Properties

Label 220.6.a.a.1.2
Level $220$
Weight $6$
Character 220.1
Self dual yes
Analytic conductor $35.284$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,6,Mod(1,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.2844403589\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1761}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-20.4821\) of defining polynomial
Character \(\chi\) \(=\) 220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.4821 q^{3} +25.0000 q^{5} +39.4107 q^{7} -111.161 q^{9} -121.000 q^{11} -1182.68 q^{13} +287.053 q^{15} -2195.77 q^{17} +1866.37 q^{19} +452.519 q^{21} +337.644 q^{23} +625.000 q^{25} -4066.52 q^{27} -5432.02 q^{29} +139.481 q^{31} -1389.34 q^{33} +985.267 q^{35} +5943.41 q^{37} -13579.7 q^{39} +4630.43 q^{41} -1155.36 q^{43} -2779.01 q^{45} +3413.28 q^{47} -15253.8 q^{49} -25212.1 q^{51} +5651.62 q^{53} -3025.00 q^{55} +21430.0 q^{57} +13627.0 q^{59} -34279.1 q^{61} -4380.91 q^{63} -29567.0 q^{65} -9963.03 q^{67} +3876.87 q^{69} -19869.0 q^{71} -51656.5 q^{73} +7176.33 q^{75} -4768.69 q^{77} +50960.7 q^{79} -19680.3 q^{81} -8628.02 q^{83} -54894.2 q^{85} -62371.2 q^{87} -29938.4 q^{89} -46610.2 q^{91} +1601.54 q^{93} +46659.4 q^{95} +48871.1 q^{97} +13450.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 19 q^{3} + 50 q^{5} - 131 q^{7} + 575 q^{9} - 242 q^{11} - 1610 q^{13} - 475 q^{15} - 321 q^{17} + 3439 q^{19} + 5647 q^{21} + 4536 q^{23} + 1250 q^{25} - 17575 q^{27} - 5031 q^{29} - 4463 q^{31}+ \cdots - 69575 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 11.4821 0.736579 0.368290 0.929711i \(-0.379943\pi\)
0.368290 + 0.929711i \(0.379943\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 39.4107 0.303997 0.151998 0.988381i \(-0.451429\pi\)
0.151998 + 0.988381i \(0.451429\pi\)
\(8\) 0 0
\(9\) −111.161 −0.457451
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) −1182.68 −1.94092 −0.970461 0.241256i \(-0.922441\pi\)
−0.970461 + 0.241256i \(0.922441\pi\)
\(14\) 0 0
\(15\) 287.053 0.329408
\(16\) 0 0
\(17\) −2195.77 −1.84274 −0.921370 0.388687i \(-0.872929\pi\)
−0.921370 + 0.388687i \(0.872929\pi\)
\(18\) 0 0
\(19\) 1866.37 1.18608 0.593041 0.805172i \(-0.297927\pi\)
0.593041 + 0.805172i \(0.297927\pi\)
\(20\) 0 0
\(21\) 452.519 0.223918
\(22\) 0 0
\(23\) 337.644 0.133088 0.0665440 0.997783i \(-0.478803\pi\)
0.0665440 + 0.997783i \(0.478803\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −4066.52 −1.07353
\(28\) 0 0
\(29\) −5432.02 −1.19941 −0.599703 0.800223i \(-0.704715\pi\)
−0.599703 + 0.800223i \(0.704715\pi\)
\(30\) 0 0
\(31\) 139.481 0.0260682 0.0130341 0.999915i \(-0.495851\pi\)
0.0130341 + 0.999915i \(0.495851\pi\)
\(32\) 0 0
\(33\) −1389.34 −0.222087
\(34\) 0 0
\(35\) 985.267 0.135951
\(36\) 0 0
\(37\) 5943.41 0.713726 0.356863 0.934157i \(-0.383846\pi\)
0.356863 + 0.934157i \(0.383846\pi\)
\(38\) 0 0
\(39\) −13579.7 −1.42964
\(40\) 0 0
\(41\) 4630.43 0.430191 0.215096 0.976593i \(-0.430994\pi\)
0.215096 + 0.976593i \(0.430994\pi\)
\(42\) 0 0
\(43\) −1155.36 −0.0952897 −0.0476449 0.998864i \(-0.515172\pi\)
−0.0476449 + 0.998864i \(0.515172\pi\)
\(44\) 0 0
\(45\) −2779.01 −0.204578
\(46\) 0 0
\(47\) 3413.28 0.225386 0.112693 0.993630i \(-0.464052\pi\)
0.112693 + 0.993630i \(0.464052\pi\)
\(48\) 0 0
\(49\) −15253.8 −0.907586
\(50\) 0 0
\(51\) −25212.1 −1.35732
\(52\) 0 0
\(53\) 5651.62 0.276365 0.138183 0.990407i \(-0.455874\pi\)
0.138183 + 0.990407i \(0.455874\pi\)
\(54\) 0 0
\(55\) −3025.00 −0.134840
\(56\) 0 0
\(57\) 21430.0 0.873644
\(58\) 0 0
\(59\) 13627.0 0.509649 0.254825 0.966987i \(-0.417982\pi\)
0.254825 + 0.966987i \(0.417982\pi\)
\(60\) 0 0
\(61\) −34279.1 −1.17952 −0.589760 0.807579i \(-0.700778\pi\)
−0.589760 + 0.807579i \(0.700778\pi\)
\(62\) 0 0
\(63\) −4380.91 −0.139064
\(64\) 0 0
\(65\) −29567.0 −0.868007
\(66\) 0 0
\(67\) −9963.03 −0.271147 −0.135573 0.990767i \(-0.543288\pi\)
−0.135573 + 0.990767i \(0.543288\pi\)
\(68\) 0 0
\(69\) 3876.87 0.0980299
\(70\) 0 0
\(71\) −19869.0 −0.467769 −0.233884 0.972264i \(-0.575144\pi\)
−0.233884 + 0.972264i \(0.575144\pi\)
\(72\) 0 0
\(73\) −51656.5 −1.13453 −0.567267 0.823534i \(-0.691999\pi\)
−0.567267 + 0.823534i \(0.691999\pi\)
\(74\) 0 0
\(75\) 7176.33 0.147316
\(76\) 0 0
\(77\) −4768.69 −0.0916584
\(78\) 0 0
\(79\) 50960.7 0.918686 0.459343 0.888259i \(-0.348085\pi\)
0.459343 + 0.888259i \(0.348085\pi\)
\(80\) 0 0
\(81\) −19680.3 −0.333288
\(82\) 0 0
\(83\) −8628.02 −0.137472 −0.0687362 0.997635i \(-0.521897\pi\)
−0.0687362 + 0.997635i \(0.521897\pi\)
\(84\) 0 0
\(85\) −54894.2 −0.824098
\(86\) 0 0
\(87\) −62371.2 −0.883457
\(88\) 0 0
\(89\) −29938.4 −0.400640 −0.200320 0.979731i \(-0.564198\pi\)
−0.200320 + 0.979731i \(0.564198\pi\)
\(90\) 0 0
\(91\) −46610.2 −0.590034
\(92\) 0 0
\(93\) 1601.54 0.0192013
\(94\) 0 0
\(95\) 46659.4 0.530432
\(96\) 0 0
\(97\) 48871.1 0.527379 0.263690 0.964608i \(-0.415061\pi\)
0.263690 + 0.964608i \(0.415061\pi\)
\(98\) 0 0
\(99\) 13450.4 0.137927
\(100\) 0 0
\(101\) −46237.3 −0.451013 −0.225506 0.974242i \(-0.572404\pi\)
−0.225506 + 0.974242i \(0.572404\pi\)
\(102\) 0 0
\(103\) −156417. −1.45275 −0.726376 0.687297i \(-0.758797\pi\)
−0.726376 + 0.687297i \(0.758797\pi\)
\(104\) 0 0
\(105\) 11313.0 0.100139
\(106\) 0 0
\(107\) −144650. −1.22140 −0.610702 0.791861i \(-0.709113\pi\)
−0.610702 + 0.791861i \(0.709113\pi\)
\(108\) 0 0
\(109\) −15491.8 −0.124892 −0.0624462 0.998048i \(-0.519890\pi\)
−0.0624462 + 0.998048i \(0.519890\pi\)
\(110\) 0 0
\(111\) 68243.0 0.525715
\(112\) 0 0
\(113\) 7502.99 0.0552762 0.0276381 0.999618i \(-0.491201\pi\)
0.0276381 + 0.999618i \(0.491201\pi\)
\(114\) 0 0
\(115\) 8441.09 0.0595188
\(116\) 0 0
\(117\) 131467. 0.887877
\(118\) 0 0
\(119\) −86536.7 −0.560187
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 53167.2 0.316870
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 282664. 1.55511 0.777556 0.628813i \(-0.216459\pi\)
0.777556 + 0.628813i \(0.216459\pi\)
\(128\) 0 0
\(129\) −13266.0 −0.0701884
\(130\) 0 0
\(131\) 148305. 0.755052 0.377526 0.925999i \(-0.376775\pi\)
0.377526 + 0.925999i \(0.376775\pi\)
\(132\) 0 0
\(133\) 73555.1 0.360565
\(134\) 0 0
\(135\) −101663. −0.480096
\(136\) 0 0
\(137\) 94749.1 0.431294 0.215647 0.976471i \(-0.430814\pi\)
0.215647 + 0.976471i \(0.430814\pi\)
\(138\) 0 0
\(139\) 379277. 1.66502 0.832511 0.554009i \(-0.186903\pi\)
0.832511 + 0.554009i \(0.186903\pi\)
\(140\) 0 0
\(141\) 39191.7 0.166015
\(142\) 0 0
\(143\) 143104. 0.585210
\(144\) 0 0
\(145\) −135800. −0.536391
\(146\) 0 0
\(147\) −175146. −0.668509
\(148\) 0 0
\(149\) −346333. −1.27799 −0.638996 0.769210i \(-0.720650\pi\)
−0.638996 + 0.769210i \(0.720650\pi\)
\(150\) 0 0
\(151\) −65850.9 −0.235028 −0.117514 0.993071i \(-0.537492\pi\)
−0.117514 + 0.993071i \(0.537492\pi\)
\(152\) 0 0
\(153\) 244083. 0.842963
\(154\) 0 0
\(155\) 3487.03 0.0116581
\(156\) 0 0
\(157\) 367291. 1.18922 0.594609 0.804015i \(-0.297307\pi\)
0.594609 + 0.804015i \(0.297307\pi\)
\(158\) 0 0
\(159\) 64892.7 0.203565
\(160\) 0 0
\(161\) 13306.8 0.0404583
\(162\) 0 0
\(163\) −481404. −1.41919 −0.709596 0.704609i \(-0.751122\pi\)
−0.709596 + 0.704609i \(0.751122\pi\)
\(164\) 0 0
\(165\) −34733.5 −0.0993203
\(166\) 0 0
\(167\) 600777. 1.66695 0.833475 0.552558i \(-0.186348\pi\)
0.833475 + 0.552558i \(0.186348\pi\)
\(168\) 0 0
\(169\) 1.02744e6 2.76718
\(170\) 0 0
\(171\) −207467. −0.542575
\(172\) 0 0
\(173\) 401433. 1.01976 0.509880 0.860245i \(-0.329690\pi\)
0.509880 + 0.860245i \(0.329690\pi\)
\(174\) 0 0
\(175\) 24631.7 0.0607993
\(176\) 0 0
\(177\) 156468. 0.375397
\(178\) 0 0
\(179\) 547366. 1.27687 0.638433 0.769677i \(-0.279583\pi\)
0.638433 + 0.769677i \(0.279583\pi\)
\(180\) 0 0
\(181\) 605472. 1.37372 0.686859 0.726791i \(-0.258989\pi\)
0.686859 + 0.726791i \(0.258989\pi\)
\(182\) 0 0
\(183\) −393597. −0.868810
\(184\) 0 0
\(185\) 148585. 0.319188
\(186\) 0 0
\(187\) 265688. 0.555607
\(188\) 0 0
\(189\) −160264. −0.326349
\(190\) 0 0
\(191\) 49593.8 0.0983657 0.0491829 0.998790i \(-0.484338\pi\)
0.0491829 + 0.998790i \(0.484338\pi\)
\(192\) 0 0
\(193\) −899272. −1.73779 −0.868896 0.494994i \(-0.835170\pi\)
−0.868896 + 0.494994i \(0.835170\pi\)
\(194\) 0 0
\(195\) −339492. −0.639356
\(196\) 0 0
\(197\) −279635. −0.513365 −0.256683 0.966496i \(-0.582629\pi\)
−0.256683 + 0.966496i \(0.582629\pi\)
\(198\) 0 0
\(199\) −822226. −1.47183 −0.735917 0.677072i \(-0.763248\pi\)
−0.735917 + 0.677072i \(0.763248\pi\)
\(200\) 0 0
\(201\) −114397. −0.199721
\(202\) 0 0
\(203\) −214079. −0.364615
\(204\) 0 0
\(205\) 115761. 0.192387
\(206\) 0 0
\(207\) −37532.7 −0.0608812
\(208\) 0 0
\(209\) −225831. −0.357617
\(210\) 0 0
\(211\) −534284. −0.826164 −0.413082 0.910694i \(-0.635548\pi\)
−0.413082 + 0.910694i \(0.635548\pi\)
\(212\) 0 0
\(213\) −228139. −0.344549
\(214\) 0 0
\(215\) −28884.0 −0.0426149
\(216\) 0 0
\(217\) 5497.05 0.00792466
\(218\) 0 0
\(219\) −593126. −0.835674
\(220\) 0 0
\(221\) 2.59689e6 3.57662
\(222\) 0 0
\(223\) −25689.6 −0.0345936 −0.0172968 0.999850i \(-0.505506\pi\)
−0.0172968 + 0.999850i \(0.505506\pi\)
\(224\) 0 0
\(225\) −69475.4 −0.0914902
\(226\) 0 0
\(227\) −519615. −0.669295 −0.334647 0.942343i \(-0.608617\pi\)
−0.334647 + 0.942343i \(0.608617\pi\)
\(228\) 0 0
\(229\) 566856. 0.714305 0.357153 0.934046i \(-0.383748\pi\)
0.357153 + 0.934046i \(0.383748\pi\)
\(230\) 0 0
\(231\) −54754.8 −0.0675137
\(232\) 0 0
\(233\) −250125. −0.301834 −0.150917 0.988546i \(-0.548223\pi\)
−0.150917 + 0.988546i \(0.548223\pi\)
\(234\) 0 0
\(235\) 85332.0 0.100796
\(236\) 0 0
\(237\) 585137. 0.676685
\(238\) 0 0
\(239\) −1.29750e6 −1.46931 −0.734654 0.678442i \(-0.762656\pi\)
−0.734654 + 0.678442i \(0.762656\pi\)
\(240\) 0 0
\(241\) 582411. 0.645932 0.322966 0.946411i \(-0.395320\pi\)
0.322966 + 0.946411i \(0.395320\pi\)
\(242\) 0 0
\(243\) 762192. 0.828035
\(244\) 0 0
\(245\) −381345. −0.405885
\(246\) 0 0
\(247\) −2.20732e6 −2.30209
\(248\) 0 0
\(249\) −99068.1 −0.101259
\(250\) 0 0
\(251\) 1.75979e6 1.76310 0.881550 0.472091i \(-0.156501\pi\)
0.881550 + 0.472091i \(0.156501\pi\)
\(252\) 0 0
\(253\) −40854.9 −0.0401275
\(254\) 0 0
\(255\) −630302. −0.607014
\(256\) 0 0
\(257\) −539156. −0.509192 −0.254596 0.967048i \(-0.581942\pi\)
−0.254596 + 0.967048i \(0.581942\pi\)
\(258\) 0 0
\(259\) 234234. 0.216970
\(260\) 0 0
\(261\) 603826. 0.548669
\(262\) 0 0
\(263\) −2.20351e6 −1.96438 −0.982192 0.187881i \(-0.939838\pi\)
−0.982192 + 0.187881i \(0.939838\pi\)
\(264\) 0 0
\(265\) 141291. 0.123594
\(266\) 0 0
\(267\) −343757. −0.295103
\(268\) 0 0
\(269\) −731509. −0.616366 −0.308183 0.951327i \(-0.599721\pi\)
−0.308183 + 0.951327i \(0.599721\pi\)
\(270\) 0 0
\(271\) 446543. 0.369352 0.184676 0.982799i \(-0.440876\pi\)
0.184676 + 0.982799i \(0.440876\pi\)
\(272\) 0 0
\(273\) −535184. −0.434607
\(274\) 0 0
\(275\) −75625.0 −0.0603023
\(276\) 0 0
\(277\) 1.60933e6 1.26022 0.630109 0.776507i \(-0.283010\pi\)
0.630109 + 0.776507i \(0.283010\pi\)
\(278\) 0 0
\(279\) −15504.8 −0.0119249
\(280\) 0 0
\(281\) −836866. −0.632252 −0.316126 0.948717i \(-0.602382\pi\)
−0.316126 + 0.948717i \(0.602382\pi\)
\(282\) 0 0
\(283\) −1.43720e6 −1.06672 −0.533362 0.845887i \(-0.679072\pi\)
−0.533362 + 0.845887i \(0.679072\pi\)
\(284\) 0 0
\(285\) 535749. 0.390705
\(286\) 0 0
\(287\) 182488. 0.130777
\(288\) 0 0
\(289\) 3.40154e6 2.39569
\(290\) 0 0
\(291\) 561145. 0.388456
\(292\) 0 0
\(293\) −977430. −0.665146 −0.332573 0.943078i \(-0.607917\pi\)
−0.332573 + 0.943078i \(0.607917\pi\)
\(294\) 0 0
\(295\) 340676. 0.227922
\(296\) 0 0
\(297\) 492049. 0.323681
\(298\) 0 0
\(299\) −399324. −0.258314
\(300\) 0 0
\(301\) −45533.5 −0.0289677
\(302\) 0 0
\(303\) −530903. −0.332207
\(304\) 0 0
\(305\) −856978. −0.527497
\(306\) 0 0
\(307\) 242927. 0.147106 0.0735528 0.997291i \(-0.476566\pi\)
0.0735528 + 0.997291i \(0.476566\pi\)
\(308\) 0 0
\(309\) −1.79600e6 −1.07007
\(310\) 0 0
\(311\) −1.93118e6 −1.13220 −0.566098 0.824338i \(-0.691548\pi\)
−0.566098 + 0.824338i \(0.691548\pi\)
\(312\) 0 0
\(313\) −1.03171e6 −0.595249 −0.297625 0.954683i \(-0.596194\pi\)
−0.297625 + 0.954683i \(0.596194\pi\)
\(314\) 0 0
\(315\) −109523. −0.0621911
\(316\) 0 0
\(317\) −2.05142e6 −1.14659 −0.573293 0.819351i \(-0.694334\pi\)
−0.573293 + 0.819351i \(0.694334\pi\)
\(318\) 0 0
\(319\) 657274. 0.361634
\(320\) 0 0
\(321\) −1.66089e6 −0.899661
\(322\) 0 0
\(323\) −4.09812e6 −2.18564
\(324\) 0 0
\(325\) −739174. −0.388185
\(326\) 0 0
\(327\) −177879. −0.0919931
\(328\) 0 0
\(329\) 134520. 0.0685166
\(330\) 0 0
\(331\) 1.58685e6 0.796095 0.398047 0.917365i \(-0.369688\pi\)
0.398047 + 0.917365i \(0.369688\pi\)
\(332\) 0 0
\(333\) −660673. −0.326494
\(334\) 0 0
\(335\) −249076. −0.121261
\(336\) 0 0
\(337\) 2.33349e6 1.11926 0.559630 0.828742i \(-0.310943\pi\)
0.559630 + 0.828742i \(0.310943\pi\)
\(338\) 0 0
\(339\) 86150.3 0.0407153
\(340\) 0 0
\(341\) −16877.2 −0.00785987
\(342\) 0 0
\(343\) −1.26354e6 −0.579900
\(344\) 0 0
\(345\) 96921.7 0.0438403
\(346\) 0 0
\(347\) −194423. −0.0866811 −0.0433406 0.999060i \(-0.513800\pi\)
−0.0433406 + 0.999060i \(0.513800\pi\)
\(348\) 0 0
\(349\) −744025. −0.326982 −0.163491 0.986545i \(-0.552275\pi\)
−0.163491 + 0.986545i \(0.552275\pi\)
\(350\) 0 0
\(351\) 4.80938e6 2.08364
\(352\) 0 0
\(353\) −257236. −0.109874 −0.0549370 0.998490i \(-0.517496\pi\)
−0.0549370 + 0.998490i \(0.517496\pi\)
\(354\) 0 0
\(355\) −496726. −0.209193
\(356\) 0 0
\(357\) −993626. −0.412622
\(358\) 0 0
\(359\) −1.04798e6 −0.429157 −0.214579 0.976707i \(-0.568838\pi\)
−0.214579 + 0.976707i \(0.568838\pi\)
\(360\) 0 0
\(361\) 1.00726e6 0.406792
\(362\) 0 0
\(363\) 168110. 0.0669618
\(364\) 0 0
\(365\) −1.29141e6 −0.507379
\(366\) 0 0
\(367\) 2.52808e6 0.979772 0.489886 0.871787i \(-0.337038\pi\)
0.489886 + 0.871787i \(0.337038\pi\)
\(368\) 0 0
\(369\) −514721. −0.196791
\(370\) 0 0
\(371\) 222734. 0.0840141
\(372\) 0 0
\(373\) −398673. −0.148370 −0.0741848 0.997245i \(-0.523635\pi\)
−0.0741848 + 0.997245i \(0.523635\pi\)
\(374\) 0 0
\(375\) 179408. 0.0658817
\(376\) 0 0
\(377\) 6.42433e6 2.32795
\(378\) 0 0
\(379\) −41188.8 −0.0147293 −0.00736463 0.999973i \(-0.502344\pi\)
−0.00736463 + 0.999973i \(0.502344\pi\)
\(380\) 0 0
\(381\) 3.24559e6 1.14546
\(382\) 0 0
\(383\) −2.53931e6 −0.884543 −0.442271 0.896881i \(-0.645827\pi\)
−0.442271 + 0.896881i \(0.645827\pi\)
\(384\) 0 0
\(385\) −119217. −0.0409909
\(386\) 0 0
\(387\) 128430. 0.0435904
\(388\) 0 0
\(389\) −3.99822e6 −1.33965 −0.669827 0.742518i \(-0.733632\pi\)
−0.669827 + 0.742518i \(0.733632\pi\)
\(390\) 0 0
\(391\) −741387. −0.245247
\(392\) 0 0
\(393\) 1.70286e6 0.556156
\(394\) 0 0
\(395\) 1.27402e6 0.410849
\(396\) 0 0
\(397\) −5.04861e6 −1.60766 −0.803832 0.594856i \(-0.797209\pi\)
−0.803832 + 0.594856i \(0.797209\pi\)
\(398\) 0 0
\(399\) 844570. 0.265585
\(400\) 0 0
\(401\) 4.71689e6 1.46485 0.732427 0.680845i \(-0.238387\pi\)
0.732427 + 0.680845i \(0.238387\pi\)
\(402\) 0 0
\(403\) −164962. −0.0505964
\(404\) 0 0
\(405\) −492008. −0.149051
\(406\) 0 0
\(407\) −719152. −0.215196
\(408\) 0 0
\(409\) −1.19007e6 −0.351775 −0.175887 0.984410i \(-0.556279\pi\)
−0.175887 + 0.984410i \(0.556279\pi\)
\(410\) 0 0
\(411\) 1.08792e6 0.317682
\(412\) 0 0
\(413\) 537051. 0.154932
\(414\) 0 0
\(415\) −215700. −0.0614796
\(416\) 0 0
\(417\) 4.35491e6 1.22642
\(418\) 0 0
\(419\) 6.85301e6 1.90698 0.953491 0.301422i \(-0.0974614\pi\)
0.953491 + 0.301422i \(0.0974614\pi\)
\(420\) 0 0
\(421\) 6.62822e6 1.82260 0.911300 0.411743i \(-0.135080\pi\)
0.911300 + 0.411743i \(0.135080\pi\)
\(422\) 0 0
\(423\) −379422. −0.103103
\(424\) 0 0
\(425\) −1.37235e6 −0.368548
\(426\) 0 0
\(427\) −1.35096e6 −0.358570
\(428\) 0 0
\(429\) 1.64314e6 0.431054
\(430\) 0 0
\(431\) −1.04575e6 −0.271165 −0.135582 0.990766i \(-0.543291\pi\)
−0.135582 + 0.990766i \(0.543291\pi\)
\(432\) 0 0
\(433\) 934093. 0.239425 0.119713 0.992809i \(-0.461803\pi\)
0.119713 + 0.992809i \(0.461803\pi\)
\(434\) 0 0
\(435\) −1.55928e6 −0.395094
\(436\) 0 0
\(437\) 630169. 0.157853
\(438\) 0 0
\(439\) 3.24978e6 0.804809 0.402404 0.915462i \(-0.368175\pi\)
0.402404 + 0.915462i \(0.368175\pi\)
\(440\) 0 0
\(441\) 1.69562e6 0.415176
\(442\) 0 0
\(443\) 3.11830e6 0.754933 0.377466 0.926023i \(-0.376795\pi\)
0.377466 + 0.926023i \(0.376795\pi\)
\(444\) 0 0
\(445\) −748460. −0.179171
\(446\) 0 0
\(447\) −3.97664e6 −0.941343
\(448\) 0 0
\(449\) 3.36184e6 0.786976 0.393488 0.919330i \(-0.371268\pi\)
0.393488 + 0.919330i \(0.371268\pi\)
\(450\) 0 0
\(451\) −560282. −0.129708
\(452\) 0 0
\(453\) −756109. −0.173117
\(454\) 0 0
\(455\) −1.16525e6 −0.263871
\(456\) 0 0
\(457\) 3.98953e6 0.893575 0.446787 0.894640i \(-0.352568\pi\)
0.446787 + 0.894640i \(0.352568\pi\)
\(458\) 0 0
\(459\) 8.92913e6 1.97823
\(460\) 0 0
\(461\) −4.93053e6 −1.08054 −0.540271 0.841491i \(-0.681678\pi\)
−0.540271 + 0.841491i \(0.681678\pi\)
\(462\) 0 0
\(463\) −6.61725e6 −1.43458 −0.717290 0.696774i \(-0.754618\pi\)
−0.717290 + 0.696774i \(0.754618\pi\)
\(464\) 0 0
\(465\) 40038.6 0.00858709
\(466\) 0 0
\(467\) 3.80218e6 0.806752 0.403376 0.915034i \(-0.367837\pi\)
0.403376 + 0.915034i \(0.367837\pi\)
\(468\) 0 0
\(469\) −392650. −0.0824277
\(470\) 0 0
\(471\) 4.21729e6 0.875954
\(472\) 0 0
\(473\) 139798. 0.0287309
\(474\) 0 0
\(475\) 1.16648e6 0.237216
\(476\) 0 0
\(477\) −628237. −0.126424
\(478\) 0 0
\(479\) 2.57373e6 0.512536 0.256268 0.966606i \(-0.417507\pi\)
0.256268 + 0.966606i \(0.417507\pi\)
\(480\) 0 0
\(481\) −7.02914e6 −1.38529
\(482\) 0 0
\(483\) 152790. 0.0298007
\(484\) 0 0
\(485\) 1.22178e6 0.235851
\(486\) 0 0
\(487\) 9.87913e6 1.88754 0.943770 0.330603i \(-0.107252\pi\)
0.943770 + 0.330603i \(0.107252\pi\)
\(488\) 0 0
\(489\) −5.52755e6 −1.04535
\(490\) 0 0
\(491\) −9.45632e6 −1.77018 −0.885092 0.465415i \(-0.845905\pi\)
−0.885092 + 0.465415i \(0.845905\pi\)
\(492\) 0 0
\(493\) 1.19274e7 2.21019
\(494\) 0 0
\(495\) 336261. 0.0616827
\(496\) 0 0
\(497\) −783053. −0.142200
\(498\) 0 0
\(499\) −1.64467e6 −0.295684 −0.147842 0.989011i \(-0.547233\pi\)
−0.147842 + 0.989011i \(0.547233\pi\)
\(500\) 0 0
\(501\) 6.89821e6 1.22784
\(502\) 0 0
\(503\) −1.04146e7 −1.83536 −0.917682 0.397315i \(-0.869942\pi\)
−0.917682 + 0.397315i \(0.869942\pi\)
\(504\) 0 0
\(505\) −1.15593e6 −0.201699
\(506\) 0 0
\(507\) 1.17972e7 2.03825
\(508\) 0 0
\(509\) −8.06523e6 −1.37982 −0.689910 0.723896i \(-0.742350\pi\)
−0.689910 + 0.723896i \(0.742350\pi\)
\(510\) 0 0
\(511\) −2.03582e6 −0.344895
\(512\) 0 0
\(513\) −7.58965e6 −1.27329
\(514\) 0 0
\(515\) −3.91043e6 −0.649691
\(516\) 0 0
\(517\) −413007. −0.0679565
\(518\) 0 0
\(519\) 4.60931e6 0.751134
\(520\) 0 0
\(521\) −7.28702e6 −1.17613 −0.588065 0.808814i \(-0.700110\pi\)
−0.588065 + 0.808814i \(0.700110\pi\)
\(522\) 0 0
\(523\) 5.73656e6 0.917059 0.458530 0.888679i \(-0.348376\pi\)
0.458530 + 0.888679i \(0.348376\pi\)
\(524\) 0 0
\(525\) 282824. 0.0447835
\(526\) 0 0
\(527\) −306268. −0.0480370
\(528\) 0 0
\(529\) −6.32234e6 −0.982288
\(530\) 0 0
\(531\) −1.51479e6 −0.233140
\(532\) 0 0
\(533\) −5.47631e6 −0.834968
\(534\) 0 0
\(535\) −3.61625e6 −0.546228
\(536\) 0 0
\(537\) 6.28493e6 0.940513
\(538\) 0 0
\(539\) 1.84571e6 0.273647
\(540\) 0 0
\(541\) 5.90660e6 0.867650 0.433825 0.900997i \(-0.357164\pi\)
0.433825 + 0.900997i \(0.357164\pi\)
\(542\) 0 0
\(543\) 6.95211e6 1.01185
\(544\) 0 0
\(545\) −387295. −0.0558536
\(546\) 0 0
\(547\) −5.14720e6 −0.735534 −0.367767 0.929918i \(-0.619878\pi\)
−0.367767 + 0.929918i \(0.619878\pi\)
\(548\) 0 0
\(549\) 3.81049e6 0.539572
\(550\) 0 0
\(551\) −1.01382e7 −1.42259
\(552\) 0 0
\(553\) 2.00839e6 0.279278
\(554\) 0 0
\(555\) 1.70608e6 0.235107
\(556\) 0 0
\(557\) −9.30363e6 −1.27062 −0.635308 0.772259i \(-0.719127\pi\)
−0.635308 + 0.772259i \(0.719127\pi\)
\(558\) 0 0
\(559\) 1.36642e6 0.184950
\(560\) 0 0
\(561\) 3.05066e6 0.409249
\(562\) 0 0
\(563\) −1.00562e7 −1.33709 −0.668547 0.743670i \(-0.733083\pi\)
−0.668547 + 0.743670i \(0.733083\pi\)
\(564\) 0 0
\(565\) 187575. 0.0247203
\(566\) 0 0
\(567\) −775614. −0.101318
\(568\) 0 0
\(569\) 933127. 0.120826 0.0604130 0.998173i \(-0.480758\pi\)
0.0604130 + 0.998173i \(0.480758\pi\)
\(570\) 0 0
\(571\) 1.07508e7 1.37990 0.689952 0.723855i \(-0.257632\pi\)
0.689952 + 0.723855i \(0.257632\pi\)
\(572\) 0 0
\(573\) 569442. 0.0724541
\(574\) 0 0
\(575\) 211027. 0.0266176
\(576\) 0 0
\(577\) −387934. −0.0485086 −0.0242543 0.999706i \(-0.507721\pi\)
−0.0242543 + 0.999706i \(0.507721\pi\)
\(578\) 0 0
\(579\) −1.03256e7 −1.28002
\(580\) 0 0
\(581\) −340036. −0.0417912
\(582\) 0 0
\(583\) −683846. −0.0833273
\(584\) 0 0
\(585\) 3.28668e6 0.397071
\(586\) 0 0
\(587\) −1.14459e7 −1.37105 −0.685525 0.728049i \(-0.740427\pi\)
−0.685525 + 0.728049i \(0.740427\pi\)
\(588\) 0 0
\(589\) 260324. 0.0309191
\(590\) 0 0
\(591\) −3.21081e6 −0.378134
\(592\) 0 0
\(593\) 8.28060e6 0.966997 0.483499 0.875345i \(-0.339366\pi\)
0.483499 + 0.875345i \(0.339366\pi\)
\(594\) 0 0
\(595\) −2.16342e6 −0.250523
\(596\) 0 0
\(597\) −9.44091e6 −1.08412
\(598\) 0 0
\(599\) −133370. −0.0151876 −0.00759382 0.999971i \(-0.502417\pi\)
−0.00759382 + 0.999971i \(0.502417\pi\)
\(600\) 0 0
\(601\) −8.78786e6 −0.992424 −0.496212 0.868201i \(-0.665276\pi\)
−0.496212 + 0.868201i \(0.665276\pi\)
\(602\) 0 0
\(603\) 1.10750e6 0.124036
\(604\) 0 0
\(605\) 366025. 0.0406558
\(606\) 0 0
\(607\) −1.50026e7 −1.65271 −0.826354 0.563151i \(-0.809589\pi\)
−0.826354 + 0.563151i \(0.809589\pi\)
\(608\) 0 0
\(609\) −2.45809e6 −0.268568
\(610\) 0 0
\(611\) −4.03681e6 −0.437457
\(612\) 0 0
\(613\) −1.21629e7 −1.30733 −0.653664 0.756785i \(-0.726769\pi\)
−0.653664 + 0.756785i \(0.726769\pi\)
\(614\) 0 0
\(615\) 1.32918e6 0.141709
\(616\) 0 0
\(617\) 2.77990e6 0.293979 0.146989 0.989138i \(-0.453042\pi\)
0.146989 + 0.989138i \(0.453042\pi\)
\(618\) 0 0
\(619\) −2.84183e6 −0.298107 −0.149053 0.988829i \(-0.547623\pi\)
−0.149053 + 0.988829i \(0.547623\pi\)
\(620\) 0 0
\(621\) −1.37303e6 −0.142874
\(622\) 0 0
\(623\) −1.17989e6 −0.121793
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −2.59303e6 −0.263414
\(628\) 0 0
\(629\) −1.30503e7 −1.31521
\(630\) 0 0
\(631\) 1.36584e7 1.36561 0.682806 0.730599i \(-0.260759\pi\)
0.682806 + 0.730599i \(0.260759\pi\)
\(632\) 0 0
\(633\) −6.13473e6 −0.608535
\(634\) 0 0
\(635\) 7.06661e6 0.695468
\(636\) 0 0
\(637\) 1.80403e7 1.76155
\(638\) 0 0
\(639\) 2.20865e6 0.213981
\(640\) 0 0
\(641\) 1.47678e7 1.41961 0.709807 0.704396i \(-0.248782\pi\)
0.709807 + 0.704396i \(0.248782\pi\)
\(642\) 0 0
\(643\) 1.42372e7 1.35799 0.678995 0.734143i \(-0.262416\pi\)
0.678995 + 0.734143i \(0.262416\pi\)
\(644\) 0 0
\(645\) −331650. −0.0313892
\(646\) 0 0
\(647\) −8.49593e6 −0.797903 −0.398951 0.916972i \(-0.630626\pi\)
−0.398951 + 0.916972i \(0.630626\pi\)
\(648\) 0 0
\(649\) −1.64887e6 −0.153665
\(650\) 0 0
\(651\) 63117.9 0.00583714
\(652\) 0 0
\(653\) −1.41649e7 −1.29996 −0.649979 0.759952i \(-0.725222\pi\)
−0.649979 + 0.759952i \(0.725222\pi\)
\(654\) 0 0
\(655\) 3.70762e6 0.337669
\(656\) 0 0
\(657\) 5.74216e6 0.518994
\(658\) 0 0
\(659\) 1.39876e7 1.25467 0.627335 0.778749i \(-0.284145\pi\)
0.627335 + 0.778749i \(0.284145\pi\)
\(660\) 0 0
\(661\) −1.75134e7 −1.55908 −0.779538 0.626355i \(-0.784546\pi\)
−0.779538 + 0.626355i \(0.784546\pi\)
\(662\) 0 0
\(663\) 2.98178e7 2.63446
\(664\) 0 0
\(665\) 1.83888e6 0.161250
\(666\) 0 0
\(667\) −1.83409e6 −0.159626
\(668\) 0 0
\(669\) −294972. −0.0254809
\(670\) 0 0
\(671\) 4.14777e6 0.355638
\(672\) 0 0
\(673\) −1.13007e7 −0.961758 −0.480879 0.876787i \(-0.659682\pi\)
−0.480879 + 0.876787i \(0.659682\pi\)
\(674\) 0 0
\(675\) −2.54157e6 −0.214706
\(676\) 0 0
\(677\) −9.15138e6 −0.767388 −0.383694 0.923460i \(-0.625348\pi\)
−0.383694 + 0.923460i \(0.625348\pi\)
\(678\) 0 0
\(679\) 1.92604e6 0.160321
\(680\) 0 0
\(681\) −5.96629e6 −0.492989
\(682\) 0 0
\(683\) −3.66856e6 −0.300915 −0.150458 0.988616i \(-0.548075\pi\)
−0.150458 + 0.988616i \(0.548075\pi\)
\(684\) 0 0
\(685\) 2.36873e6 0.192881
\(686\) 0 0
\(687\) 6.50871e6 0.526142
\(688\) 0 0
\(689\) −6.68405e6 −0.536404
\(690\) 0 0
\(691\) −7.24875e6 −0.577521 −0.288761 0.957401i \(-0.593243\pi\)
−0.288761 + 0.957401i \(0.593243\pi\)
\(692\) 0 0
\(693\) 530091. 0.0419292
\(694\) 0 0
\(695\) 9.48193e6 0.744620
\(696\) 0 0
\(697\) −1.01673e7 −0.792731
\(698\) 0 0
\(699\) −2.87197e6 −0.222325
\(700\) 0 0
\(701\) −1.67191e7 −1.28505 −0.642523 0.766267i \(-0.722112\pi\)
−0.642523 + 0.766267i \(0.722112\pi\)
\(702\) 0 0
\(703\) 1.10926e7 0.846537
\(704\) 0 0
\(705\) 979794. 0.0742441
\(706\) 0 0
\(707\) −1.82224e6 −0.137106
\(708\) 0 0
\(709\) 9.11227e6 0.680786 0.340393 0.940283i \(-0.389440\pi\)
0.340393 + 0.940283i \(0.389440\pi\)
\(710\) 0 0
\(711\) −5.66482e6 −0.420254
\(712\) 0 0
\(713\) 47095.0 0.00346937
\(714\) 0 0
\(715\) 3.57760e6 0.261714
\(716\) 0 0
\(717\) −1.48981e7 −1.08226
\(718\) 0 0
\(719\) −1.02074e7 −0.736368 −0.368184 0.929753i \(-0.620020\pi\)
−0.368184 + 0.929753i \(0.620020\pi\)
\(720\) 0 0
\(721\) −6.16451e6 −0.441632
\(722\) 0 0
\(723\) 6.68732e6 0.475780
\(724\) 0 0
\(725\) −3.39501e6 −0.239881
\(726\) 0 0
\(727\) −3.96570e6 −0.278281 −0.139140 0.990273i \(-0.544434\pi\)
−0.139140 + 0.990273i \(0.544434\pi\)
\(728\) 0 0
\(729\) 1.35339e7 0.943201
\(730\) 0 0
\(731\) 2.53690e6 0.175594
\(732\) 0 0
\(733\) −3.49709e6 −0.240407 −0.120203 0.992749i \(-0.538355\pi\)
−0.120203 + 0.992749i \(0.538355\pi\)
\(734\) 0 0
\(735\) −4.37865e6 −0.298966
\(736\) 0 0
\(737\) 1.20553e6 0.0817539
\(738\) 0 0
\(739\) −1.53549e7 −1.03428 −0.517138 0.855902i \(-0.673003\pi\)
−0.517138 + 0.855902i \(0.673003\pi\)
\(740\) 0 0
\(741\) −2.53448e7 −1.69568
\(742\) 0 0
\(743\) 1.99982e7 1.32898 0.664491 0.747296i \(-0.268648\pi\)
0.664491 + 0.747296i \(0.268648\pi\)
\(744\) 0 0
\(745\) −8.65832e6 −0.571535
\(746\) 0 0
\(747\) 959095. 0.0628869
\(748\) 0 0
\(749\) −5.70076e6 −0.371303
\(750\) 0 0
\(751\) 1.89895e7 1.22861 0.614305 0.789069i \(-0.289436\pi\)
0.614305 + 0.789069i \(0.289436\pi\)
\(752\) 0 0
\(753\) 2.02062e7 1.29866
\(754\) 0 0
\(755\) −1.64627e6 −0.105108
\(756\) 0 0
\(757\) 2.47833e7 1.57188 0.785939 0.618304i \(-0.212180\pi\)
0.785939 + 0.618304i \(0.212180\pi\)
\(758\) 0 0
\(759\) −469101. −0.0295571
\(760\) 0 0
\(761\) 2.62584e7 1.64364 0.821820 0.569747i \(-0.192959\pi\)
0.821820 + 0.569747i \(0.192959\pi\)
\(762\) 0 0
\(763\) −610543. −0.0379669
\(764\) 0 0
\(765\) 6.10207e6 0.376984
\(766\) 0 0
\(767\) −1.61164e7 −0.989190
\(768\) 0 0
\(769\) 1.92359e7 1.17300 0.586500 0.809950i \(-0.300506\pi\)
0.586500 + 0.809950i \(0.300506\pi\)
\(770\) 0 0
\(771\) −6.19066e6 −0.375060
\(772\) 0 0
\(773\) −7.49718e6 −0.451283 −0.225642 0.974210i \(-0.572448\pi\)
−0.225642 + 0.974210i \(0.572448\pi\)
\(774\) 0 0
\(775\) 87175.8 0.00521365
\(776\) 0 0
\(777\) 2.68950e6 0.159816
\(778\) 0 0
\(779\) 8.64212e6 0.510242
\(780\) 0 0
\(781\) 2.40415e6 0.141038
\(782\) 0 0
\(783\) 2.20894e7 1.28760
\(784\) 0 0
\(785\) 9.18228e6 0.531835
\(786\) 0 0
\(787\) 1.48570e7 0.855053 0.427526 0.904003i \(-0.359385\pi\)
0.427526 + 0.904003i \(0.359385\pi\)
\(788\) 0 0
\(789\) −2.53010e7 −1.44692
\(790\) 0 0
\(791\) 295698. 0.0168038
\(792\) 0 0
\(793\) 4.05412e7 2.28936
\(794\) 0 0
\(795\) 1.62232e6 0.0910370
\(796\) 0 0
\(797\) −2.89236e7 −1.61290 −0.806450 0.591303i \(-0.798614\pi\)
−0.806450 + 0.591303i \(0.798614\pi\)
\(798\) 0 0
\(799\) −7.49477e6 −0.415328
\(800\) 0 0
\(801\) 3.32797e6 0.183273
\(802\) 0 0
\(803\) 6.25043e6 0.342075
\(804\) 0 0
\(805\) 332669. 0.0180935
\(806\) 0 0
\(807\) −8.39928e6 −0.454003
\(808\) 0 0
\(809\) −1.97152e7 −1.05908 −0.529541 0.848285i \(-0.677636\pi\)
−0.529541 + 0.848285i \(0.677636\pi\)
\(810\) 0 0
\(811\) −6.00642e6 −0.320674 −0.160337 0.987062i \(-0.551258\pi\)
−0.160337 + 0.987062i \(0.551258\pi\)
\(812\) 0 0
\(813\) 5.12727e6 0.272057
\(814\) 0 0
\(815\) −1.20351e7 −0.634682
\(816\) 0 0
\(817\) −2.15633e6 −0.113021
\(818\) 0 0
\(819\) 5.18121e6 0.269912
\(820\) 0 0
\(821\) −3.12629e7 −1.61872 −0.809361 0.587312i \(-0.800186\pi\)
−0.809361 + 0.587312i \(0.800186\pi\)
\(822\) 0 0
\(823\) 1.43689e7 0.739474 0.369737 0.929137i \(-0.379448\pi\)
0.369737 + 0.929137i \(0.379448\pi\)
\(824\) 0 0
\(825\) −868336. −0.0444174
\(826\) 0 0
\(827\) −3.13803e7 −1.59549 −0.797744 0.602997i \(-0.793973\pi\)
−0.797744 + 0.602997i \(0.793973\pi\)
\(828\) 0 0
\(829\) 1.74548e6 0.0882121 0.0441060 0.999027i \(-0.485956\pi\)
0.0441060 + 0.999027i \(0.485956\pi\)
\(830\) 0 0
\(831\) 1.84785e7 0.928251
\(832\) 0 0
\(833\) 3.34938e7 1.67244
\(834\) 0 0
\(835\) 1.50194e7 0.745482
\(836\) 0 0
\(837\) −567203. −0.0279850
\(838\) 0 0
\(839\) 3.04376e7 1.49281 0.746406 0.665491i \(-0.231778\pi\)
0.746406 + 0.665491i \(0.231778\pi\)
\(840\) 0 0
\(841\) 8.99566e6 0.438574
\(842\) 0 0
\(843\) −9.60901e6 −0.465704
\(844\) 0 0
\(845\) 2.56859e7 1.23752
\(846\) 0 0
\(847\) 577012. 0.0276361
\(848\) 0 0
\(849\) −1.65022e7 −0.785726
\(850\) 0 0
\(851\) 2.00675e6 0.0949883
\(852\) 0 0
\(853\) −2.05924e6 −0.0969022 −0.0484511 0.998826i \(-0.515429\pi\)
−0.0484511 + 0.998826i \(0.515429\pi\)
\(854\) 0 0
\(855\) −5.18668e6 −0.242647
\(856\) 0 0
\(857\) 2.90177e7 1.34962 0.674809 0.737993i \(-0.264226\pi\)
0.674809 + 0.737993i \(0.264226\pi\)
\(858\) 0 0
\(859\) 4.14336e7 1.91589 0.957943 0.286958i \(-0.0926440\pi\)
0.957943 + 0.286958i \(0.0926440\pi\)
\(860\) 0 0
\(861\) 2.09536e6 0.0963274
\(862\) 0 0
\(863\) −3.45945e7 −1.58117 −0.790587 0.612349i \(-0.790225\pi\)
−0.790587 + 0.612349i \(0.790225\pi\)
\(864\) 0 0
\(865\) 1.00358e7 0.456051
\(866\) 0 0
\(867\) 3.90569e7 1.76462
\(868\) 0 0
\(869\) −6.16624e6 −0.276994
\(870\) 0 0
\(871\) 1.17831e7 0.526275
\(872\) 0 0
\(873\) −5.43254e6 −0.241250
\(874\) 0 0
\(875\) 615792. 0.0271903
\(876\) 0 0
\(877\) 7.03277e6 0.308764 0.154382 0.988011i \(-0.450661\pi\)
0.154382 + 0.988011i \(0.450661\pi\)
\(878\) 0 0
\(879\) −1.12230e7 −0.489933
\(880\) 0 0
\(881\) 1.30800e7 0.567762 0.283881 0.958860i \(-0.408378\pi\)
0.283881 + 0.958860i \(0.408378\pi\)
\(882\) 0 0
\(883\) 1.87695e6 0.0810125 0.0405062 0.999179i \(-0.487103\pi\)
0.0405062 + 0.999179i \(0.487103\pi\)
\(884\) 0 0
\(885\) 3.91169e6 0.167883
\(886\) 0 0
\(887\) −5.77221e6 −0.246339 −0.123170 0.992386i \(-0.539306\pi\)
−0.123170 + 0.992386i \(0.539306\pi\)
\(888\) 0 0
\(889\) 1.11400e7 0.472749
\(890\) 0 0
\(891\) 2.38132e6 0.100490
\(892\) 0 0
\(893\) 6.37046e6 0.267327
\(894\) 0 0
\(895\) 1.36842e7 0.571032
\(896\) 0 0
\(897\) −4.58509e6 −0.190268
\(898\) 0 0
\(899\) −757665. −0.0312664
\(900\) 0 0
\(901\) −1.24096e7 −0.509269
\(902\) 0 0
\(903\) −522822. −0.0213370
\(904\) 0 0
\(905\) 1.51368e7 0.614345
\(906\) 0 0
\(907\) −3.37177e7 −1.36094 −0.680472 0.732774i \(-0.738225\pi\)
−0.680472 + 0.732774i \(0.738225\pi\)
\(908\) 0 0
\(909\) 5.13976e6 0.206316
\(910\) 0 0
\(911\) −1.06739e6 −0.0426116 −0.0213058 0.999773i \(-0.506782\pi\)
−0.0213058 + 0.999773i \(0.506782\pi\)
\(912\) 0 0
\(913\) 1.04399e6 0.0414495
\(914\) 0 0
\(915\) −9.83994e6 −0.388543
\(916\) 0 0
\(917\) 5.84479e6 0.229533
\(918\) 0 0
\(919\) 3.23736e7 1.26445 0.632225 0.774785i \(-0.282142\pi\)
0.632225 + 0.774785i \(0.282142\pi\)
\(920\) 0 0
\(921\) 2.78932e6 0.108355
\(922\) 0 0
\(923\) 2.34987e7 0.907903
\(924\) 0 0
\(925\) 3.71463e6 0.142745
\(926\) 0 0
\(927\) 1.73874e7 0.664563
\(928\) 0 0
\(929\) −4.75549e7 −1.80782 −0.903911 0.427721i \(-0.859317\pi\)
−0.903911 + 0.427721i \(0.859317\pi\)
\(930\) 0 0
\(931\) −2.84693e7 −1.07647
\(932\) 0 0
\(933\) −2.21740e7 −0.833952
\(934\) 0 0
\(935\) 6.64220e6 0.248475
\(936\) 0 0
\(937\) −5.71529e6 −0.212662 −0.106331 0.994331i \(-0.533910\pi\)
−0.106331 + 0.994331i \(0.533910\pi\)
\(938\) 0 0
\(939\) −1.18463e7 −0.438448
\(940\) 0 0
\(941\) −4.66044e7 −1.71575 −0.857873 0.513862i \(-0.828214\pi\)
−0.857873 + 0.513862i \(0.828214\pi\)
\(942\) 0 0
\(943\) 1.56344e6 0.0572533
\(944\) 0 0
\(945\) −4.00661e6 −0.145948
\(946\) 0 0
\(947\) 1.59416e7 0.577641 0.288820 0.957383i \(-0.406737\pi\)
0.288820 + 0.957383i \(0.406737\pi\)
\(948\) 0 0
\(949\) 6.10930e7 2.20204
\(950\) 0 0
\(951\) −2.35547e7 −0.844551
\(952\) 0 0
\(953\) −2.31743e6 −0.0826560 −0.0413280 0.999146i \(-0.513159\pi\)
−0.0413280 + 0.999146i \(0.513159\pi\)
\(954\) 0 0
\(955\) 1.23984e6 0.0439905
\(956\) 0 0
\(957\) 7.54691e6 0.266372
\(958\) 0 0
\(959\) 3.73412e6 0.131112
\(960\) 0 0
\(961\) −2.86097e7 −0.999320
\(962\) 0 0
\(963\) 1.60794e7 0.558732
\(964\) 0 0
\(965\) −2.24818e7 −0.777165
\(966\) 0 0
\(967\) −3.54405e7 −1.21880 −0.609401 0.792862i \(-0.708590\pi\)
−0.609401 + 0.792862i \(0.708590\pi\)
\(968\) 0 0
\(969\) −4.70552e7 −1.60990
\(970\) 0 0
\(971\) −4.41218e7 −1.50178 −0.750888 0.660429i \(-0.770374\pi\)
−0.750888 + 0.660429i \(0.770374\pi\)
\(972\) 0 0
\(973\) 1.49476e7 0.506161
\(974\) 0 0
\(975\) −8.48730e6 −0.285929
\(976\) 0 0
\(977\) −1.53807e7 −0.515513 −0.257757 0.966210i \(-0.582983\pi\)
−0.257757 + 0.966210i \(0.582983\pi\)
\(978\) 0 0
\(979\) 3.62255e6 0.120797
\(980\) 0 0
\(981\) 1.72208e6 0.0571321
\(982\) 0 0
\(983\) 3.82728e7 1.26330 0.631650 0.775253i \(-0.282378\pi\)
0.631650 + 0.775253i \(0.282378\pi\)
\(984\) 0 0
\(985\) −6.99088e6 −0.229584
\(986\) 0 0
\(987\) 1.54457e6 0.0504679
\(988\) 0 0
\(989\) −390100. −0.0126819
\(990\) 0 0
\(991\) −3.12166e6 −0.100972 −0.0504860 0.998725i \(-0.516077\pi\)
−0.0504860 + 0.998725i \(0.516077\pi\)
\(992\) 0 0
\(993\) 1.82204e7 0.586387
\(994\) 0 0
\(995\) −2.05557e7 −0.658224
\(996\) 0 0
\(997\) 1.26050e7 0.401610 0.200805 0.979631i \(-0.435644\pi\)
0.200805 + 0.979631i \(0.435644\pi\)
\(998\) 0 0
\(999\) −2.41690e7 −0.766205
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.6.a.a.1.2 2
4.3 odd 2 880.6.a.h.1.1 2
5.2 odd 4 1100.6.b.b.749.2 4
5.3 odd 4 1100.6.b.b.749.3 4
5.4 even 2 1100.6.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.6.a.a.1.2 2 1.1 even 1 trivial
880.6.a.h.1.1 2 4.3 odd 2
1100.6.a.c.1.1 2 5.4 even 2
1100.6.b.b.749.2 4 5.2 odd 4
1100.6.b.b.749.3 4 5.3 odd 4