Defining parameters
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(220, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 186 | 26 | 160 |
Cusp forms | 174 | 26 | 148 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(220, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
220.6.b.a | $12$ | $35.284$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(13\) | \(0\) | \(q+\beta _{1}q^{3}+(1+\beta _{4})q^{5}+\beta _{8}q^{7}+(-134+\cdots)q^{9}+\cdots\) |
220.6.b.b | $14$ | $35.284$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(-44\) | \(0\) | \(q+\beta _{1}q^{3}+(-3+\beta _{4})q^{5}+(-\beta _{1}-\beta _{3}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(220, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(220, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 2}\)