) −3637.40 −0.253813
\(591\) 0 0
\(592\) 2967.24 0.206001
\(593\) 16365.0 1.13327 0.566635 0.823969i \(-0.308245\pi\)
0.566635 + 0.823969i \(0.308245\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1013.94 0.0696859
\(597\) 0 0
\(598\) −10084.8 −0.689631
\(599\) 17516.3 1.19482 0.597411 0.801935i \(-0.296196\pi\)
0.597411 + 0.801935i \(0.296196\pi\)
\(600\) 0 0
\(601\) −8693.80 −0.590062 −0.295031 0.955488i \(-0.595330\pi\)
−0.295031 + 0.955488i \(0.595330\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4365.99 0.294122
\(605\) 6459.92 0.434105
\(606\) 0 0
\(607\) 18096.9 1.21010 0.605051 0.796186i \(-0.293153\pi\)
0.605051 + 0.796186i \(0.293153\pi\)
\(608\) 5828.44 0.388774
\(609\) 0 0
\(610\) −1581.25 −0.104956
\(611\) 10997.7 0.728183
\(612\) 0 0
\(613\) 4641.61 0.305828 0.152914 0.988239i \(-0.451134\pi\)
0.152914 + 0.988239i \(0.451134\pi\)
\(614\) 8017.40 0.526964
\(615\) 0 0
\(616\) 0 0
\(617\) −14676.1 −0.957600 −0.478800 0.877924i \(-0.658928\pi\)
−0.478800 + 0.877924i \(0.658928\pi\)
\(618\) 0 0
\(619\) 19645.3 1.27563 0.637813 0.770192i \(-0.279839\pi\)
0.637813 + 0.770192i \(0.279839\pi\)
\(620\) 488.296 0.0316297
\(621\) 0 0
\(622\) 18600.1 1.19903
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 5919.32 0.377929
\(627\) 0 0
\(628\) 3903.44 0.248032
\(629\) 1447.65 0.0917671
\(630\) 0 0
\(631\) 26231.2 1.65491 0.827456 0.561531i \(-0.189788\pi\)
0.827456 + 0.561531i \(0.189788\pi\)
\(632\) −23601.4 −1.48546
\(633\) 0 0
\(634\) −12042.9 −0.754391
\(635\) 190.492 0.0119046
\(636\) 0 0
\(637\) 0 0
\(638\) −3661.55 −0.227213
\(639\) 0 0
\(640\) −4704.34 −0.290555
\(641\) −30882.4 −1.90293 −0.951466 0.307754i \(-0.900423\pi\)
−0.951466 + 0.307754i \(0.900423\pi\)
\(642\) 0 0
\(643\) 6216.88 0.381290 0.190645 0.981659i \(-0.438942\pi\)
0.190645 + 0.981659i \(0.438942\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −5716.00 −0.348132
\(647\) −21210.4 −1.28882 −0.644410 0.764680i \(-0.722897\pi\)
−0.644410 + 0.764680i \(0.722897\pi\)
\(648\) 0 0
\(649\) 1773.92 0.107292
\(650\) 3608.85 0.217771
\(651\) 0 0
\(652\) 669.251 0.0401992
\(653\) −32938.7 −1.97395 −0.986977 0.160864i \(-0.948572\pi\)
−0.986977 + 0.160864i \(0.948572\pi\)
\(654\) 0 0
\(655\) 7757.54 0.462767
\(656\) 968.165 0.0576227
\(657\) 0 0
\(658\) 0 0
\(659\) −9543.51 −0.564131 −0.282066 0.959395i \(-0.591020\pi\)
−0.282066 + 0.959395i \(0.591020\pi\)
\(660\) 0 0
\(661\) −13274.5 −0.781116 −0.390558 0.920578i \(-0.627718\pi\)
−0.390558 + 0.920578i \(0.627718\pi\)
\(662\) 3499.55 0.205459
\(663\) 0 0
\(664\) −11713.0 −0.684565
\(665\) 0 0
\(666\) 0 0
\(667\) 15987.6 0.928101
\(668\) 5978.27 0.346267
\(669\) 0 0
\(670\) −1856.71 −0.107061
\(671\) 771.159 0.0443670
\(672\) 0 0
\(673\) −13575.3 −0.777545 −0.388772 0.921334i \(-0.627101\pi\)
−0.388772 + 0.921334i \(0.627101\pi\)
\(674\) −1897.17 −0.108422
\(675\) 0 0
\(676\) −1407.94 −0.0801058
\(677\) 12020.7 0.682414 0.341207 0.939988i \(-0.389164\pi\)
0.341207 + 0.939988i \(0.389164\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2973.83 −0.167707
\(681\) 0 0
\(682\) 1086.27 0.0609905
\(683\) −18391.9 −1.03038 −0.515188 0.857077i \(-0.672278\pi\)
−0.515188 + 0.857077i \(0.672278\pi\)
\(684\) 0 0
\(685\) −6016.21 −0.335573
\(686\) 0 0
\(687\) 0 0
\(688\) −18415.5 −1.02047
\(689\) −28808.3 −1.59290
\(690\) 0 0
\(691\) −15594.1 −0.858508 −0.429254 0.903184i \(-0.641223\pi\)
−0.429254 + 0.903184i \(0.641223\pi\)
\(692\) −6100.69 −0.335135
\(693\) 0 0
\(694\) 6674.28 0.365061
\(695\) 9484.98 0.517677
\(696\) 0 0
\(697\) 472.346 0.0256691
\(698\) −11949.8 −0.648004
\(699\) 0 0
\(700\) 0 0
\(701\) 31093.7 1.67531 0.837656 0.546198i \(-0.183925\pi\)
0.837656 + 0.546198i \(0.183925\pi\)
\(702\) 0 0
\(703\) −5337.88 −0.286375
\(704\) 3547.71 0.189928
\(705\) 0 0
\(706\) 7594.36 0.404841
\(707\) 0 0
\(708\) 0 0
\(709\) −2494.67 −0.132143 −0.0660714 0.997815i \(-0.521047\pi\)
−0.0660714 + 0.997815i \(0.521047\pi\)
\(710\) 935.331 0.0494399
\(711\) 0 0
\(712\) 24595.3 1.29459
\(713\) −4743.06 −0.249129
\(714\) 0 0
\(715\) −1760.00 −0.0920563
\(716\) 4229.54 0.220762
\(717\) 0 0
\(718\) −10931.6 −0.568192
\(719\) 34467.1 1.78777 0.893885 0.448295i \(-0.147969\pi\)
0.893885 + 0.448295i \(0.147969\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3506.77 0.180759
\(723\) 0 0
\(724\) −2857.27 −0.146670
\(725\) −5721.16 −0.293074
\(726\) 0 0
\(727\) −9314.97 −0.475204 −0.237602 0.971363i \(-0.576361\pi\)
−0.237602 + 0.971363i \(0.576361\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 8182.24 0.414847
\(731\) −8984.49 −0.454588
\(732\) 0 0
\(733\) −16146.3 −0.813611 −0.406805 0.913515i \(-0.633357\pi\)
−0.406805 + 0.913515i \(0.633357\pi\)
\(734\) 23772.1 1.19543
\(735\) 0 0
\(736\) −4488.95 −0.224816
\(737\) 905.500 0.0452571
\(738\) 0 0
\(739\) −36749.1 −1.82928 −0.914640 0.404268i \(-0.867526\pi\)
−0.914640 + 0.404268i \(0.867526\pi\)
\(740\) −423.239 −0.0210251
\(741\) 0 0
\(742\) 0 0
\(743\) 2527.09 0.124778 0.0623890 0.998052i \(-0.480128\pi\)
0.0623890 + 0.998052i \(0.480128\pi\)
\(744\) 0 0
\(745\) 3524.44 0.173323
\(746\) 27616.2 1.35536
\(747\) 0 0
\(748\) 221.031 0.0108044
\(749\) 0 0
\(750\) 0 0
\(751\) 15828.0 0.769070 0.384535 0.923111i \(-0.374362\pi\)
0.384535 + 0.923111i \(0.374362\pi\)
\(752\) −9840.28 −0.477178
\(753\) 0 0
\(754\) −33035.0 −1.59557
\(755\) 15176.1 0.731541
\(756\) 0 0
\(757\) −20845.9 −1.00087 −0.500435 0.865774i \(-0.666826\pi\)
−0.500435 + 0.865774i \(0.666826\pi\)
\(758\) −15149.4 −0.725927
\(759\) 0 0
\(760\) 10965.3 0.523360
\(761\) 2420.55 0.115302 0.0576511 0.998337i \(-0.481639\pi\)
0.0576511 + 0.998337i \(0.481639\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −2324.35 −0.110068
\(765\) 0 0
\(766\) −29493.5 −1.39118
\(767\) 16004.6 0.753445
\(768\) 0 0
\(769\) −22646.3 −1.06196 −0.530980 0.847384i \(-0.678176\pi\)
−0.530980 + 0.847384i \(0.678176\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2952.33 0.137638
\(773\) 27620.2 1.28516 0.642580 0.766219i \(-0.277864\pi\)
0.642580 + 0.766219i \(0.277864\pi\)
\(774\) 0 0
\(775\) 1697.30 0.0786695
\(776\) 43680.0 2.02064
\(777\) 0 0
\(778\) −13831.7 −0.637391
\(779\) −1741.67 −0.0801049
\(780\) 0 0
\(781\) −456.151 −0.0208993
\(782\) 4402.35 0.201314
\(783\) 0 0
\(784\) 0 0
\(785\) 13568.2 0.616906
\(786\) 0 0
\(787\) −14767.1 −0.668859 −0.334429 0.942421i \(-0.608544\pi\)
−0.334429 + 0.942421i \(0.608544\pi\)
\(788\) 6427.82 0.290586
\(789\) 0 0
\(790\) −12502.8 −0.563076
\(791\) 0 0
\(792\) 0 0
\(793\) 6957.50 0.311561
\(794\) −6716.71 −0.300211
\(795\) 0 0
\(796\) 2219.62 0.0988348
\(797\) −7549.97 −0.335551 −0.167775 0.985825i \(-0.553658\pi\)
−0.167775 + 0.985825i \(0.553658\pi\)
\(798\) 0 0
\(799\) −4800.85 −0.212568
\(800\) 1606.37 0.0709921
\(801\) 0 0
\(802\) 28482.1 1.25404
\(803\) −3990.39 −0.175365
\(804\) 0 0
\(805\) 0 0
\(806\) 9800.50 0.428298
\(807\) 0 0
\(808\) 11678.8 0.508489
\(809\) −17920.0 −0.778783 −0.389391 0.921072i \(-0.627315\pi\)
−0.389391 + 0.921072i \(0.627315\pi\)
\(810\) 0 0
\(811\) −25536.6 −1.10569 −0.552843 0.833285i \(-0.686457\pi\)
−0.552843 + 0.833285i \(0.686457\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −941.545 −0.0405420
\(815\) 2326.30 0.0999836
\(816\) 0 0
\(817\) 33128.3 1.41862
\(818\) 16878.5 0.721447
\(819\) 0 0
\(820\) −138.096 −0.00588114
\(821\) 13688.8 0.581904 0.290952 0.956738i \(-0.406028\pi\)
0.290952 + 0.956738i \(0.406028\pi\)
\(822\) 0 0
\(823\) −15102.9 −0.639678 −0.319839 0.947472i \(-0.603629\pi\)
−0.319839 + 0.947472i \(0.603629\pi\)
\(824\) −8197.22 −0.346558
\(825\) 0 0
\(826\) 0 0
\(827\) 36290.3 1.52592 0.762961 0.646445i \(-0.223745\pi\)
0.762961 + 0.646445i \(0.223745\pi\)
\(828\) 0 0
\(829\) 39405.1 1.65090 0.825449 0.564477i \(-0.190922\pi\)
0.825449 + 0.564477i \(0.190922\pi\)
\(830\) −6204.92 −0.259489
\(831\) 0 0
\(832\) 32007.9 1.33374
\(833\) 0 0
\(834\) 0 0
\(835\) 20780.3 0.861236
\(836\) −815.000 −0.0337170
\(837\) 0 0
\(838\) −30409.6 −1.25356
\(839\) −33093.9 −1.36177 −0.680886 0.732389i \(-0.738405\pi\)
−0.680886 + 0.732389i \(0.738405\pi\)
\(840\) 0 0
\(841\) 27981.8 1.14731
\(842\) −4435.50 −0.181541
\(843\) 0 0
\(844\) −1847.00 −0.0753274
\(845\) −4893.96 −0.199239
\(846\) 0 0
\(847\) 0 0
\(848\) 25776.4 1.04383
\(849\) 0 0
\(850\) −1575.38 −0.0635706
\(851\) 4111.12 0.165602
\(852\) 0 0
\(853\) −29441.6 −1.18178 −0.590892 0.806750i \(-0.701224\pi\)
−0.590892 + 0.806750i \(0.701224\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −10900.2 −0.435233
\(857\) −16012.9 −0.638260 −0.319130 0.947711i \(-0.603391\pi\)
−0.319130 + 0.947711i \(0.603391\pi\)
\(858\) 0 0
\(859\) 13404.3 0.532421 0.266211 0.963915i \(-0.414228\pi\)
0.266211 + 0.963915i \(0.414228\pi\)
\(860\) 2626.73 0.104152
\(861\) 0 0
\(862\) −27290.2 −1.07832
\(863\) −2058.73 −0.0812050 −0.0406025 0.999175i \(-0.512928\pi\)
−0.0406025 + 0.999175i \(0.512928\pi\)
\(864\) 0 0
\(865\) −21205.8 −0.833549
\(866\) −6767.66 −0.265559
\(867\) 0 0
\(868\) 0 0
\(869\) 6097.48 0.238024
\(870\) 0 0
\(871\) 8169.54 0.317812
\(872\) 44527.0 1.72922
\(873\) 0 0
\(874\) −16232.7 −0.628236
\(875\) 0 0
\(876\) 0 0
\(877\) −16477.0 −0.634422 −0.317211 0.948355i \(-0.602746\pi\)
−0.317211 + 0.948355i \(0.602746\pi\)
\(878\) −22690.8 −0.872183
\(879\) 0 0
\(880\) 1574.77 0.0603245
\(881\) 43307.7 1.65616 0.828079 0.560612i \(-0.189434\pi\)
0.828079 + 0.560612i \(0.189434\pi\)
\(882\) 0 0
\(883\) 15197.9 0.579217 0.289608 0.957145i \(-0.406475\pi\)
0.289608 + 0.957145i \(0.406475\pi\)
\(884\) 1994.17 0.0758723
\(885\) 0 0
\(886\) 16961.9 0.643168
\(887\) 44953.6 1.70168 0.850842 0.525422i \(-0.176093\pi\)
0.850842 + 0.525422i \(0.176093\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 13029.3 0.490724
\(891\) 0 0
\(892\) 5488.13 0.206005
\(893\) 17702.0 0.663355
\(894\) 0 0
\(895\) 14701.8 0.549079
\(896\) 0 0
\(897\) 0 0
\(898\) −33509.5 −1.24524
\(899\) −15536.9 −0.576400
\(900\) 0 0
\(901\) 12575.7 0.464993
\(902\) −307.212 −0.0113404
\(903\) 0 0
\(904\) 45325.2 1.66758
\(905\) −9931.77 −0.364799
\(906\) 0 0
\(907\) −38388.7 −1.40537 −0.702687 0.711499i \(-0.748017\pi\)
−0.702687 + 0.711499i \(0.748017\pi\)
\(908\) −3267.48 −0.119422
\(909\) 0 0
\(910\) 0 0
\(911\) 46222.1 1.68102 0.840508 0.541799i \(-0.182257\pi\)
0.840508 + 0.541799i \(0.182257\pi\)
\(912\) 0 0
\(913\) 3026.08 0.109692
\(914\) 31166.3 1.12789
\(915\) 0 0
\(916\) −3405.59 −0.122842
\(917\) 0 0
\(918\) 0 0
\(919\) −30946.4 −1.11080 −0.555402 0.831582i \(-0.687436\pi\)
−0.555402 + 0.831582i \(0.687436\pi\)
\(920\) −8445.26 −0.302644
\(921\) 0 0
\(922\) 28904.1 1.03244
\(923\) −4115.46 −0.146763
\(924\) 0 0
\(925\) −1471.16 −0.0522936
\(926\) 42375.6 1.50383
\(927\) 0 0
\(928\) −14704.5 −0.520149
\(929\) −1907.48 −0.0673652 −0.0336826 0.999433i \(-0.510724\pi\)
−0.0336826 + 0.999433i \(0.510724\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −2326.99 −0.0817845
\(933\) 0 0
\(934\) −26299.2 −0.921347
\(935\) 768.296 0.0268727
\(936\) 0 0
\(937\) 3334.99 0.116275 0.0581374 0.998309i \(-0.481484\pi\)
0.0581374 + 0.998309i \(0.481484\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1403.59 0.0487022
\(941\) 9632.00 0.333681 0.166841 0.985984i \(-0.446643\pi\)
0.166841 + 0.985984i \(0.446643\pi\)
\(942\) 0 0
\(943\) 1341.40 0.0463223
\(944\) −14320.2 −0.493732
\(945\) 0 0
\(946\) 5843.48 0.200833
\(947\) −53606.0 −1.83945 −0.919727 0.392559i \(-0.871590\pi\)
−0.919727 + 0.392559i \(0.871590\pi\)
\(948\) 0 0
\(949\) −36001.9 −1.23148
\(950\) 5808.85 0.198383
\(951\) 0 0
\(952\) 0 0
\(953\) 28433.6 0.966481 0.483240 0.875488i \(-0.339460\pi\)
0.483240 + 0.875488i \(0.339460\pi\)
\(954\) 0 0
\(955\) −8079.38 −0.273762
\(956\) 2783.82 0.0941790
\(957\) 0 0
\(958\) −20410.4 −0.688341
\(959\) 0 0
\(960\) 0 0
\(961\) −25181.7 −0.845278
\(962\) −8494.75 −0.284700
\(963\) 0 0
\(964\) 687.436 0.0229676
\(965\) 10262.2 0.342334
\(966\) 0 0
\(967\) 33877.6 1.12661 0.563304 0.826250i \(-0.309530\pi\)
0.563304 + 0.826250i \(0.309530\pi\)
\(968\) 31236.4 1.03717
\(969\) 0 0
\(970\) 23139.4 0.765939
\(971\) 10208.6 0.337394 0.168697 0.985668i \(-0.446044\pi\)
0.168697 + 0.985668i \(0.446044\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 25504.4 0.839029
\(975\) 0 0
\(976\) −6225.27 −0.204166
\(977\) −35478.1 −1.16177 −0.580883 0.813987i \(-0.697293\pi\)
−0.580883 + 0.813987i \(0.697293\pi\)
\(978\) 0 0
\(979\) −6354.27 −0.207439
\(980\) 0 0
\(981\) 0 0
\(982\) 47800.7 1.55334
\(983\) −54435.8 −1.76626 −0.883130 0.469128i \(-0.844568\pi\)
−0.883130 + 0.469128i \(0.844568\pi\)
\(984\) 0 0
\(985\) 22342.9 0.722746
\(986\) 14420.8 0.465773
\(987\) 0 0
\(988\) −7353.04 −0.236773
\(989\) −25514.7 −0.820346
\(990\) 0 0
\(991\) −47319.6 −1.51681 −0.758404 0.651784i \(-0.774021\pi\)
−0.758404 + 0.651784i \(0.774021\pi\)
\(992\) 4362.38 0.139623
\(993\) 0 0
\(994\) 0 0
\(995\) 7715.35 0.245822
\(996\) 0 0
\(997\) −26273.1 −0.834580 −0.417290 0.908773i \(-0.637020\pi\)
−0.417290 + 0.908773i \(0.637020\pi\)
\(998\) 10436.3 0.331017
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.4.a.ba.1.2 2
3.2 odd 2 2205.4.a.y.1.1 2
7.6 odd 2 315.4.a.j.1.2 yes 2
21.20 even 2 315.4.a.h.1.1 2
35.34 odd 2 1575.4.a.r.1.1 2
105.104 even 2 1575.4.a.u.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.4.a.h.1.1 2 21.20 even 2
315.4.a.j.1.2 yes 2 7.6 odd 2
1575.4.a.r.1.1 2 35.34 odd 2
1575.4.a.u.1.2 2 105.104 even 2
2205.4.a.y.1.1 2 3.2 odd 2
2205.4.a.ba.1.2 2 1.1 even 1 trivial