Properties

Label 2205.4.a.ba.1.1
Level $2205$
Weight $4$
Character 2205.1
Self dual yes
Analytic conductor $130.099$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2205,4,Mod(1,2205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2205.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(130.099211563\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 315)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 2205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.56155 q^{2} -5.56155 q^{4} -5.00000 q^{5} +21.1771 q^{8} +O(q^{10})\) \(q-1.56155 q^{2} -5.56155 q^{4} -5.00000 q^{5} +21.1771 q^{8} +7.80776 q^{10} -10.2462 q^{11} -34.3542 q^{13} +11.4233 q^{16} +82.6004 q^{17} -90.7083 q^{19} +27.8078 q^{20} +16.0000 q^{22} -12.1383 q^{23} +25.0000 q^{25} +53.6458 q^{26} -105.153 q^{29} +142.108 q^{31} -187.255 q^{32} -128.985 q^{34} +64.8466 q^{37} +141.646 q^{38} -105.885 q^{40} +195.201 q^{41} -319.218 q^{43} +56.9848 q^{44} +18.9545 q^{46} +318.847 q^{47} -39.0388 q^{50} +191.062 q^{52} -296.799 q^{53} +51.2311 q^{55} +164.203 q^{58} +284.000 q^{59} +494.540 q^{61} -221.909 q^{62} +201.022 q^{64} +171.771 q^{65} +549.032 q^{67} -459.386 q^{68} -740.972 q^{71} +556.850 q^{73} -101.261 q^{74} +504.479 q^{76} -376.189 q^{79} -57.1165 q^{80} -304.816 q^{82} -752.466 q^{83} -413.002 q^{85} +498.475 q^{86} -216.985 q^{88} +945.299 q^{89} +67.5076 q^{92} -497.896 q^{94} +453.542 q^{95} +180.668 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 7 q^{4} - 10 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - 7 q^{4} - 10 q^{5} - 3 q^{8} - 5 q^{10} - 4 q^{11} + 22 q^{13} - 39 q^{16} + 58 q^{17} + 35 q^{20} + 32 q^{22} - 82 q^{23} + 50 q^{25} + 198 q^{26} - 334 q^{29} + 210 q^{31} - 123 q^{32} - 192 q^{34} + 6 q^{37} + 374 q^{38} + 15 q^{40} + 176 q^{41} + 46 q^{43} + 48 q^{44} - 160 q^{46} + 514 q^{47} + 25 q^{50} + 110 q^{52} - 808 q^{53} + 20 q^{55} - 422 q^{58} + 568 q^{59} + 618 q^{61} - 48 q^{62} + 769 q^{64} - 110 q^{65} + 694 q^{67} - 424 q^{68} - 814 q^{71} - 82 q^{73} - 252 q^{74} + 374 q^{76} + 600 q^{79} + 195 q^{80} - 354 q^{82} - 268 q^{83} - 290 q^{85} + 1434 q^{86} - 368 q^{88} - 72 q^{89} + 168 q^{92} + 2 q^{94} - 1626 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.56155 −0.552092 −0.276046 0.961144i \(-0.589024\pi\)
−0.276046 + 0.961144i \(0.589024\pi\)
\(3\) 0 0
\(4\) −5.56155 −0.695194
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 21.1771 0.935904
\(9\) 0 0
\(10\) 7.80776 0.246903
\(11\) −10.2462 −0.280850 −0.140425 0.990091i \(-0.544847\pi\)
−0.140425 + 0.990091i \(0.544847\pi\)
\(12\) 0 0
\(13\) −34.3542 −0.732933 −0.366467 0.930431i \(-0.619433\pi\)
−0.366467 + 0.930431i \(0.619433\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 11.4233 0.178489
\(17\) 82.6004 1.17844 0.589222 0.807972i \(-0.299435\pi\)
0.589222 + 0.807972i \(0.299435\pi\)
\(18\) 0 0
\(19\) −90.7083 −1.09526 −0.547629 0.836721i \(-0.684470\pi\)
−0.547629 + 0.836721i \(0.684470\pi\)
\(20\) 27.8078 0.310900
\(21\) 0 0
\(22\) 16.0000 0.155055
\(23\) −12.1383 −0.110044 −0.0550218 0.998485i \(-0.517523\pi\)
−0.0550218 + 0.998485i \(0.517523\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 53.6458 0.404647
\(27\) 0 0
\(28\) 0 0
\(29\) −105.153 −0.673328 −0.336664 0.941625i \(-0.609299\pi\)
−0.336664 + 0.941625i \(0.609299\pi\)
\(30\) 0 0
\(31\) 142.108 0.823334 0.411667 0.911334i \(-0.364947\pi\)
0.411667 + 0.911334i \(0.364947\pi\)
\(32\) −187.255 −1.03445
\(33\) 0 0
\(34\) −128.985 −0.650609
\(35\) 0 0
\(36\) 0 0
\(37\) 64.8466 0.288127 0.144064 0.989568i \(-0.453983\pi\)
0.144064 + 0.989568i \(0.453983\pi\)
\(38\) 141.646 0.604684
\(39\) 0 0
\(40\) −105.885 −0.418549
\(41\) 195.201 0.743542 0.371771 0.928324i \(-0.378751\pi\)
0.371771 + 0.928324i \(0.378751\pi\)
\(42\) 0 0
\(43\) −319.218 −1.13210 −0.566049 0.824371i \(-0.691529\pi\)
−0.566049 + 0.824371i \(0.691529\pi\)
\(44\) 56.9848 0.195245
\(45\) 0 0
\(46\) 18.9545 0.0607542
\(47\) 318.847 0.989544 0.494772 0.869023i \(-0.335252\pi\)
0.494772 + 0.869023i \(0.335252\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −39.0388 −0.110418
\(51\) 0 0
\(52\) 191.062 0.509531
\(53\) −296.799 −0.769217 −0.384609 0.923080i \(-0.625664\pi\)
−0.384609 + 0.923080i \(0.625664\pi\)
\(54\) 0 0
\(55\) 51.2311 0.125600
\(56\) 0 0
\(57\) 0 0
\(58\) 164.203 0.371739
\(59\) 284.000 0.626672 0.313336 0.949642i \(-0.398553\pi\)
0.313336 + 0.949642i \(0.398553\pi\)
\(60\) 0 0
\(61\) 494.540 1.03802 0.519011 0.854768i \(-0.326300\pi\)
0.519011 + 0.854768i \(0.326300\pi\)
\(62\) −221.909 −0.454556
\(63\) 0 0
\(64\) 201.022 0.392621
\(65\) 171.771 0.327778
\(66\) 0 0
\(67\) 549.032 1.00112 0.500559 0.865702i \(-0.333128\pi\)
0.500559 + 0.865702i \(0.333128\pi\)
\(68\) −459.386 −0.819247
\(69\) 0 0
\(70\) 0 0
\(71\) −740.972 −1.23855 −0.619276 0.785174i \(-0.712574\pi\)
−0.619276 + 0.785174i \(0.712574\pi\)
\(72\) 0 0
\(73\) 556.850 0.892800 0.446400 0.894834i \(-0.352706\pi\)
0.446400 + 0.894834i \(0.352706\pi\)
\(74\) −101.261 −0.159073
\(75\) 0 0
\(76\) 504.479 0.761417
\(77\) 0 0
\(78\) 0 0
\(79\) −376.189 −0.535755 −0.267877 0.963453i \(-0.586322\pi\)
−0.267877 + 0.963453i \(0.586322\pi\)
\(80\) −57.1165 −0.0798227
\(81\) 0 0
\(82\) −304.816 −0.410504
\(83\) −752.466 −0.995107 −0.497553 0.867433i \(-0.665768\pi\)
−0.497553 + 0.867433i \(0.665768\pi\)
\(84\) 0 0
\(85\) −413.002 −0.527016
\(86\) 498.475 0.625023
\(87\) 0 0
\(88\) −216.985 −0.262848
\(89\) 945.299 1.12586 0.562930 0.826505i \(-0.309674\pi\)
0.562930 + 0.826505i \(0.309674\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 67.5076 0.0765016
\(93\) 0 0
\(94\) −497.896 −0.546319
\(95\) 453.542 0.489815
\(96\) 0 0
\(97\) 180.668 0.189114 0.0945572 0.995519i \(-0.469856\pi\)
0.0945572 + 0.995519i \(0.469856\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −139.039 −0.139039
\(101\) 1463.05 1.44138 0.720689 0.693258i \(-0.243826\pi\)
0.720689 + 0.693258i \(0.243826\pi\)
\(102\) 0 0
\(103\) −535.049 −0.511844 −0.255922 0.966697i \(-0.582379\pi\)
−0.255922 + 0.966697i \(0.582379\pi\)
\(104\) −727.521 −0.685955
\(105\) 0 0
\(106\) 463.468 0.424679
\(107\) 327.153 0.295581 0.147790 0.989019i \(-0.452784\pi\)
0.147790 + 0.989019i \(0.452784\pi\)
\(108\) 0 0
\(109\) 1621.70 1.42506 0.712528 0.701644i \(-0.247550\pi\)
0.712528 + 0.701644i \(0.247550\pi\)
\(110\) −80.0000 −0.0693427
\(111\) 0 0
\(112\) 0 0
\(113\) 450.716 0.375219 0.187610 0.982244i \(-0.439926\pi\)
0.187610 + 0.982244i \(0.439926\pi\)
\(114\) 0 0
\(115\) 60.6913 0.0492130
\(116\) 584.816 0.468093
\(117\) 0 0
\(118\) −443.481 −0.345981
\(119\) 0 0
\(120\) 0 0
\(121\) −1226.02 −0.921123
\(122\) −772.250 −0.573084
\(123\) 0 0
\(124\) −790.341 −0.572377
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1710.10 1.19486 0.597428 0.801923i \(-0.296189\pi\)
0.597428 + 0.801923i \(0.296189\pi\)
\(128\) 1184.13 0.817683
\(129\) 0 0
\(130\) −268.229 −0.180964
\(131\) −1584.49 −1.05678 −0.528388 0.849003i \(-0.677203\pi\)
−0.528388 + 0.849003i \(0.677203\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −857.343 −0.552710
\(135\) 0 0
\(136\) 1749.23 1.10291
\(137\) −2095.24 −1.30663 −0.653316 0.757085i \(-0.726623\pi\)
−0.653316 + 0.757085i \(0.726623\pi\)
\(138\) 0 0
\(139\) 1385.00 0.845135 0.422568 0.906331i \(-0.361129\pi\)
0.422568 + 0.906331i \(0.361129\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1157.07 0.683795
\(143\) 352.000 0.205844
\(144\) 0 0
\(145\) 525.767 0.301121
\(146\) −869.551 −0.492908
\(147\) 0 0
\(148\) −360.648 −0.200304
\(149\) 2502.89 1.37614 0.688069 0.725645i \(-0.258459\pi\)
0.688069 + 0.725645i \(0.258459\pi\)
\(150\) 0 0
\(151\) 395.212 0.212993 0.106496 0.994313i \(-0.466037\pi\)
0.106496 + 0.994313i \(0.466037\pi\)
\(152\) −1920.94 −1.02506
\(153\) 0 0
\(154\) 0 0
\(155\) −710.540 −0.368206
\(156\) 0 0
\(157\) −1732.35 −0.880615 −0.440308 0.897847i \(-0.645131\pi\)
−0.440308 + 0.897847i \(0.645131\pi\)
\(158\) 587.439 0.295786
\(159\) 0 0
\(160\) 936.274 0.462618
\(161\) 0 0
\(162\) 0 0
\(163\) 3303.26 1.58731 0.793654 0.608369i \(-0.208176\pi\)
0.793654 + 0.608369i \(0.208176\pi\)
\(164\) −1085.62 −0.516906
\(165\) 0 0
\(166\) 1175.02 0.549391
\(167\) −601.941 −0.278920 −0.139460 0.990228i \(-0.544537\pi\)
−0.139460 + 0.990228i \(0.544537\pi\)
\(168\) 0 0
\(169\) −1016.79 −0.462809
\(170\) 644.924 0.290961
\(171\) 0 0
\(172\) 1775.35 0.787028
\(173\) −3741.17 −1.64414 −0.822068 0.569389i \(-0.807180\pi\)
−0.822068 + 0.569389i \(0.807180\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −117.045 −0.0501286
\(177\) 0 0
\(178\) −1476.13 −0.621578
\(179\) 968.352 0.404347 0.202173 0.979350i \(-0.435200\pi\)
0.202173 + 0.979350i \(0.435200\pi\)
\(180\) 0 0
\(181\) 1895.65 0.778465 0.389233 0.921139i \(-0.372740\pi\)
0.389233 + 0.921139i \(0.372740\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −257.053 −0.102990
\(185\) −324.233 −0.128854
\(186\) 0 0
\(187\) −846.341 −0.330966
\(188\) −1773.28 −0.687925
\(189\) 0 0
\(190\) −708.229 −0.270423
\(191\) −2729.88 −1.03417 −0.517086 0.855933i \(-0.672983\pi\)
−0.517086 + 0.855933i \(0.672983\pi\)
\(192\) 0 0
\(193\) 1460.44 0.544689 0.272345 0.962200i \(-0.412201\pi\)
0.272345 + 0.962200i \(0.412201\pi\)
\(194\) −282.123 −0.104409
\(195\) 0 0
\(196\) 0 0
\(197\) −4831.42 −1.74733 −0.873665 0.486527i \(-0.838263\pi\)
−0.873665 + 0.486527i \(0.838263\pi\)
\(198\) 0 0
\(199\) 873.070 0.311006 0.155503 0.987835i \(-0.450300\pi\)
0.155503 + 0.987835i \(0.450300\pi\)
\(200\) 529.427 0.187181
\(201\) 0 0
\(202\) −2284.63 −0.795774
\(203\) 0 0
\(204\) 0 0
\(205\) −976.004 −0.332522
\(206\) 835.508 0.282585
\(207\) 0 0
\(208\) −392.438 −0.130820
\(209\) 929.417 0.307603
\(210\) 0 0
\(211\) −5148.02 −1.67964 −0.839821 0.542863i \(-0.817340\pi\)
−0.839821 + 0.542863i \(0.817340\pi\)
\(212\) 1650.66 0.534755
\(213\) 0 0
\(214\) −510.867 −0.163188
\(215\) 1596.09 0.506290
\(216\) 0 0
\(217\) 0 0
\(218\) −2532.38 −0.786762
\(219\) 0 0
\(220\) −284.924 −0.0873163
\(221\) −2837.67 −0.863720
\(222\) 0 0
\(223\) 2435.31 0.731304 0.365652 0.930752i \(-0.380846\pi\)
0.365652 + 0.930752i \(0.380846\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −703.817 −0.207156
\(227\) 3508.47 1.02584 0.512919 0.858437i \(-0.328564\pi\)
0.512919 + 0.858437i \(0.328564\pi\)
\(228\) 0 0
\(229\) −3429.54 −0.989653 −0.494827 0.868992i \(-0.664768\pi\)
−0.494827 + 0.868992i \(0.664768\pi\)
\(230\) −94.7727 −0.0271701
\(231\) 0 0
\(232\) −2226.84 −0.630170
\(233\) −3989.71 −1.12178 −0.560890 0.827890i \(-0.689541\pi\)
−0.560890 + 0.827890i \(0.689541\pi\)
\(234\) 0 0
\(235\) −1594.23 −0.442537
\(236\) −1579.48 −0.435659
\(237\) 0 0
\(238\) 0 0
\(239\) −5934.71 −1.60621 −0.803105 0.595837i \(-0.796820\pi\)
−0.803105 + 0.595837i \(0.796820\pi\)
\(240\) 0 0
\(241\) 6481.90 1.73251 0.866257 0.499598i \(-0.166519\pi\)
0.866257 + 0.499598i \(0.166519\pi\)
\(242\) 1914.49 0.508545
\(243\) 0 0
\(244\) −2750.41 −0.721627
\(245\) 0 0
\(246\) 0 0
\(247\) 3116.21 0.802751
\(248\) 3009.43 0.770561
\(249\) 0 0
\(250\) 195.194 0.0493806
\(251\) −5257.70 −1.32216 −0.661081 0.750314i \(-0.729902\pi\)
−0.661081 + 0.750314i \(0.729902\pi\)
\(252\) 0 0
\(253\) 124.371 0.0309057
\(254\) −2670.41 −0.659671
\(255\) 0 0
\(256\) −3457.26 −0.844057
\(257\) −4108.52 −0.997209 −0.498604 0.866830i \(-0.666154\pi\)
−0.498604 + 0.866830i \(0.666154\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −955.312 −0.227869
\(261\) 0 0
\(262\) 2474.27 0.583438
\(263\) −6236.89 −1.46229 −0.731146 0.682221i \(-0.761014\pi\)
−0.731146 + 0.682221i \(0.761014\pi\)
\(264\) 0 0
\(265\) 1484.00 0.344004
\(266\) 0 0
\(267\) 0 0
\(268\) −3053.47 −0.695972
\(269\) 4356.67 0.987475 0.493738 0.869611i \(-0.335630\pi\)
0.493738 + 0.869611i \(0.335630\pi\)
\(270\) 0 0
\(271\) 63.0970 0.0141434 0.00707171 0.999975i \(-0.497749\pi\)
0.00707171 + 0.999975i \(0.497749\pi\)
\(272\) 943.568 0.210339
\(273\) 0 0
\(274\) 3271.83 0.721382
\(275\) −256.155 −0.0561700
\(276\) 0 0
\(277\) 5804.64 1.25909 0.629543 0.776966i \(-0.283242\pi\)
0.629543 + 0.776966i \(0.283242\pi\)
\(278\) −2162.74 −0.466593
\(279\) 0 0
\(280\) 0 0
\(281\) −8430.89 −1.78984 −0.894920 0.446227i \(-0.852767\pi\)
−0.894920 + 0.446227i \(0.852767\pi\)
\(282\) 0 0
\(283\) −7415.73 −1.55767 −0.778833 0.627232i \(-0.784188\pi\)
−0.778833 + 0.627232i \(0.784188\pi\)
\(284\) 4120.95 0.861034
\(285\) 0 0
\(286\) −549.667 −0.113645
\(287\) 0 0
\(288\) 0 0
\(289\) 1909.82 0.388728
\(290\) −821.013 −0.166247
\(291\) 0 0
\(292\) −3096.95 −0.620669
\(293\) 482.022 0.0961094 0.0480547 0.998845i \(-0.484698\pi\)
0.0480547 + 0.998845i \(0.484698\pi\)
\(294\) 0 0
\(295\) −1420.00 −0.280256
\(296\) 1373.26 0.269659
\(297\) 0 0
\(298\) −3908.39 −0.759755
\(299\) 417.000 0.0806546
\(300\) 0 0
\(301\) 0 0
\(302\) −617.144 −0.117592
\(303\) 0 0
\(304\) −1036.19 −0.195492
\(305\) −2472.70 −0.464217
\(306\) 0 0
\(307\) −2757.90 −0.512709 −0.256354 0.966583i \(-0.582521\pi\)
−0.256354 + 0.966583i \(0.582521\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1109.55 0.203284
\(311\) −5817.25 −1.06066 −0.530331 0.847791i \(-0.677932\pi\)
−0.530331 + 0.847791i \(0.677932\pi\)
\(312\) 0 0
\(313\) −2232.83 −0.403218 −0.201609 0.979466i \(-0.564617\pi\)
−0.201609 + 0.979466i \(0.564617\pi\)
\(314\) 2705.16 0.486181
\(315\) 0 0
\(316\) 2092.20 0.372453
\(317\) 81.4013 0.0144226 0.00721128 0.999974i \(-0.497705\pi\)
0.00721128 + 0.999974i \(0.497705\pi\)
\(318\) 0 0
\(319\) 1077.42 0.189104
\(320\) −1005.11 −0.175585
\(321\) 0 0
\(322\) 0 0
\(323\) −7492.54 −1.29070
\(324\) 0 0
\(325\) −858.854 −0.146587
\(326\) −5158.21 −0.876341
\(327\) 0 0
\(328\) 4133.78 0.695884
\(329\) 0 0
\(330\) 0 0
\(331\) −6550.18 −1.08771 −0.543853 0.839181i \(-0.683035\pi\)
−0.543853 + 0.839181i \(0.683035\pi\)
\(332\) 4184.88 0.691792
\(333\) 0 0
\(334\) 939.963 0.153990
\(335\) −2745.16 −0.447714
\(336\) 0 0
\(337\) 4124.63 0.666715 0.333358 0.942800i \(-0.391818\pi\)
0.333358 + 0.942800i \(0.391818\pi\)
\(338\) 1587.77 0.255513
\(339\) 0 0
\(340\) 2296.93 0.366378
\(341\) −1456.07 −0.231233
\(342\) 0 0
\(343\) 0 0
\(344\) −6760.10 −1.05954
\(345\) 0 0
\(346\) 5842.03 0.907715
\(347\) 1228.44 0.190047 0.0950233 0.995475i \(-0.469707\pi\)
0.0950233 + 0.995475i \(0.469707\pi\)
\(348\) 0 0
\(349\) −3320.93 −0.509357 −0.254678 0.967026i \(-0.581970\pi\)
−0.254678 + 0.967026i \(0.581970\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1918.65 0.290524
\(353\) 4589.25 0.691958 0.345979 0.938242i \(-0.387547\pi\)
0.345979 + 0.938242i \(0.387547\pi\)
\(354\) 0 0
\(355\) 3704.86 0.553897
\(356\) −5257.33 −0.782691
\(357\) 0 0
\(358\) −1512.13 −0.223237
\(359\) 12381.6 1.82026 0.910130 0.414323i \(-0.135982\pi\)
0.910130 + 0.414323i \(0.135982\pi\)
\(360\) 0 0
\(361\) 1369.00 0.199592
\(362\) −2960.15 −0.429785
\(363\) 0 0
\(364\) 0 0
\(365\) −2784.25 −0.399272
\(366\) 0 0
\(367\) −5612.33 −0.798259 −0.399130 0.916894i \(-0.630688\pi\)
−0.399130 + 0.916894i \(0.630688\pi\)
\(368\) −138.659 −0.0196416
\(369\) 0 0
\(370\) 506.307 0.0711396
\(371\) 0 0
\(372\) 0 0
\(373\) −3691.05 −0.512374 −0.256187 0.966627i \(-0.582466\pi\)
−0.256187 + 0.966627i \(0.582466\pi\)
\(374\) 1321.61 0.182724
\(375\) 0 0
\(376\) 6752.24 0.926118
\(377\) 3612.46 0.493504
\(378\) 0 0
\(379\) 5350.16 0.725117 0.362559 0.931961i \(-0.381903\pi\)
0.362559 + 0.931961i \(0.381903\pi\)
\(380\) −2522.40 −0.340516
\(381\) 0 0
\(382\) 4262.85 0.570959
\(383\) −7300.09 −0.973936 −0.486968 0.873420i \(-0.661897\pi\)
−0.486968 + 0.873420i \(0.661897\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2280.56 −0.300719
\(387\) 0 0
\(388\) −1004.80 −0.131471
\(389\) −9102.27 −1.18638 −0.593192 0.805061i \(-0.702133\pi\)
−0.593192 + 0.805061i \(0.702133\pi\)
\(390\) 0 0
\(391\) −1002.62 −0.129680
\(392\) 0 0
\(393\) 0 0
\(394\) 7544.51 0.964688
\(395\) 1880.95 0.239597
\(396\) 0 0
\(397\) 11520.1 1.45637 0.728185 0.685381i \(-0.240364\pi\)
0.728185 + 0.685381i \(0.240364\pi\)
\(398\) −1363.34 −0.171704
\(399\) 0 0
\(400\) 285.582 0.0356978
\(401\) 3812.93 0.474834 0.237417 0.971408i \(-0.423699\pi\)
0.237417 + 0.971408i \(0.423699\pi\)
\(402\) 0 0
\(403\) −4882.00 −0.603448
\(404\) −8136.85 −1.00204
\(405\) 0 0
\(406\) 0 0
\(407\) −664.432 −0.0809205
\(408\) 0 0
\(409\) 4098.82 0.495535 0.247767 0.968820i \(-0.420303\pi\)
0.247767 + 0.968820i \(0.420303\pi\)
\(410\) 1524.08 0.183583
\(411\) 0 0
\(412\) 2975.70 0.355831
\(413\) 0 0
\(414\) 0 0
\(415\) 3762.33 0.445025
\(416\) 6432.98 0.758180
\(417\) 0 0
\(418\) −1451.33 −0.169825
\(419\) −14312.4 −1.66876 −0.834378 0.551193i \(-0.814173\pi\)
−0.834378 + 0.551193i \(0.814173\pi\)
\(420\) 0 0
\(421\) 6679.57 0.773259 0.386630 0.922235i \(-0.373639\pi\)
0.386630 + 0.922235i \(0.373639\pi\)
\(422\) 8038.91 0.927317
\(423\) 0 0
\(424\) −6285.34 −0.719913
\(425\) 2065.01 0.235689
\(426\) 0 0
\(427\) 0 0
\(428\) −1819.48 −0.205486
\(429\) 0 0
\(430\) −2492.38 −0.279519
\(431\) 11503.8 1.28566 0.642828 0.766010i \(-0.277761\pi\)
0.642828 + 0.766010i \(0.277761\pi\)
\(432\) 0 0
\(433\) −3243.99 −0.360037 −0.180019 0.983663i \(-0.557616\pi\)
−0.180019 + 0.983663i \(0.557616\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −9019.19 −0.990691
\(437\) 1101.04 0.120526
\(438\) 0 0
\(439\) 2744.21 0.298346 0.149173 0.988811i \(-0.452339\pi\)
0.149173 + 0.988811i \(0.452339\pi\)
\(440\) 1084.92 0.117549
\(441\) 0 0
\(442\) 4431.17 0.476853
\(443\) 8180.27 0.877328 0.438664 0.898651i \(-0.355452\pi\)
0.438664 + 0.898651i \(0.355452\pi\)
\(444\) 0 0
\(445\) −4726.50 −0.503500
\(446\) −3802.87 −0.403747
\(447\) 0 0
\(448\) 0 0
\(449\) 6725.70 0.706916 0.353458 0.935450i \(-0.385006\pi\)
0.353458 + 0.935450i \(0.385006\pi\)
\(450\) 0 0
\(451\) −2000.07 −0.208824
\(452\) −2506.68 −0.260850
\(453\) 0 0
\(454\) −5478.65 −0.566357
\(455\) 0 0
\(456\) 0 0
\(457\) −10807.0 −1.10619 −0.553095 0.833118i \(-0.686553\pi\)
−0.553095 + 0.833118i \(0.686553\pi\)
\(458\) 5355.41 0.546380
\(459\) 0 0
\(460\) −337.538 −0.0342126
\(461\) −17775.8 −1.79588 −0.897942 0.440113i \(-0.854938\pi\)
−0.897942 + 0.440113i \(0.854938\pi\)
\(462\) 0 0
\(463\) −4418.93 −0.443554 −0.221777 0.975097i \(-0.571186\pi\)
−0.221777 + 0.975097i \(0.571186\pi\)
\(464\) −1201.20 −0.120182
\(465\) 0 0
\(466\) 6230.15 0.619326
\(467\) −3373.08 −0.334235 −0.167117 0.985937i \(-0.553446\pi\)
−0.167117 + 0.985937i \(0.553446\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2489.48 0.244321
\(471\) 0 0
\(472\) 6014.29 0.586505
\(473\) 3270.77 0.317950
\(474\) 0 0
\(475\) −2267.71 −0.219052
\(476\) 0 0
\(477\) 0 0
\(478\) 9267.36 0.886776
\(479\) −4620.02 −0.440697 −0.220349 0.975421i \(-0.570720\pi\)
−0.220349 + 0.975421i \(0.570720\pi\)
\(480\) 0 0
\(481\) −2227.75 −0.211178
\(482\) −10121.8 −0.956508
\(483\) 0 0
\(484\) 6818.55 0.640360
\(485\) −903.342 −0.0845746
\(486\) 0 0
\(487\) −9108.62 −0.847538 −0.423769 0.905770i \(-0.639293\pi\)
−0.423769 + 0.905770i \(0.639293\pi\)
\(488\) 10472.9 0.971488
\(489\) 0 0
\(490\) 0 0
\(491\) −2696.84 −0.247875 −0.123938 0.992290i \(-0.539552\pi\)
−0.123938 + 0.992290i \(0.539552\pi\)
\(492\) 0 0
\(493\) −8685.71 −0.793478
\(494\) −4866.12 −0.443193
\(495\) 0 0
\(496\) 1623.34 0.146956
\(497\) 0 0
\(498\) 0 0
\(499\) −20054.2 −1.79910 −0.899549 0.436820i \(-0.856104\pi\)
−0.899549 + 0.436820i \(0.856104\pi\)
\(500\) 695.194 0.0621801
\(501\) 0 0
\(502\) 8210.17 0.729956
\(503\) −8106.49 −0.718590 −0.359295 0.933224i \(-0.616983\pi\)
−0.359295 + 0.933224i \(0.616983\pi\)
\(504\) 0 0
\(505\) −7315.26 −0.644604
\(506\) −194.212 −0.0170628
\(507\) 0 0
\(508\) −9510.80 −0.830657
\(509\) −12455.8 −1.08466 −0.542332 0.840164i \(-0.682458\pi\)
−0.542332 + 0.840164i \(0.682458\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −4074.36 −0.351686
\(513\) 0 0
\(514\) 6415.68 0.550551
\(515\) 2675.25 0.228904
\(516\) 0 0
\(517\) −3266.97 −0.277913
\(518\) 0 0
\(519\) 0 0
\(520\) 3637.60 0.306768
\(521\) 5539.61 0.465825 0.232913 0.972498i \(-0.425174\pi\)
0.232913 + 0.972498i \(0.425174\pi\)
\(522\) 0 0
\(523\) −15504.2 −1.29628 −0.648138 0.761523i \(-0.724452\pi\)
−0.648138 + 0.761523i \(0.724452\pi\)
\(524\) 8812.24 0.734665
\(525\) 0 0
\(526\) 9739.23 0.807321
\(527\) 11738.2 0.970252
\(528\) 0 0
\(529\) −12019.7 −0.987890
\(530\) −2317.34 −0.189922
\(531\) 0 0
\(532\) 0 0
\(533\) −6705.96 −0.544967
\(534\) 0 0
\(535\) −1635.77 −0.132188
\(536\) 11626.9 0.936951
\(537\) 0 0
\(538\) −6803.17 −0.545178
\(539\) 0 0
\(540\) 0 0
\(541\) 7853.16 0.624092 0.312046 0.950067i \(-0.398986\pi\)
0.312046 + 0.950067i \(0.398986\pi\)
\(542\) −98.5293 −0.00780848
\(543\) 0 0
\(544\) −15467.3 −1.21904
\(545\) −8108.52 −0.637304
\(546\) 0 0
\(547\) −9177.75 −0.717390 −0.358695 0.933455i \(-0.616778\pi\)
−0.358695 + 0.933455i \(0.616778\pi\)
\(548\) 11652.8 0.908363
\(549\) 0 0
\(550\) 400.000 0.0310110
\(551\) 9538.29 0.737468
\(552\) 0 0
\(553\) 0 0
\(554\) −9064.25 −0.695132
\(555\) 0 0
\(556\) −7702.73 −0.587533
\(557\) −25030.2 −1.90407 −0.952033 0.305996i \(-0.901010\pi\)
−0.952033 + 0.305996i \(0.901010\pi\)
\(558\) 0 0
\(559\) 10966.5 0.829753
\(560\) 0 0
\(561\) 0 0
\(562\) 13165.3 0.988157
\(563\) −19486.1 −1.45869 −0.729345 0.684146i \(-0.760175\pi\)
−0.729345 + 0.684146i \(0.760175\pi\)
\(564\) 0 0
\(565\) −2253.58 −0.167803
\(566\) 11580.0 0.859975
\(567\) 0 0
\(568\) −15691.6 −1.15916
\(569\) −5813.63 −0.428331 −0.214165 0.976797i \(-0.568703\pi\)
−0.214165 + 0.976797i \(0.568703\pi\)
\(570\) 0 0
\(571\) 268.770 0.0196982 0.00984910 0.999951i \(-0.496865\pi\)
0.00984910 + 0.999951i \(0.496865\pi\)
\(572\) −1957.67 −0.143102
\(573\) 0 0
\(574\) 0 0
\(575\) −303.457 −0.0220087
\(576\) 0 0
\(577\) −8283.57 −0.597660 −0.298830 0.954306i \(-0.596596\pi\)
−0.298830 + 0.954306i \(0.596596\pi\)
\(578\) −2982.29 −0.214614
\(579\) 0 0
\(580\) −2924.08 −0.209338
\(581\) 0 0
\(582\) 0 0
\(583\) 3041.07 0.216035
\(584\) 11792.5 0.835575
\(585\) 0 0
\(586\) −752.703 −0.0530612
\(587\) 6671.87 0.469127 0.234563 0.972101i \(-0.424634\pi\)
0.234563 + 0.972101i \(0.424634\pi\)
\(588\) 0 0
\(589\) −12890.4 −0.901763
\(590\) 2217.40 0.154727
\(591\) 0 0
\(592\) 740.761 0.0514275
\(593\) 11409.0 0.790071 0.395035 0.918666i \(-0.370732\pi\)
0.395035 + 0.918666i \(0.370732\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −13919.9 −0.956683
\(597\) 0 0
\(598\) −651.167 −0.0445288
\(599\) −13118.3 −0.894826 −0.447413 0.894327i \(-0.647655\pi\)
−0.447413 + 0.894327i \(0.647655\pi\)
\(600\) 0 0
\(601\) −21970.2 −1.49115 −0.745577 0.666420i \(-0.767826\pi\)
−0.745577 + 0.666420i \(0.767826\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2197.99 −0.148071
\(605\) 6130.08 0.411939
\(606\) 0 0
\(607\) 21115.1 1.41192 0.705959 0.708253i \(-0.250516\pi\)
0.705959 + 0.708253i \(0.250516\pi\)
\(608\) 16985.6 1.13299
\(609\) 0 0
\(610\) 3861.25 0.256291
\(611\) −10953.7 −0.725269
\(612\) 0 0
\(613\) −1963.61 −0.129379 −0.0646895 0.997905i \(-0.520606\pi\)
−0.0646895 + 0.997905i \(0.520606\pi\)
\(614\) 4306.60 0.283062
\(615\) 0 0
\(616\) 0 0
\(617\) 17352.1 1.13221 0.566103 0.824335i \(-0.308450\pi\)
0.566103 + 0.824335i \(0.308450\pi\)
\(618\) 0 0
\(619\) 3614.68 0.234711 0.117356 0.993090i \(-0.462558\pi\)
0.117356 + 0.993090i \(0.462558\pi\)
\(620\) 3951.70 0.255975
\(621\) 0 0
\(622\) 9083.94 0.585583
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 3486.68 0.222613
\(627\) 0 0
\(628\) 9634.56 0.612199
\(629\) 5356.35 0.339542
\(630\) 0 0
\(631\) 16368.8 1.03269 0.516347 0.856379i \(-0.327291\pi\)
0.516347 + 0.856379i \(0.327291\pi\)
\(632\) −7966.59 −0.501415
\(633\) 0 0
\(634\) −127.112 −0.00796258
\(635\) −8550.49 −0.534356
\(636\) 0 0
\(637\) 0 0
\(638\) −1682.45 −0.104403
\(639\) 0 0
\(640\) −5920.66 −0.365679
\(641\) −849.649 −0.0523543 −0.0261772 0.999657i \(-0.508333\pi\)
−0.0261772 + 0.999657i \(0.508333\pi\)
\(642\) 0 0
\(643\) 1335.12 0.0818850 0.0409425 0.999162i \(-0.486964\pi\)
0.0409425 + 0.999162i \(0.486964\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 11700.0 0.712586
\(647\) 5944.39 0.361202 0.180601 0.983556i \(-0.442196\pi\)
0.180601 + 0.983556i \(0.442196\pi\)
\(648\) 0 0
\(649\) −2909.92 −0.176001
\(650\) 1341.15 0.0809293
\(651\) 0 0
\(652\) −18371.3 −1.10349
\(653\) −5561.29 −0.333277 −0.166639 0.986018i \(-0.553291\pi\)
−0.166639 + 0.986018i \(0.553291\pi\)
\(654\) 0 0
\(655\) 7922.46 0.472605
\(656\) 2229.84 0.132714
\(657\) 0 0
\(658\) 0 0
\(659\) 27399.5 1.61963 0.809813 0.586688i \(-0.199569\pi\)
0.809813 + 0.586688i \(0.199569\pi\)
\(660\) 0 0
\(661\) −3931.52 −0.231344 −0.115672 0.993287i \(-0.536902\pi\)
−0.115672 + 0.993287i \(0.536902\pi\)
\(662\) 10228.5 0.600514
\(663\) 0 0
\(664\) −15935.0 −0.931324
\(665\) 0 0
\(666\) 0 0
\(667\) 1276.38 0.0740954
\(668\) 3347.73 0.193903
\(669\) 0 0
\(670\) 4286.71 0.247179
\(671\) −5067.16 −0.291528
\(672\) 0 0
\(673\) 11427.3 0.654515 0.327257 0.944935i \(-0.393876\pi\)
0.327257 + 0.944935i \(0.393876\pi\)
\(674\) −6440.83 −0.368088
\(675\) 0 0
\(676\) 5654.94 0.321742
\(677\) 16259.3 0.923035 0.461518 0.887131i \(-0.347305\pi\)
0.461518 + 0.887131i \(0.347305\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −8746.17 −0.493236
\(681\) 0 0
\(682\) 2273.73 0.127662
\(683\) 10873.9 0.609192 0.304596 0.952482i \(-0.401479\pi\)
0.304596 + 0.952482i \(0.401479\pi\)
\(684\) 0 0
\(685\) 10476.2 0.584344
\(686\) 0 0
\(687\) 0 0
\(688\) −3646.52 −0.202067
\(689\) 10196.3 0.563785
\(690\) 0 0
\(691\) −21613.9 −1.18991 −0.594957 0.803758i \(-0.702831\pi\)
−0.594957 + 0.803758i \(0.702831\pi\)
\(692\) 20806.7 1.14299
\(693\) 0 0
\(694\) −1918.28 −0.104923
\(695\) −6924.98 −0.377956
\(696\) 0 0
\(697\) 16123.7 0.876222
\(698\) 5185.81 0.281212
\(699\) 0 0
\(700\) 0 0
\(701\) −20667.7 −1.11357 −0.556783 0.830658i \(-0.687964\pi\)
−0.556783 + 0.830658i \(0.687964\pi\)
\(702\) 0 0
\(703\) −5882.12 −0.315574
\(704\) −2059.71 −0.110267
\(705\) 0 0
\(706\) −7166.36 −0.382025
\(707\) 0 0
\(708\) 0 0
\(709\) −22813.3 −1.20842 −0.604212 0.796824i \(-0.706512\pi\)
−0.604212 + 0.796824i \(0.706512\pi\)
\(710\) −5785.33 −0.305802
\(711\) 0 0
\(712\) 20018.7 1.05370
\(713\) −1724.94 −0.0906026
\(714\) 0 0
\(715\) −1760.00 −0.0920563
\(716\) −5385.54 −0.281099
\(717\) 0 0
\(718\) −19334.4 −1.00495
\(719\) −9551.14 −0.495407 −0.247703 0.968836i \(-0.579676\pi\)
−0.247703 + 0.968836i \(0.579676\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2137.77 −0.110193
\(723\) 0 0
\(724\) −10542.7 −0.541185
\(725\) −2628.84 −0.134666
\(726\) 0 0
\(727\) 30003.0 1.53060 0.765302 0.643672i \(-0.222590\pi\)
0.765302 + 0.643672i \(0.222590\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 4347.76 0.220435
\(731\) −26367.5 −1.33411
\(732\) 0 0
\(733\) −16863.7 −0.849762 −0.424881 0.905249i \(-0.639684\pi\)
−0.424881 + 0.905249i \(0.639684\pi\)
\(734\) 8763.95 0.440713
\(735\) 0 0
\(736\) 2272.95 0.113834
\(737\) −5625.50 −0.281164
\(738\) 0 0
\(739\) −30778.9 −1.53210 −0.766048 0.642783i \(-0.777780\pi\)
−0.766048 + 0.642783i \(0.777780\pi\)
\(740\) 1803.24 0.0895789
\(741\) 0 0
\(742\) 0 0
\(743\) 28510.9 1.40776 0.703879 0.710320i \(-0.251450\pi\)
0.703879 + 0.710320i \(0.251450\pi\)
\(744\) 0 0
\(745\) −12514.4 −0.615428
\(746\) 5763.77 0.282878
\(747\) 0 0
\(748\) 4706.97 0.230085
\(749\) 0 0
\(750\) 0 0
\(751\) 12480.0 0.606395 0.303197 0.952928i \(-0.401946\pi\)
0.303197 + 0.952928i \(0.401946\pi\)
\(752\) 3642.28 0.176623
\(753\) 0 0
\(754\) −5641.04 −0.272460
\(755\) −1976.06 −0.0952532
\(756\) 0 0
\(757\) −11272.1 −0.541203 −0.270601 0.962691i \(-0.587223\pi\)
−0.270601 + 0.962691i \(0.587223\pi\)
\(758\) −8354.56 −0.400332
\(759\) 0 0
\(760\) 9604.69 0.458419
\(761\) 28775.4 1.37071 0.685354 0.728210i \(-0.259647\pi\)
0.685354 + 0.728210i \(0.259647\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 15182.4 0.718951
\(765\) 0 0
\(766\) 11399.5 0.537702
\(767\) −9756.58 −0.459309
\(768\) 0 0
\(769\) 17298.3 0.811175 0.405587 0.914056i \(-0.367067\pi\)
0.405587 + 0.914056i \(0.367067\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8122.33 −0.378665
\(773\) −5348.18 −0.248849 −0.124425 0.992229i \(-0.539709\pi\)
−0.124425 + 0.992229i \(0.539709\pi\)
\(774\) 0 0
\(775\) 3552.70 0.164667
\(776\) 3826.03 0.176993
\(777\) 0 0
\(778\) 14213.7 0.654994
\(779\) −17706.3 −0.814371
\(780\) 0 0
\(781\) 7592.15 0.347847
\(782\) 1565.65 0.0715954
\(783\) 0 0
\(784\) 0 0
\(785\) 8661.75 0.393823
\(786\) 0 0
\(787\) 21615.1 0.979030 0.489515 0.871995i \(-0.337174\pi\)
0.489515 + 0.871995i \(0.337174\pi\)
\(788\) 26870.2 1.21473
\(789\) 0 0
\(790\) −2937.20 −0.132279
\(791\) 0 0
\(792\) 0 0
\(793\) −16989.5 −0.760800
\(794\) −17989.3 −0.804050
\(795\) 0 0
\(796\) −4855.62 −0.216210
\(797\) 38266.0 1.70069 0.850345 0.526225i \(-0.176393\pi\)
0.850345 + 0.526225i \(0.176393\pi\)
\(798\) 0 0
\(799\) 26336.8 1.16612
\(800\) −4681.37 −0.206889
\(801\) 0 0
\(802\) −5954.09 −0.262152
\(803\) −5705.61 −0.250743
\(804\) 0 0
\(805\) 0 0
\(806\) 7623.50 0.333159
\(807\) 0 0
\(808\) 30983.2 1.34899
\(809\) 4724.05 0.205301 0.102651 0.994717i \(-0.467268\pi\)
0.102651 + 0.994717i \(0.467268\pi\)
\(810\) 0 0
\(811\) −9687.39 −0.419446 −0.209723 0.977761i \(-0.567256\pi\)
−0.209723 + 0.977761i \(0.567256\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1037.55 0.0446756
\(815\) −16516.3 −0.709866
\(816\) 0 0
\(817\) 28955.7 1.23994
\(818\) −6400.53 −0.273581
\(819\) 0 0
\(820\) 5428.10 0.231167
\(821\) −32250.8 −1.37096 −0.685482 0.728090i \(-0.740408\pi\)
−0.685482 + 0.728090i \(0.740408\pi\)
\(822\) 0 0
\(823\) 5858.93 0.248153 0.124076 0.992273i \(-0.460403\pi\)
0.124076 + 0.992273i \(0.460403\pi\)
\(824\) −11330.8 −0.479037
\(825\) 0 0
\(826\) 0 0
\(827\) 16375.7 0.688560 0.344280 0.938867i \(-0.388123\pi\)
0.344280 + 0.938867i \(0.388123\pi\)
\(828\) 0 0
\(829\) 15152.9 0.634841 0.317421 0.948285i \(-0.397183\pi\)
0.317421 + 0.948285i \(0.397183\pi\)
\(830\) −5875.08 −0.245695
\(831\) 0 0
\(832\) −6905.94 −0.287765
\(833\) 0 0
\(834\) 0 0
\(835\) 3009.71 0.124737
\(836\) −5169.00 −0.213844
\(837\) 0 0
\(838\) 22349.6 0.921307
\(839\) 8829.87 0.363338 0.181669 0.983360i \(-0.441850\pi\)
0.181669 + 0.983360i \(0.441850\pi\)
\(840\) 0 0
\(841\) −13331.8 −0.546630
\(842\) −10430.5 −0.426911
\(843\) 0 0
\(844\) 28631.0 1.16768
\(845\) 5083.96 0.206975
\(846\) 0 0
\(847\) 0 0
\(848\) −3390.42 −0.137297
\(849\) 0 0
\(850\) −3224.62 −0.130122
\(851\) −787.125 −0.0317066
\(852\) 0 0
\(853\) 4227.64 0.169697 0.0848486 0.996394i \(-0.472959\pi\)
0.0848486 + 0.996394i \(0.472959\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 6928.15 0.276635
\(857\) −32233.1 −1.28479 −0.642394 0.766375i \(-0.722059\pi\)
−0.642394 + 0.766375i \(0.722059\pi\)
\(858\) 0 0
\(859\) −37392.3 −1.48523 −0.742613 0.669720i \(-0.766414\pi\)
−0.742613 + 0.669720i \(0.766414\pi\)
\(860\) −8876.73 −0.351970
\(861\) 0 0
\(862\) −17963.8 −0.709801
\(863\) 8372.73 0.330256 0.165128 0.986272i \(-0.447196\pi\)
0.165128 + 0.986272i \(0.447196\pi\)
\(864\) 0 0
\(865\) 18705.8 0.735280
\(866\) 5065.66 0.198774
\(867\) 0 0
\(868\) 0 0
\(869\) 3854.52 0.150467
\(870\) 0 0
\(871\) −18861.5 −0.733753
\(872\) 34343.0 1.33372
\(873\) 0 0
\(874\) −1719.33 −0.0665416
\(875\) 0 0
\(876\) 0 0
\(877\) 38583.0 1.48558 0.742790 0.669524i \(-0.233502\pi\)
0.742790 + 0.669524i \(0.233502\pi\)
\(878\) −4285.23 −0.164715
\(879\) 0 0
\(880\) 585.227 0.0224182
\(881\) −41611.7 −1.59130 −0.795650 0.605757i \(-0.792870\pi\)
−0.795650 + 0.605757i \(0.792870\pi\)
\(882\) 0 0
\(883\) 43408.1 1.65436 0.827180 0.561937i \(-0.189944\pi\)
0.827180 + 0.561937i \(0.189944\pi\)
\(884\) 15781.8 0.600453
\(885\) 0 0
\(886\) −12773.9 −0.484366
\(887\) −19523.6 −0.739050 −0.369525 0.929221i \(-0.620480\pi\)
−0.369525 + 0.929221i \(0.620480\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 7380.67 0.277978
\(891\) 0 0
\(892\) −13544.1 −0.508398
\(893\) −28922.0 −1.08381
\(894\) 0 0
\(895\) −4841.76 −0.180829
\(896\) 0 0
\(897\) 0 0
\(898\) −10502.5 −0.390283
\(899\) −14943.1 −0.554373
\(900\) 0 0
\(901\) −24515.7 −0.906479
\(902\) 3123.21 0.115290
\(903\) 0 0
\(904\) 9544.84 0.351169
\(905\) −9478.23 −0.348140
\(906\) 0 0
\(907\) 44114.7 1.61500 0.807499 0.589869i \(-0.200820\pi\)
0.807499 + 0.589869i \(0.200820\pi\)
\(908\) −19512.5 −0.713156
\(909\) 0 0
\(910\) 0 0
\(911\) 49231.9 1.79048 0.895240 0.445585i \(-0.147004\pi\)
0.895240 + 0.445585i \(0.147004\pi\)
\(912\) 0 0
\(913\) 7709.92 0.279476
\(914\) 16875.7 0.610719
\(915\) 0 0
\(916\) 19073.6 0.688001
\(917\) 0 0
\(918\) 0 0
\(919\) −46993.6 −1.68681 −0.843403 0.537282i \(-0.819451\pi\)
−0.843403 + 0.537282i \(0.819451\pi\)
\(920\) 1285.26 0.0460586
\(921\) 0 0
\(922\) 27757.9 0.991494
\(923\) 25455.5 0.907775
\(924\) 0 0
\(925\) 1621.16 0.0576255
\(926\) 6900.40 0.244883
\(927\) 0 0
\(928\) 19690.5 0.696521
\(929\) 33023.5 1.16627 0.583135 0.812375i \(-0.301826\pi\)
0.583135 + 0.812375i \(0.301826\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 22189.0 0.779855
\(933\) 0 0
\(934\) 5267.25 0.184529
\(935\) 4231.70 0.148012
\(936\) 0 0
\(937\) 23431.0 0.816924 0.408462 0.912775i \(-0.366065\pi\)
0.408462 + 0.912775i \(0.366065\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 8866.41 0.307649
\(941\) −43688.0 −1.51348 −0.756742 0.653714i \(-0.773210\pi\)
−0.756742 + 0.653714i \(0.773210\pi\)
\(942\) 0 0
\(943\) −2369.40 −0.0818221
\(944\) 3244.21 0.111854
\(945\) 0 0
\(946\) −5107.48 −0.175538
\(947\) 34884.0 1.19702 0.598511 0.801115i \(-0.295759\pi\)
0.598511 + 0.801115i \(0.295759\pi\)
\(948\) 0 0
\(949\) −19130.1 −0.654363
\(950\) 3541.15 0.120937
\(951\) 0 0
\(952\) 0 0
\(953\) 34486.4 1.17222 0.586108 0.810233i \(-0.300659\pi\)
0.586108 + 0.810233i \(0.300659\pi\)
\(954\) 0 0
\(955\) 13649.4 0.462496
\(956\) 33006.2 1.11663
\(957\) 0 0
\(958\) 7214.40 0.243306
\(959\) 0 0
\(960\) 0 0
\(961\) −9596.33 −0.322122
\(962\) 3478.75 0.116590
\(963\) 0 0
\(964\) −36049.4 −1.20443
\(965\) −7302.21 −0.243592
\(966\) 0 0
\(967\) −46341.6 −1.54110 −0.770550 0.637379i \(-0.780019\pi\)
−0.770550 + 0.637379i \(0.780019\pi\)
\(968\) −25963.4 −0.862083
\(969\) 0 0
\(970\) 1410.62 0.0466930
\(971\) 34551.4 1.14192 0.570962 0.820977i \(-0.306571\pi\)
0.570962 + 0.820977i \(0.306571\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 14223.6 0.467919
\(975\) 0 0
\(976\) 5649.27 0.185275
\(977\) 970.127 0.0317678 0.0158839 0.999874i \(-0.494944\pi\)
0.0158839 + 0.999874i \(0.494944\pi\)
\(978\) 0 0
\(979\) −9685.73 −0.316198
\(980\) 0 0
\(981\) 0 0
\(982\) 4211.26 0.136850
\(983\) −18342.2 −0.595142 −0.297571 0.954700i \(-0.596176\pi\)
−0.297571 + 0.954700i \(0.596176\pi\)
\(984\) 0 0
\(985\) 24157.1 0.781430
\(986\) 13563.2 0.438073
\(987\) 0 0
\(988\) −17331.0 −0.558068
\(989\) 3874.75 0.124580
\(990\) 0 0
\(991\) 48979.6 1.57002 0.785010 0.619484i \(-0.212658\pi\)
0.785010 + 0.619484i \(0.212658\pi\)
\(992\) −26610.4 −0.851694
\(993\) 0 0
\(994\) 0 0
\(995\) −4365.35 −0.139086
\(996\) 0 0
\(997\) −31492.9 −1.00039 −0.500196 0.865912i \(-0.666739\pi\)
−0.500196 + 0.865912i \(0.666739\pi\)
\(998\) 31315.7 0.993268
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2205.4.a.ba.1.1 2
3.2 odd 2 2205.4.a.y.1.2 2
7.6 odd 2 315.4.a.j.1.1 yes 2
21.20 even 2 315.4.a.h.1.2 2
35.34 odd 2 1575.4.a.r.1.2 2
105.104 even 2 1575.4.a.u.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.4.a.h.1.2 2 21.20 even 2
315.4.a.j.1.1 yes 2 7.6 odd 2
1575.4.a.r.1.2 2 35.34 odd 2
1575.4.a.u.1.1 2 105.104 even 2
2205.4.a.y.1.2 2 3.2 odd 2
2205.4.a.ba.1.1 2 1.1 even 1 trivial