Properties

Label 220.4.b.b
Level $220$
Weight $4$
Character orbit 220.b
Analytic conductor $12.980$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,4,Mod(89,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.89");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 220.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9804202013\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 105x^{4} + 1824x^{2} + 7600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{4} + \beta_1 - 2) q^{5} + \beta_{3} q^{7} + (\beta_{5} + 2 \beta_{4} - 8) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + (\beta_{4} + \beta_1 - 2) q^{5} + \beta_{3} q^{7} + (\beta_{5} + 2 \beta_{4} - 8) q^{9} - 11 q^{11} + ( - \beta_{3} - 2 \beta_{2} + \beta_1) q^{13} + (\beta_{5} + 2 \beta_{4} - \beta_{3} + \cdots - 35) q^{15}+ \cdots + ( - 11 \beta_{5} - 22 \beta_{4} + 88) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{5} - 48 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 12 q^{5} - 48 q^{9} - 66 q^{11} - 210 q^{15} - 270 q^{19} + 90 q^{21} + 330 q^{25} + 366 q^{29} - 210 q^{31} + 90 q^{35} - 432 q^{39} + 528 q^{41} + 912 q^{45} - 1824 q^{49} + 1242 q^{51} + 132 q^{55} - 1968 q^{59} - 1770 q^{61} - 432 q^{65} - 312 q^{69} - 1782 q^{71} + 2472 q^{75} - 3192 q^{79} + 2118 q^{81} + 1242 q^{85} + 1278 q^{89} + 5592 q^{91} + 3852 q^{95} + 528 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 105x^{4} + 1824x^{2} + 7600 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 125\nu^{3} + 2924\nu ) / 280 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -9\nu^{5} - 845\nu^{3} - 7556\nu ) / 280 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 97\nu^{2} + 936 ) / 28 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{4} - 83\nu^{2} - 446 ) / 14 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{4} - 35 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 9\beta_{2} - 67\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -97\beta_{5} - 166\beta_{4} + 2459 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -125\beta_{3} - 845\beta_{2} + 5451\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
89.1
9.19087i
3.76634i
2.51843i
2.51843i
3.76634i
9.19087i
0 9.19087i 0 −6.36615 9.19087i 0 13.0298i 0 −57.4722 0
89.2 0 3.76634i 0 −10.5269 3.76634i 0 35.2365i 0 12.8147 0
89.3 0 2.51843i 0 10.8930 2.51843i 0 23.0133i 0 20.6575 0
89.4 0 2.51843i 0 10.8930 + 2.51843i 0 23.0133i 0 20.6575 0
89.5 0 3.76634i 0 −10.5269 + 3.76634i 0 35.2365i 0 12.8147 0
89.6 0 9.19087i 0 −6.36615 + 9.19087i 0 13.0298i 0 −57.4722 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 89.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.4.b.b 6
3.b odd 2 1 1980.4.c.c 6
4.b odd 2 1 880.4.b.e 6
5.b even 2 1 inner 220.4.b.b 6
5.c odd 4 2 1100.4.a.o 6
15.d odd 2 1 1980.4.c.c 6
20.d odd 2 1 880.4.b.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.4.b.b 6 1.a even 1 1 trivial
220.4.b.b 6 5.b even 2 1 inner
880.4.b.e 6 4.b odd 2 1
880.4.b.e 6 20.d odd 2 1
1100.4.a.o 6 5.c odd 4 2
1980.4.c.c 6 3.b odd 2 1
1980.4.c.c 6 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 105T_{3}^{4} + 1824T_{3}^{2} + 7600 \) acting on \(S_{4}^{\mathrm{new}}(220, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 105 T^{4} + \cdots + 7600 \) Copy content Toggle raw display
$5$ \( T^{6} + 12 T^{5} + \cdots + 1953125 \) Copy content Toggle raw display
$7$ \( T^{6} + 1941 T^{4} + \cdots + 111639744 \) Copy content Toggle raw display
$11$ \( (T + 11)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 2549592064 \) Copy content Toggle raw display
$17$ \( T^{6} + 15405 T^{4} + \cdots + 656913600 \) Copy content Toggle raw display
$19$ \( (T^{3} + 135 T^{2} + \cdots - 120368)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 1710420736 \) Copy content Toggle raw display
$29$ \( (T^{3} - 183 T^{2} + \cdots + 2786540)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 105 T^{2} + \cdots + 869120)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 765359816704 \) Copy content Toggle raw display
$41$ \( (T^{3} - 264 T^{2} + \cdots + 59213120)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 72782004960000 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 526093833931776 \) Copy content Toggle raw display
$59$ \( (T^{3} + 984 T^{2} + \cdots + 20728320)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 885 T^{2} + \cdots + 518836)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{3} + 891 T^{2} + \cdots - 230655360)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 150607345478400 \) Copy content Toggle raw display
$79$ \( (T^{3} + 1596 T^{2} + \cdots - 22746624)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{3} - 639 T^{2} + \cdots + 90820428)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 617580346392576 \) Copy content Toggle raw display
show more
show less