Properties

Label 2200.2.a.y.1.4
Level $2200$
Weight $2$
Character 2200.1
Self dual yes
Analytic conductor $17.567$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2200,2,Mod(1,2200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2200 = 2^{3} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.5670884447\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.54764.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 3x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.36007\) of defining polynomial
Character \(\chi\) \(=\) 2200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.36007 q^{3} +1.08258 q^{7} +8.29009 q^{9} +O(q^{10})\) \(q+3.36007 q^{3} +1.08258 q^{7} +8.29009 q^{9} +1.00000 q^{11} +4.00000 q^{13} -0.107866 q^{17} -6.61228 q^{19} +3.63756 q^{21} -5.97235 q^{23} +17.7751 q^{27} +7.80273 q^{29} +1.12492 q^{31} +3.36007 q^{33} -7.05494 q^{37} +13.4403 q^{39} +5.19045 q^{41} +5.52969 q^{43} -7.69486 q^{47} -5.82801 q^{49} -0.362439 q^{51} -4.77745 q^{53} -22.2177 q^{57} -0.677809 q^{59} +0.197271 q^{61} +8.97472 q^{63} -1.41737 q^{67} -20.0675 q^{69} -6.15020 q^{71} +6.16517 q^{73} +1.08258 q^{77} -9.35562 q^{79} +34.8553 q^{81} +13.7454 q^{83} +26.2177 q^{87} -1.29009 q^{89} +4.33034 q^{91} +3.77981 q^{93} -6.60782 q^{97} +8.29009 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + q^{7} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{3} + q^{7} + 7 q^{9} + 4 q^{11} + 16 q^{13} + 7 q^{17} - 9 q^{19} - 7 q^{21} + 6 q^{23} + 13 q^{27} + 3 q^{29} - 15 q^{31} + q^{33} + 5 q^{37} + 4 q^{39} + 10 q^{41} + 8 q^{43} - 10 q^{47} + 9 q^{49} - 23 q^{51} + 5 q^{53} - 15 q^{57} + 6 q^{59} + 29 q^{61} + 40 q^{63} + 6 q^{67} - 30 q^{69} - q^{71} + 18 q^{73} + q^{77} - 20 q^{79} + 44 q^{81} + 26 q^{83} + 31 q^{87} + 21 q^{89} + 4 q^{91} + 25 q^{93} - 4 q^{97} + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.36007 1.93994 0.969969 0.243227i \(-0.0782060\pi\)
0.969969 + 0.243227i \(0.0782060\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.08258 0.409178 0.204589 0.978848i \(-0.434414\pi\)
0.204589 + 0.978848i \(0.434414\pi\)
\(8\) 0 0
\(9\) 8.29009 2.76336
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.107866 −0.0261614 −0.0130807 0.999914i \(-0.504164\pi\)
−0.0130807 + 0.999914i \(0.504164\pi\)
\(18\) 0 0
\(19\) −6.61228 −1.51696 −0.758480 0.651696i \(-0.774058\pi\)
−0.758480 + 0.651696i \(0.774058\pi\)
\(20\) 0 0
\(21\) 3.63756 0.793781
\(22\) 0 0
\(23\) −5.97235 −1.24532 −0.622661 0.782492i \(-0.713948\pi\)
−0.622661 + 0.782492i \(0.713948\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 17.7751 3.42082
\(28\) 0 0
\(29\) 7.80273 1.44893 0.724465 0.689311i \(-0.242087\pi\)
0.724465 + 0.689311i \(0.242087\pi\)
\(30\) 0 0
\(31\) 1.12492 0.202042 0.101021 0.994884i \(-0.467789\pi\)
0.101021 + 0.994884i \(0.467789\pi\)
\(32\) 0 0
\(33\) 3.36007 0.584914
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7.05494 −1.15982 −0.579912 0.814679i \(-0.696913\pi\)
−0.579912 + 0.814679i \(0.696913\pi\)
\(38\) 0 0
\(39\) 13.4403 2.15217
\(40\) 0 0
\(41\) 5.19045 0.810612 0.405306 0.914181i \(-0.367165\pi\)
0.405306 + 0.914181i \(0.367165\pi\)
\(42\) 0 0
\(43\) 5.52969 0.843271 0.421635 0.906766i \(-0.361456\pi\)
0.421635 + 0.906766i \(0.361456\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.69486 −1.12241 −0.561206 0.827676i \(-0.689662\pi\)
−0.561206 + 0.827676i \(0.689662\pi\)
\(48\) 0 0
\(49\) −5.82801 −0.832573
\(50\) 0 0
\(51\) −0.362439 −0.0507516
\(52\) 0 0
\(53\) −4.77745 −0.656233 −0.328116 0.944637i \(-0.606414\pi\)
−0.328116 + 0.944637i \(0.606414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −22.2177 −2.94281
\(58\) 0 0
\(59\) −0.677809 −0.0882433 −0.0441216 0.999026i \(-0.514049\pi\)
−0.0441216 + 0.999026i \(0.514049\pi\)
\(60\) 0 0
\(61\) 0.197271 0.0252579 0.0126290 0.999920i \(-0.495980\pi\)
0.0126290 + 0.999920i \(0.495980\pi\)
\(62\) 0 0
\(63\) 8.97472 1.13071
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.41737 −0.173160 −0.0865799 0.996245i \(-0.527594\pi\)
−0.0865799 + 0.996245i \(0.527594\pi\)
\(68\) 0 0
\(69\) −20.0675 −2.41585
\(70\) 0 0
\(71\) −6.15020 −0.729895 −0.364947 0.931028i \(-0.618913\pi\)
−0.364947 + 0.931028i \(0.618913\pi\)
\(72\) 0 0
\(73\) 6.16517 0.721578 0.360789 0.932647i \(-0.382507\pi\)
0.360789 + 0.932647i \(0.382507\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.08258 0.123372
\(78\) 0 0
\(79\) −9.35562 −1.05259 −0.526295 0.850302i \(-0.676419\pi\)
−0.526295 + 0.850302i \(0.676419\pi\)
\(80\) 0 0
\(81\) 34.8553 3.87281
\(82\) 0 0
\(83\) 13.7454 1.50876 0.754378 0.656440i \(-0.227938\pi\)
0.754378 + 0.656440i \(0.227938\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 26.2177 2.81084
\(88\) 0 0
\(89\) −1.29009 −0.136749 −0.0683745 0.997660i \(-0.521781\pi\)
−0.0683745 + 0.997660i \(0.521781\pi\)
\(90\) 0 0
\(91\) 4.33034 0.453943
\(92\) 0 0
\(93\) 3.77981 0.391948
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.60782 −0.670923 −0.335461 0.942054i \(-0.608892\pi\)
−0.335461 + 0.942054i \(0.608892\pi\)
\(98\) 0 0
\(99\) 8.29009 0.833185
\(100\) 0 0
\(101\) −15.4403 −1.53637 −0.768183 0.640230i \(-0.778839\pi\)
−0.768183 + 0.640230i \(0.778839\pi\)
\(102\) 0 0
\(103\) −5.74543 −0.566114 −0.283057 0.959103i \(-0.591349\pi\)
−0.283057 + 0.959103i \(0.591349\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.30514 0.416193 0.208097 0.978108i \(-0.433273\pi\)
0.208097 + 0.978108i \(0.433273\pi\)
\(108\) 0 0
\(109\) −2.33034 −0.223206 −0.111603 0.993753i \(-0.535598\pi\)
−0.111603 + 0.993753i \(0.535598\pi\)
\(110\) 0 0
\(111\) −23.7051 −2.24999
\(112\) 0 0
\(113\) 10.9471 1.02981 0.514907 0.857246i \(-0.327827\pi\)
0.514907 + 0.857246i \(0.327827\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 33.1604 3.06568
\(118\) 0 0
\(119\) −0.116774 −0.0107047
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 17.4403 1.57254
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.5802 1.11631 0.558155 0.829737i \(-0.311509\pi\)
0.558155 + 0.829737i \(0.311509\pi\)
\(128\) 0 0
\(129\) 18.5802 1.63589
\(130\) 0 0
\(131\) 15.2430 1.33179 0.665894 0.746046i \(-0.268050\pi\)
0.665894 + 0.746046i \(0.268050\pi\)
\(132\) 0 0
\(133\) −7.15835 −0.620707
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.6078 1.24803 0.624015 0.781412i \(-0.285500\pi\)
0.624015 + 0.781412i \(0.285500\pi\)
\(138\) 0 0
\(139\) −20.4150 −1.73158 −0.865789 0.500409i \(-0.833183\pi\)
−0.865789 + 0.500409i \(0.833183\pi\)
\(140\) 0 0
\(141\) −25.8553 −2.17741
\(142\) 0 0
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −19.5825 −1.61514
\(148\) 0 0
\(149\) −15.8874 −1.30155 −0.650773 0.759272i \(-0.725555\pi\)
−0.650773 + 0.759272i \(0.725555\pi\)
\(150\) 0 0
\(151\) 6.58018 0.535487 0.267744 0.963490i \(-0.413722\pi\)
0.267744 + 0.963490i \(0.413722\pi\)
\(152\) 0 0
\(153\) −0.894222 −0.0722935
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.38535 0.509607 0.254803 0.966993i \(-0.417989\pi\)
0.254803 + 0.966993i \(0.417989\pi\)
\(158\) 0 0
\(159\) −16.0526 −1.27305
\(160\) 0 0
\(161\) −6.46557 −0.509559
\(162\) 0 0
\(163\) −18.3071 −1.43393 −0.716963 0.697111i \(-0.754468\pi\)
−0.716963 + 0.697111i \(0.754468\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.197271 0.0152653 0.00763263 0.999971i \(-0.497570\pi\)
0.00763263 + 0.999971i \(0.497570\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −54.8164 −4.19191
\(172\) 0 0
\(173\) 14.7201 1.11915 0.559576 0.828779i \(-0.310964\pi\)
0.559576 + 0.828779i \(0.310964\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.27749 −0.171187
\(178\) 0 0
\(179\) 11.8518 0.885845 0.442923 0.896560i \(-0.353942\pi\)
0.442923 + 0.896560i \(0.353942\pi\)
\(180\) 0 0
\(181\) −10.7625 −0.799969 −0.399984 0.916522i \(-0.630984\pi\)
−0.399984 + 0.916522i \(0.630984\pi\)
\(182\) 0 0
\(183\) 0.662843 0.0489988
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.107866 −0.00788797
\(188\) 0 0
\(189\) 19.2430 1.39972
\(190\) 0 0
\(191\) 1.70309 0.123231 0.0616157 0.998100i \(-0.480375\pi\)
0.0616157 + 0.998100i \(0.480375\pi\)
\(192\) 0 0
\(193\) 10.8280 0.779417 0.389709 0.920938i \(-0.372576\pi\)
0.389709 + 0.920938i \(0.372576\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.72015 −0.478791 −0.239395 0.970922i \(-0.576949\pi\)
−0.239395 + 0.970922i \(0.576949\pi\)
\(198\) 0 0
\(199\) −10.8280 −0.767577 −0.383789 0.923421i \(-0.625381\pi\)
−0.383789 + 0.923421i \(0.625381\pi\)
\(200\) 0 0
\(201\) −4.76248 −0.335920
\(202\) 0 0
\(203\) 8.44711 0.592871
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −49.5113 −3.44127
\(208\) 0 0
\(209\) −6.61228 −0.457381
\(210\) 0 0
\(211\) 0.447111 0.0307804 0.0153902 0.999882i \(-0.495101\pi\)
0.0153902 + 0.999882i \(0.495101\pi\)
\(212\) 0 0
\(213\) −20.6651 −1.41595
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.21782 0.0826710
\(218\) 0 0
\(219\) 20.7154 1.39982
\(220\) 0 0
\(221\) −0.431465 −0.0290235
\(222\) 0 0
\(223\) −17.8577 −1.19584 −0.597922 0.801555i \(-0.704007\pi\)
−0.597922 + 0.801555i \(0.704007\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.31396 0.0872107 0.0436054 0.999049i \(-0.486116\pi\)
0.0436054 + 0.999049i \(0.486116\pi\)
\(228\) 0 0
\(229\) 4.84298 0.320033 0.160016 0.987114i \(-0.448845\pi\)
0.160016 + 0.987114i \(0.448845\pi\)
\(230\) 0 0
\(231\) 3.63756 0.239334
\(232\) 0 0
\(233\) −20.3829 −1.33533 −0.667664 0.744462i \(-0.732706\pi\)
−0.667664 + 0.744462i \(0.732706\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −31.4356 −2.04196
\(238\) 0 0
\(239\) −9.35562 −0.605165 −0.302582 0.953123i \(-0.597849\pi\)
−0.302582 + 0.953123i \(0.597849\pi\)
\(240\) 0 0
\(241\) 22.3004 1.43650 0.718248 0.695788i \(-0.244944\pi\)
0.718248 + 0.695788i \(0.244944\pi\)
\(242\) 0 0
\(243\) 63.7911 4.09220
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −26.4491 −1.68292
\(248\) 0 0
\(249\) 46.1856 2.92690
\(250\) 0 0
\(251\) −10.9276 −0.689747 −0.344874 0.938649i \(-0.612078\pi\)
−0.344874 + 0.938649i \(0.612078\pi\)
\(252\) 0 0
\(253\) −5.97235 −0.375479
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.4403 1.33741 0.668704 0.743528i \(-0.266849\pi\)
0.668704 + 0.743528i \(0.266849\pi\)
\(258\) 0 0
\(259\) −7.63756 −0.474575
\(260\) 0 0
\(261\) 64.6853 4.00392
\(262\) 0 0
\(263\) −6.52287 −0.402218 −0.201109 0.979569i \(-0.564454\pi\)
−0.201109 + 0.979569i \(0.564454\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.33479 −0.265285
\(268\) 0 0
\(269\) 5.60546 0.341771 0.170885 0.985291i \(-0.445337\pi\)
0.170885 + 0.985291i \(0.445337\pi\)
\(270\) 0 0
\(271\) −28.9446 −1.75826 −0.879130 0.476582i \(-0.841876\pi\)
−0.879130 + 0.476582i \(0.841876\pi\)
\(272\) 0 0
\(273\) 14.5502 0.880621
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 25.3850 1.52524 0.762618 0.646849i \(-0.223914\pi\)
0.762618 + 0.646849i \(0.223914\pi\)
\(278\) 0 0
\(279\) 9.32569 0.558314
\(280\) 0 0
\(281\) −27.1604 −1.62025 −0.810125 0.586257i \(-0.800601\pi\)
−0.810125 + 0.586257i \(0.800601\pi\)
\(282\) 0 0
\(283\) −22.0205 −1.30898 −0.654490 0.756070i \(-0.727117\pi\)
−0.654490 + 0.756070i \(0.727117\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.61910 0.331685
\(288\) 0 0
\(289\) −16.9884 −0.999316
\(290\) 0 0
\(291\) −22.2028 −1.30155
\(292\) 0 0
\(293\) 1.44029 0.0841427 0.0420713 0.999115i \(-0.486604\pi\)
0.0420713 + 0.999115i \(0.486604\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 17.7751 1.03141
\(298\) 0 0
\(299\) −23.8894 −1.38156
\(300\) 0 0
\(301\) 5.98636 0.345048
\(302\) 0 0
\(303\) −51.8805 −2.98046
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −2.80955 −0.160349 −0.0801747 0.996781i \(-0.525548\pi\)
−0.0801747 + 0.996781i \(0.525548\pi\)
\(308\) 0 0
\(309\) −19.3051 −1.09823
\(310\) 0 0
\(311\) −11.5529 −0.655104 −0.327552 0.944833i \(-0.606224\pi\)
−0.327552 + 0.944833i \(0.606224\pi\)
\(312\) 0 0
\(313\) 26.1580 1.47854 0.739268 0.673411i \(-0.235171\pi\)
0.739268 + 0.673411i \(0.235171\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 29.3805 1.65018 0.825088 0.565005i \(-0.191126\pi\)
0.825088 + 0.565005i \(0.191126\pi\)
\(318\) 0 0
\(319\) 7.80273 0.436869
\(320\) 0 0
\(321\) 14.4656 0.807390
\(322\) 0 0
\(323\) 0.713242 0.0396859
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −7.83010 −0.433005
\(328\) 0 0
\(329\) −8.33034 −0.459266
\(330\) 0 0
\(331\) 12.2833 0.675149 0.337575 0.941299i \(-0.390393\pi\)
0.337575 + 0.941299i \(0.390393\pi\)
\(332\) 0 0
\(333\) −58.4860 −3.20502
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −21.3324 −1.16205 −0.581026 0.813885i \(-0.697348\pi\)
−0.581026 + 0.813885i \(0.697348\pi\)
\(338\) 0 0
\(339\) 36.7829 1.99778
\(340\) 0 0
\(341\) 1.12492 0.0609178
\(342\) 0 0
\(343\) −13.8874 −0.749849
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.4150 0.559107 0.279553 0.960130i \(-0.409814\pi\)
0.279553 + 0.960130i \(0.409814\pi\)
\(348\) 0 0
\(349\) −13.4909 −0.722149 −0.361074 0.932537i \(-0.617590\pi\)
−0.361074 + 0.932537i \(0.617590\pi\)
\(350\) 0 0
\(351\) 71.1003 3.79505
\(352\) 0 0
\(353\) −12.7177 −0.676895 −0.338447 0.940985i \(-0.609902\pi\)
−0.338447 + 0.940985i \(0.609902\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.392370 −0.0207664
\(358\) 0 0
\(359\) −19.8212 −1.04612 −0.523061 0.852295i \(-0.675210\pi\)
−0.523061 + 0.852295i \(0.675210\pi\)
\(360\) 0 0
\(361\) 24.7222 1.30117
\(362\) 0 0
\(363\) 3.36007 0.176358
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.3027 0.537796 0.268898 0.963169i \(-0.413341\pi\)
0.268898 + 0.963169i \(0.413341\pi\)
\(368\) 0 0
\(369\) 43.0293 2.24002
\(370\) 0 0
\(371\) −5.17199 −0.268516
\(372\) 0 0
\(373\) 23.3344 1.20821 0.604105 0.796904i \(-0.293531\pi\)
0.604105 + 0.796904i \(0.293531\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 31.2109 1.60744
\(378\) 0 0
\(379\) −21.2074 −1.08935 −0.544676 0.838647i \(-0.683347\pi\)
−0.544676 + 0.838647i \(0.683347\pi\)
\(380\) 0 0
\(381\) 42.2703 2.16557
\(382\) 0 0
\(383\) −0.972434 −0.0496891 −0.0248445 0.999691i \(-0.507909\pi\)
−0.0248445 + 0.999691i \(0.507909\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 45.8417 2.33026
\(388\) 0 0
\(389\) 2.76248 0.140063 0.0700317 0.997545i \(-0.477690\pi\)
0.0700317 + 0.997545i \(0.477690\pi\)
\(390\) 0 0
\(391\) 0.644216 0.0325794
\(392\) 0 0
\(393\) 51.2177 2.58359
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −11.2751 −0.565882 −0.282941 0.959137i \(-0.591310\pi\)
−0.282941 + 0.959137i \(0.591310\pi\)
\(398\) 0 0
\(399\) −24.0526 −1.20413
\(400\) 0 0
\(401\) −10.4471 −0.521704 −0.260852 0.965379i \(-0.584003\pi\)
−0.260852 + 0.965379i \(0.584003\pi\)
\(402\) 0 0
\(403\) 4.49968 0.224145
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.05494 −0.349700
\(408\) 0 0
\(409\) −1.27512 −0.0630507 −0.0315254 0.999503i \(-0.510037\pi\)
−0.0315254 + 0.999503i \(0.510037\pi\)
\(410\) 0 0
\(411\) 49.0834 2.42110
\(412\) 0 0
\(413\) −0.733786 −0.0361072
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −68.5959 −3.35916
\(418\) 0 0
\(419\) 18.7795 0.917436 0.458718 0.888582i \(-0.348309\pi\)
0.458718 + 0.888582i \(0.348309\pi\)
\(420\) 0 0
\(421\) −1.27512 −0.0621457 −0.0310728 0.999517i \(-0.509892\pi\)
−0.0310728 + 0.999517i \(0.509892\pi\)
\(422\) 0 0
\(423\) −63.7911 −3.10163
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.213562 0.0103350
\(428\) 0 0
\(429\) 13.4403 0.648903
\(430\) 0 0
\(431\) 1.63556 0.0787820 0.0393910 0.999224i \(-0.487458\pi\)
0.0393910 + 0.999224i \(0.487458\pi\)
\(432\) 0 0
\(433\) −26.4932 −1.27318 −0.636591 0.771201i \(-0.719656\pi\)
−0.636591 + 0.771201i \(0.719656\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 39.4909 1.88910
\(438\) 0 0
\(439\) 31.9358 1.52421 0.762106 0.647452i \(-0.224165\pi\)
0.762106 + 0.647452i \(0.224165\pi\)
\(440\) 0 0
\(441\) −48.3147 −2.30070
\(442\) 0 0
\(443\) −2.02765 −0.0963365 −0.0481682 0.998839i \(-0.515338\pi\)
−0.0481682 + 0.998839i \(0.515338\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −53.3828 −2.52492
\(448\) 0 0
\(449\) −10.0675 −0.475116 −0.237558 0.971373i \(-0.576347\pi\)
−0.237558 + 0.971373i \(0.576347\pi\)
\(450\) 0 0
\(451\) 5.19045 0.244409
\(452\) 0 0
\(453\) 22.1099 1.03881
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.04839 −0.282932 −0.141466 0.989943i \(-0.545182\pi\)
−0.141466 + 0.989943i \(0.545182\pi\)
\(458\) 0 0
\(459\) −1.91733 −0.0894934
\(460\) 0 0
\(461\) 31.8397 1.48292 0.741460 0.670997i \(-0.234134\pi\)
0.741460 + 0.670997i \(0.234134\pi\)
\(462\) 0 0
\(463\) 30.2474 1.40572 0.702858 0.711330i \(-0.251907\pi\)
0.702858 + 0.711330i \(0.251907\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −31.3417 −1.45032 −0.725160 0.688580i \(-0.758234\pi\)
−0.725160 + 0.688580i \(0.758234\pi\)
\(468\) 0 0
\(469\) −1.53443 −0.0708533
\(470\) 0 0
\(471\) 21.4553 0.988606
\(472\) 0 0
\(473\) 5.52969 0.254256
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −39.6055 −1.81341
\(478\) 0 0
\(479\) 6.59663 0.301408 0.150704 0.988579i \(-0.451846\pi\)
0.150704 + 0.988579i \(0.451846\pi\)
\(480\) 0 0
\(481\) −28.2197 −1.28671
\(482\) 0 0
\(483\) −21.7248 −0.988512
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1.13343 −0.0513605 −0.0256802 0.999670i \(-0.508175\pi\)
−0.0256802 + 0.999670i \(0.508175\pi\)
\(488\) 0 0
\(489\) −61.5133 −2.78173
\(490\) 0 0
\(491\) 43.5569 1.96570 0.982848 0.184419i \(-0.0590404\pi\)
0.982848 + 0.184419i \(0.0590404\pi\)
\(492\) 0 0
\(493\) −0.841652 −0.0379061
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.65811 −0.298657
\(498\) 0 0
\(499\) −34.5502 −1.54668 −0.773341 0.633991i \(-0.781416\pi\)
−0.773341 + 0.633991i \(0.781416\pi\)
\(500\) 0 0
\(501\) 0.662843 0.0296137
\(502\) 0 0
\(503\) 5.92424 0.264149 0.132074 0.991240i \(-0.457836\pi\)
0.132074 + 0.991240i \(0.457836\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 10.0802 0.447678
\(508\) 0 0
\(509\) −42.3679 −1.87793 −0.938963 0.344018i \(-0.888212\pi\)
−0.938963 + 0.344018i \(0.888212\pi\)
\(510\) 0 0
\(511\) 6.67431 0.295254
\(512\) 0 0
\(513\) −117.534 −5.18924
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −7.69486 −0.338420
\(518\) 0 0
\(519\) 49.4608 2.17109
\(520\) 0 0
\(521\) 21.2116 0.929297 0.464648 0.885495i \(-0.346181\pi\)
0.464648 + 0.885495i \(0.346181\pi\)
\(522\) 0 0
\(523\) −5.19045 −0.226963 −0.113481 0.993540i \(-0.536200\pi\)
−0.113481 + 0.993540i \(0.536200\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.121341 −0.00528570
\(528\) 0 0
\(529\) 12.6690 0.550825
\(530\) 0 0
\(531\) −5.61910 −0.243848
\(532\) 0 0
\(533\) 20.7618 0.899293
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 39.8229 1.71849
\(538\) 0 0
\(539\) −5.82801 −0.251030
\(540\) 0 0
\(541\) −24.0185 −1.03263 −0.516317 0.856397i \(-0.672697\pi\)
−0.516317 + 0.856397i \(0.672697\pi\)
\(542\) 0 0
\(543\) −36.1627 −1.55189
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −12.8601 −0.549859 −0.274929 0.961464i \(-0.588654\pi\)
−0.274929 + 0.961464i \(0.588654\pi\)
\(548\) 0 0
\(549\) 1.63539 0.0697968
\(550\) 0 0
\(551\) −51.5938 −2.19797
\(552\) 0 0
\(553\) −10.1282 −0.430697
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −31.3344 −1.32768 −0.663841 0.747874i \(-0.731075\pi\)
−0.663841 + 0.747874i \(0.731075\pi\)
\(558\) 0 0
\(559\) 22.1188 0.935525
\(560\) 0 0
\(561\) −0.362439 −0.0153022
\(562\) 0 0
\(563\) −17.6901 −0.745550 −0.372775 0.927922i \(-0.621594\pi\)
−0.372775 + 0.927922i \(0.621594\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 37.7338 1.58467
\(568\) 0 0
\(569\) 26.3004 1.10257 0.551285 0.834317i \(-0.314138\pi\)
0.551285 + 0.834317i \(0.314138\pi\)
\(570\) 0 0
\(571\) −35.9884 −1.50607 −0.753033 0.657983i \(-0.771410\pi\)
−0.753033 + 0.657983i \(0.771410\pi\)
\(572\) 0 0
\(573\) 5.72251 0.239061
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −32.6031 −1.35728 −0.678642 0.734469i \(-0.737431\pi\)
−0.678642 + 0.734469i \(0.737431\pi\)
\(578\) 0 0
\(579\) 36.3829 1.51202
\(580\) 0 0
\(581\) 14.8806 0.617351
\(582\) 0 0
\(583\) −4.77745 −0.197862
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.6287 0.727612 0.363806 0.931475i \(-0.381477\pi\)
0.363806 + 0.931475i \(0.381477\pi\)
\(588\) 0 0
\(589\) −7.43829 −0.306489
\(590\) 0 0
\(591\) −22.5802 −0.928824
\(592\) 0 0
\(593\) 13.2246 0.543068 0.271534 0.962429i \(-0.412469\pi\)
0.271534 + 0.962429i \(0.412469\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −36.3829 −1.48905
\(598\) 0 0
\(599\) 37.2771 1.52310 0.761551 0.648105i \(-0.224438\pi\)
0.761551 + 0.648105i \(0.224438\pi\)
\(600\) 0 0
\(601\) 17.0594 0.695867 0.347934 0.937519i \(-0.386883\pi\)
0.347934 + 0.937519i \(0.386883\pi\)
\(602\) 0 0
\(603\) −11.7502 −0.478503
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 7.92624 0.321716 0.160858 0.986978i \(-0.448574\pi\)
0.160858 + 0.986978i \(0.448574\pi\)
\(608\) 0 0
\(609\) 28.3829 1.15013
\(610\) 0 0
\(611\) −30.7795 −1.24520
\(612\) 0 0
\(613\) 9.93596 0.401310 0.200655 0.979662i \(-0.435693\pi\)
0.200655 + 0.979662i \(0.435693\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.1010 1.53389 0.766944 0.641715i \(-0.221777\pi\)
0.766944 + 0.641715i \(0.221777\pi\)
\(618\) 0 0
\(619\) 5.70309 0.229227 0.114613 0.993410i \(-0.463437\pi\)
0.114613 + 0.993410i \(0.463437\pi\)
\(620\) 0 0
\(621\) −106.159 −4.26002
\(622\) 0 0
\(623\) −1.39663 −0.0559548
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −22.2177 −0.887291
\(628\) 0 0
\(629\) 0.760990 0.0303427
\(630\) 0 0
\(631\) 17.3242 0.689665 0.344833 0.938664i \(-0.387936\pi\)
0.344833 + 0.938664i \(0.387936\pi\)
\(632\) 0 0
\(633\) 1.50232 0.0597120
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −23.3120 −0.923657
\(638\) 0 0
\(639\) −50.9857 −2.01696
\(640\) 0 0
\(641\) −22.3523 −0.882863 −0.441431 0.897295i \(-0.645529\pi\)
−0.441431 + 0.897295i \(0.645529\pi\)
\(642\) 0 0
\(643\) −25.2911 −0.997385 −0.498693 0.866779i \(-0.666186\pi\)
−0.498693 + 0.866779i \(0.666186\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.4262 0.881665 0.440832 0.897589i \(-0.354683\pi\)
0.440832 + 0.897589i \(0.354683\pi\)
\(648\) 0 0
\(649\) −0.677809 −0.0266063
\(650\) 0 0
\(651\) 4.09197 0.160377
\(652\) 0 0
\(653\) 11.8391 0.463301 0.231650 0.972799i \(-0.425587\pi\)
0.231650 + 0.972799i \(0.425587\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 51.1098 1.99398
\(658\) 0 0
\(659\) −15.7522 −0.613617 −0.306809 0.951771i \(-0.599261\pi\)
−0.306809 + 0.951771i \(0.599261\pi\)
\(660\) 0 0
\(661\) −7.15702 −0.278376 −0.139188 0.990266i \(-0.544449\pi\)
−0.139188 + 0.990266i \(0.544449\pi\)
\(662\) 0 0
\(663\) −1.44976 −0.0563038
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −46.6006 −1.80438
\(668\) 0 0
\(669\) −60.0033 −2.31986
\(670\) 0 0
\(671\) 0.197271 0.00761555
\(672\) 0 0
\(673\) −11.4976 −0.443200 −0.221600 0.975138i \(-0.571128\pi\)
−0.221600 + 0.975138i \(0.571128\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.9953 −0.845347 −0.422673 0.906282i \(-0.638908\pi\)
−0.422673 + 0.906282i \(0.638908\pi\)
\(678\) 0 0
\(679\) −7.15353 −0.274527
\(680\) 0 0
\(681\) 4.41501 0.169183
\(682\) 0 0
\(683\) 0.468300 0.0179190 0.00895950 0.999960i \(-0.497148\pi\)
0.00895950 + 0.999960i \(0.497148\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16.2728 0.620844
\(688\) 0 0
\(689\) −19.1098 −0.728025
\(690\) 0 0
\(691\) −36.9140 −1.40428 −0.702138 0.712041i \(-0.747771\pi\)
−0.702138 + 0.712041i \(0.747771\pi\)
\(692\) 0 0
\(693\) 8.97472 0.340921
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.559875 −0.0212068
\(698\) 0 0
\(699\) −68.4880 −2.59046
\(700\) 0 0
\(701\) 18.6628 0.704886 0.352443 0.935833i \(-0.385351\pi\)
0.352443 + 0.935833i \(0.385351\pi\)
\(702\) 0 0
\(703\) 46.6492 1.75941
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −16.7154 −0.628648
\(708\) 0 0
\(709\) 6.66135 0.250172 0.125086 0.992146i \(-0.460079\pi\)
0.125086 + 0.992146i \(0.460079\pi\)
\(710\) 0 0
\(711\) −77.5589 −2.90869
\(712\) 0 0
\(713\) −6.71842 −0.251607
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −31.4356 −1.17398
\(718\) 0 0
\(719\) −3.11128 −0.116031 −0.0580156 0.998316i \(-0.518477\pi\)
−0.0580156 + 0.998316i \(0.518477\pi\)
\(720\) 0 0
\(721\) −6.21991 −0.231641
\(722\) 0 0
\(723\) 74.9310 2.78671
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 33.9540 1.25928 0.629642 0.776886i \(-0.283202\pi\)
0.629642 + 0.776886i \(0.283202\pi\)
\(728\) 0 0
\(729\) 109.777 4.06581
\(730\) 0 0
\(731\) −0.596468 −0.0220612
\(732\) 0 0
\(733\) 21.0457 0.777342 0.388671 0.921377i \(-0.372934\pi\)
0.388671 + 0.921377i \(0.372934\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.41737 −0.0522097
\(738\) 0 0
\(739\) −17.0253 −0.626285 −0.313143 0.949706i \(-0.601382\pi\)
−0.313143 + 0.949706i \(0.601382\pi\)
\(740\) 0 0
\(741\) −88.8710 −3.26476
\(742\) 0 0
\(743\) 23.7563 0.871536 0.435768 0.900059i \(-0.356477\pi\)
0.435768 + 0.900059i \(0.356477\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 113.951 4.16924
\(748\) 0 0
\(749\) 4.66067 0.170297
\(750\) 0 0
\(751\) −44.8654 −1.63716 −0.818582 0.574390i \(-0.805239\pi\)
−0.818582 + 0.574390i \(0.805239\pi\)
\(752\) 0 0
\(753\) −36.7177 −1.33807
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 41.3761 1.50384 0.751920 0.659255i \(-0.229128\pi\)
0.751920 + 0.659255i \(0.229128\pi\)
\(758\) 0 0
\(759\) −20.0675 −0.728405
\(760\) 0 0
\(761\) 16.3002 0.590883 0.295442 0.955361i \(-0.404533\pi\)
0.295442 + 0.955361i \(0.404533\pi\)
\(762\) 0 0
\(763\) −2.52279 −0.0913310
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.71124 −0.0978971
\(768\) 0 0
\(769\) 41.1262 1.48305 0.741525 0.670925i \(-0.234103\pi\)
0.741525 + 0.670925i \(0.234103\pi\)
\(770\) 0 0
\(771\) 72.0409 2.59449
\(772\) 0 0
\(773\) 9.77280 0.351503 0.175752 0.984435i \(-0.443764\pi\)
0.175752 + 0.984435i \(0.443764\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −25.6628 −0.920646
\(778\) 0 0
\(779\) −34.3207 −1.22967
\(780\) 0 0
\(781\) −6.15020 −0.220072
\(782\) 0 0
\(783\) 138.694 4.95652
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 5.25466 0.187308 0.0936541 0.995605i \(-0.470145\pi\)
0.0936541 + 0.995605i \(0.470145\pi\)
\(788\) 0 0
\(789\) −21.9173 −0.780278
\(790\) 0 0
\(791\) 11.8511 0.421377
\(792\) 0 0
\(793\) 0.789082 0.0280211
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.2133 −0.503460 −0.251730 0.967797i \(-0.581000\pi\)
−0.251730 + 0.967797i \(0.581000\pi\)
\(798\) 0 0
\(799\) 0.830017 0.0293639
\(800\) 0 0
\(801\) −10.6949 −0.377887
\(802\) 0 0
\(803\) 6.16517 0.217564
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.8347 0.663015
\(808\) 0 0
\(809\) −12.8641 −0.452279 −0.226139 0.974095i \(-0.572610\pi\)
−0.226139 + 0.974095i \(0.572610\pi\)
\(810\) 0 0
\(811\) 4.31605 0.151557 0.0757785 0.997125i \(-0.475856\pi\)
0.0757785 + 0.997125i \(0.475856\pi\)
\(812\) 0 0
\(813\) −97.2560 −3.41092
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −36.5639 −1.27921
\(818\) 0 0
\(819\) 35.8989 1.25441
\(820\) 0 0
\(821\) −42.9994 −1.50069 −0.750344 0.661048i \(-0.770112\pi\)
−0.750344 + 0.661048i \(0.770112\pi\)
\(822\) 0 0
\(823\) −48.1834 −1.67957 −0.839783 0.542922i \(-0.817318\pi\)
−0.839783 + 0.542922i \(0.817318\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.2868 1.12272 0.561360 0.827571i \(-0.310278\pi\)
0.561360 + 0.827571i \(0.310278\pi\)
\(828\) 0 0
\(829\) 54.9345 1.90795 0.953977 0.299881i \(-0.0969470\pi\)
0.953977 + 0.299881i \(0.0969470\pi\)
\(830\) 0 0
\(831\) 85.2954 2.95887
\(832\) 0 0
\(833\) 0.628646 0.0217813
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 19.9955 0.691147
\(838\) 0 0
\(839\) 11.2281 0.387635 0.193818 0.981038i \(-0.437913\pi\)
0.193818 + 0.981038i \(0.437913\pi\)
\(840\) 0 0
\(841\) 31.8826 1.09940
\(842\) 0 0
\(843\) −91.2608 −3.14319
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.08258 0.0371980
\(848\) 0 0
\(849\) −73.9904 −2.53934
\(850\) 0 0
\(851\) 42.1346 1.44435
\(852\) 0 0
\(853\) 2.40328 0.0822869 0.0411434 0.999153i \(-0.486900\pi\)
0.0411434 + 0.999153i \(0.486900\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34.8280 1.18970 0.594851 0.803836i \(-0.297211\pi\)
0.594851 + 0.803836i \(0.297211\pi\)
\(858\) 0 0
\(859\) 27.0627 0.923368 0.461684 0.887044i \(-0.347245\pi\)
0.461684 + 0.887044i \(0.347245\pi\)
\(860\) 0 0
\(861\) 18.8806 0.643448
\(862\) 0 0
\(863\) 40.0157 1.36215 0.681076 0.732213i \(-0.261512\pi\)
0.681076 + 0.732213i \(0.261512\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −57.0821 −1.93861
\(868\) 0 0
\(869\) −9.35562 −0.317368
\(870\) 0 0
\(871\) −5.66950 −0.192104
\(872\) 0 0
\(873\) −54.7795 −1.85400
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.3167 −0.618511 −0.309255 0.950979i \(-0.600080\pi\)
−0.309255 + 0.950979i \(0.600080\pi\)
\(878\) 0 0
\(879\) 4.83948 0.163232
\(880\) 0 0
\(881\) 11.8560 0.399438 0.199719 0.979853i \(-0.435997\pi\)
0.199719 + 0.979853i \(0.435997\pi\)
\(882\) 0 0
\(883\) 15.2478 0.513128 0.256564 0.966527i \(-0.417410\pi\)
0.256564 + 0.966527i \(0.417410\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.29631 0.110679 0.0553397 0.998468i \(-0.482376\pi\)
0.0553397 + 0.998468i \(0.482376\pi\)
\(888\) 0 0
\(889\) 13.6191 0.456770
\(890\) 0 0
\(891\) 34.8553 1.16770
\(892\) 0 0
\(893\) 50.8806 1.70265
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −80.2701 −2.68014
\(898\) 0 0
\(899\) 8.77745 0.292744
\(900\) 0 0
\(901\) 0.515326 0.0171680
\(902\) 0 0
\(903\) 20.1146 0.669372
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −16.3577 −0.543149 −0.271574 0.962417i \(-0.587544\pi\)
−0.271574 + 0.962417i \(0.587544\pi\)
\(908\) 0 0
\(909\) −128.001 −4.24554
\(910\) 0 0
\(911\) −8.34598 −0.276515 −0.138257 0.990396i \(-0.544150\pi\)
−0.138257 + 0.990396i \(0.544150\pi\)
\(912\) 0 0
\(913\) 13.7454 0.454907
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.5019 0.544939
\(918\) 0 0
\(919\) −12.9611 −0.427546 −0.213773 0.976883i \(-0.568575\pi\)
−0.213773 + 0.976883i \(0.568575\pi\)
\(920\) 0 0
\(921\) −9.44029 −0.311068
\(922\) 0 0
\(923\) −24.6008 −0.809746
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −47.6301 −1.56438
\(928\) 0 0
\(929\) 37.2635 1.22258 0.611288 0.791408i \(-0.290652\pi\)
0.611288 + 0.791408i \(0.290652\pi\)
\(930\) 0 0
\(931\) 38.5364 1.26298
\(932\) 0 0
\(933\) −38.8185 −1.27086
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −4.28395 −0.139950 −0.0699752 0.997549i \(-0.522292\pi\)
−0.0699752 + 0.997549i \(0.522292\pi\)
\(938\) 0 0
\(939\) 87.8927 2.86827
\(940\) 0 0
\(941\) 23.2089 0.756589 0.378294 0.925685i \(-0.376511\pi\)
0.378294 + 0.925685i \(0.376511\pi\)
\(942\) 0 0
\(943\) −30.9992 −1.00947
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.8646 0.678007 0.339004 0.940785i \(-0.389910\pi\)
0.339004 + 0.940785i \(0.389910\pi\)
\(948\) 0 0
\(949\) 24.6607 0.800519
\(950\) 0 0
\(951\) 98.7207 3.20124
\(952\) 0 0
\(953\) 45.0061 1.45789 0.728945 0.684572i \(-0.240011\pi\)
0.728945 + 0.684572i \(0.240011\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 26.2177 0.847499
\(958\) 0 0
\(959\) 15.8142 0.510667
\(960\) 0 0
\(961\) −29.7346 −0.959179
\(962\) 0 0
\(963\) 35.6900 1.15009
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −21.9679 −0.706440 −0.353220 0.935540i \(-0.614913\pi\)
−0.353220 + 0.935540i \(0.614913\pi\)
\(968\) 0 0
\(969\) 2.39655 0.0769882
\(970\) 0 0
\(971\) −16.5837 −0.532195 −0.266098 0.963946i \(-0.585734\pi\)
−0.266098 + 0.963946i \(0.585734\pi\)
\(972\) 0 0
\(973\) −22.1010 −0.708524
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.8189 0.634063 0.317032 0.948415i \(-0.397314\pi\)
0.317032 + 0.948415i \(0.397314\pi\)
\(978\) 0 0
\(979\) −1.29009 −0.0412314
\(980\) 0 0
\(981\) −19.3187 −0.616798
\(982\) 0 0
\(983\) −13.9634 −0.445365 −0.222682 0.974891i \(-0.571481\pi\)
−0.222682 + 0.974891i \(0.571481\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −27.9905 −0.890949
\(988\) 0 0
\(989\) −33.0253 −1.05014
\(990\) 0 0
\(991\) 4.10113 0.130277 0.0651383 0.997876i \(-0.479251\pi\)
0.0651383 + 0.997876i \(0.479251\pi\)
\(992\) 0 0
\(993\) 41.2727 1.30975
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 33.3208 1.05528 0.527640 0.849468i \(-0.323077\pi\)
0.527640 + 0.849468i \(0.323077\pi\)
\(998\) 0 0
\(999\) −125.402 −3.96755
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2200.2.a.y.1.4 4
4.3 odd 2 4400.2.a.cb.1.1 4
5.2 odd 4 440.2.b.d.89.1 8
5.3 odd 4 440.2.b.d.89.8 yes 8
5.4 even 2 2200.2.a.x.1.1 4
15.2 even 4 3960.2.d.f.3169.6 8
15.8 even 4 3960.2.d.f.3169.5 8
20.3 even 4 880.2.b.j.529.1 8
20.7 even 4 880.2.b.j.529.8 8
20.19 odd 2 4400.2.a.ce.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.b.d.89.1 8 5.2 odd 4
440.2.b.d.89.8 yes 8 5.3 odd 4
880.2.b.j.529.1 8 20.3 even 4
880.2.b.j.529.8 8 20.7 even 4
2200.2.a.x.1.1 4 5.4 even 2
2200.2.a.y.1.4 4 1.1 even 1 trivial
3960.2.d.f.3169.5 8 15.8 even 4
3960.2.d.f.3169.6 8 15.2 even 4
4400.2.a.cb.1.1 4 4.3 odd 2
4400.2.a.ce.1.4 4 20.19 odd 2