# Properties

 Label 2200.2.b.e Level $2200$ Weight $2$ Character orbit 2200.b Analytic conductor $17.567$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2200,2,Mod(1849,2200)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2200, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2200.1849");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2200 = 2^{3} \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2200.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$17.5670884447$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 440) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 2i$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta q^{7} + 3 q^{9} +O(q^{10})$$ q - b * q^7 + 3 * q^9 $$q - \beta q^{7} + 3 q^{9} + q^{11} + 2 \beta q^{13} - 2 \beta q^{17} + 6 q^{29} - \beta q^{37} + 6 q^{41} - \beta q^{43} + 3 q^{49} + 5 \beta q^{53} - 12 q^{59} - 6 q^{61} - 3 \beta q^{63} - 6 \beta q^{67} + 16 q^{71} - 2 \beta q^{73} - \beta q^{77} + 4 q^{79} + 9 q^{81} - \beta q^{83} - 6 q^{89} + 8 q^{91} - \beta q^{97} + 3 q^{99} +O(q^{100})$$ q - b * q^7 + 3 * q^9 + q^11 + 2*b * q^13 - 2*b * q^17 + 6 * q^29 - b * q^37 + 6 * q^41 - b * q^43 + 3 * q^49 + 5*b * q^53 - 12 * q^59 - 6 * q^61 - 3*b * q^63 - 6*b * q^67 + 16 * q^71 - 2*b * q^73 - b * q^77 + 4 * q^79 + 9 * q^81 - b * q^83 - 6 * q^89 + 8 * q^91 - b * q^97 + 3 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 6 q^{9}+O(q^{10})$$ 2 * q + 6 * q^9 $$2 q + 6 q^{9} + 2 q^{11} + 12 q^{29} + 12 q^{41} + 6 q^{49} - 24 q^{59} - 12 q^{61} + 32 q^{71} + 8 q^{79} + 18 q^{81} - 12 q^{89} + 16 q^{91} + 6 q^{99}+O(q^{100})$$ 2 * q + 6 * q^9 + 2 * q^11 + 12 * q^29 + 12 * q^41 + 6 * q^49 - 24 * q^59 - 12 * q^61 + 32 * q^71 + 8 * q^79 + 18 * q^81 - 12 * q^89 + 16 * q^91 + 6 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2200\mathbb{Z}\right)^\times$$.

 $$n$$ $$177$$ $$551$$ $$1101$$ $$1201$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1849.1
 1.00000i − 1.00000i
0 0 0 0 0 2.00000i 0 3.00000 0
1849.2 0 0 0 0 0 2.00000i 0 3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2200.2.b.e 2
4.b odd 2 1 4400.2.b.l 2
5.b even 2 1 inner 2200.2.b.e 2
5.c odd 4 1 440.2.a.b 1
5.c odd 4 1 2200.2.a.g 1
15.e even 4 1 3960.2.a.j 1
20.d odd 2 1 4400.2.b.l 2
20.e even 4 1 880.2.a.e 1
20.e even 4 1 4400.2.a.m 1
40.i odd 4 1 3520.2.a.s 1
40.k even 4 1 3520.2.a.v 1
55.e even 4 1 4840.2.a.d 1
60.l odd 4 1 7920.2.a.bi 1
220.i odd 4 1 9680.2.a.o 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.a.b 1 5.c odd 4 1
880.2.a.e 1 20.e even 4 1
2200.2.a.g 1 5.c odd 4 1
2200.2.b.e 2 1.a even 1 1 trivial
2200.2.b.e 2 5.b even 2 1 inner
3520.2.a.s 1 40.i odd 4 1
3520.2.a.v 1 40.k even 4 1
3960.2.a.j 1 15.e even 4 1
4400.2.a.m 1 20.e even 4 1
4400.2.b.l 2 4.b odd 2 1
4400.2.b.l 2 20.d odd 2 1
4840.2.a.d 1 55.e even 4 1
7920.2.a.bi 1 60.l odd 4 1
9680.2.a.o 1 220.i odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2200, [\chi])$$:

 $$T_{3}$$ T3 $$T_{7}^{2} + 4$$ T7^2 + 4 $$T_{13}^{2} + 16$$ T13^2 + 16

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 4$$
$11$ $$(T - 1)^{2}$$
$13$ $$T^{2} + 16$$
$17$ $$T^{2} + 16$$
$19$ $$T^{2}$$
$23$ $$T^{2}$$
$29$ $$(T - 6)^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2} + 4$$
$41$ $$(T - 6)^{2}$$
$43$ $$T^{2} + 4$$
$47$ $$T^{2}$$
$53$ $$T^{2} + 100$$
$59$ $$(T + 12)^{2}$$
$61$ $$(T + 6)^{2}$$
$67$ $$T^{2} + 144$$
$71$ $$(T - 16)^{2}$$
$73$ $$T^{2} + 16$$
$79$ $$(T - 4)^{2}$$
$83$ $$T^{2} + 4$$
$89$ $$(T + 6)^{2}$$
$97$ $$T^{2} + 4$$