Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(37,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 5, 4]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.37");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.x (of order \(20\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | 0 | −2.43165 | − | 4.77239i | 0 | −4.22520 | − | 2.67351i | 0 | −2.84186 | + | 5.57747i | 0 | −11.5727 | + | 15.9284i | 0 | ||||||||||
37.2 | 0 | −1.87775 | − | 3.68530i | 0 | 3.24376 | − | 3.80500i | 0 | 2.52559 | − | 4.95675i | 0 | −4.76541 | + | 6.55902i | 0 | ||||||||||
37.3 | 0 | −1.74541 | − | 3.42555i | 0 | 3.92601 | + | 3.09620i | 0 | −5.38135 | + | 10.5615i | 0 | −3.39790 | + | 4.67681i | 0 | ||||||||||
37.4 | 0 | −1.72462 | − | 3.38475i | 0 | −0.450384 | + | 4.97967i | 0 | 5.09251 | − | 9.99462i | 0 | −3.19218 | + | 4.39365i | 0 | ||||||||||
37.5 | 0 | −0.558955 | − | 1.09701i | 0 | −3.68048 | + | 3.38438i | 0 | 0.455994 | − | 0.894939i | 0 | 4.39907 | − | 6.05480i | 0 | ||||||||||
37.6 | 0 | −0.182447 | − | 0.358073i | 0 | −4.08347 | − | 2.88535i | 0 | −1.29828 | + | 2.54802i | 0 | 5.19514 | − | 7.15049i | 0 | ||||||||||
37.7 | 0 | 0.0872094 | + | 0.171158i | 0 | 2.30993 | − | 4.43444i | 0 | −3.04336 | + | 5.97294i | 0 | 5.26838 | − | 7.25130i | 0 | ||||||||||
37.8 | 0 | 0.509699 | + | 1.00034i | 0 | 4.99414 | + | 0.242016i | 0 | 3.01016 | − | 5.90777i | 0 | 4.54918 | − | 6.26141i | 0 | ||||||||||
37.9 | 0 | 1.34992 | + | 2.64938i | 0 | −3.11539 | + | 3.91080i | 0 | −3.58267 | + | 7.03139i | 0 | 0.0931732 | − | 0.128242i | 0 | ||||||||||
37.10 | 0 | 1.43092 | + | 2.80834i | 0 | −3.68211 | − | 3.38262i | 0 | 5.41546 | − | 10.6284i | 0 | −0.549155 | + | 0.755847i | 0 | ||||||||||
37.11 | 0 | 1.88028 | + | 3.69025i | 0 | 3.28123 | + | 3.77273i | 0 | 0.0424515 | − | 0.0833157i | 0 | −4.79243 | + | 6.59621i | 0 | ||||||||||
37.12 | 0 | 2.62077 | + | 5.14354i | 0 | 0.218614 | − | 4.99522i | 0 | −3.35961 | + | 6.59360i | 0 | −14.2976 | + | 19.6789i | 0 | ||||||||||
53.1 | 0 | −5.61948 | − | 0.890038i | 0 | −2.13745 | − | 4.52010i | 0 | −10.3212 | + | 1.63472i | 0 | 22.2269 | + | 7.22194i | 0 | ||||||||||
53.2 | 0 | −4.20075 | − | 0.665333i | 0 | −0.400380 | + | 4.98394i | 0 | 7.93154 | − | 1.25623i | 0 | 8.64412 | + | 2.80864i | 0 | ||||||||||
53.3 | 0 | −3.18350 | − | 0.504217i | 0 | 4.79251 | + | 1.42544i | 0 | −1.39356 | + | 0.220719i | 0 | 1.32095 | + | 0.429202i | 0 | ||||||||||
53.4 | 0 | −2.80761 | − | 0.444681i | 0 | −4.83437 | + | 1.27628i | 0 | 3.00361 | − | 0.475726i | 0 | −0.874593 | − | 0.284172i | 0 | ||||||||||
53.5 | 0 | −1.93758 | − | 0.306883i | 0 | −1.07120 | − | 4.88391i | 0 | 4.67201 | − | 0.739973i | 0 | −4.89946 | − | 1.59193i | 0 | ||||||||||
53.6 | 0 | −0.450444 | − | 0.0713433i | 0 | 3.44613 | − | 3.62274i | 0 | −1.83487 | + | 0.290614i | 0 | −8.36170 | − | 2.71688i | 0 | ||||||||||
53.7 | 0 | −0.350343 | − | 0.0554888i | 0 | 2.67198 | + | 4.22617i | 0 | −12.2603 | + | 1.94184i | 0 | −8.43985 | − | 2.74227i | 0 | ||||||||||
53.8 | 0 | 1.70499 | + | 0.270045i | 0 | −4.99007 | + | 0.315041i | 0 | −5.56146 | + | 0.880848i | 0 | −5.72543 | − | 1.86030i | 0 | ||||||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
11.c | even | 5 | 1 | inner |
55.k | odd | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.x.a | ✓ | 96 |
5.c | odd | 4 | 1 | inner | 220.3.x.a | ✓ | 96 |
11.c | even | 5 | 1 | inner | 220.3.x.a | ✓ | 96 |
55.k | odd | 20 | 1 | inner | 220.3.x.a | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.x.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
220.3.x.a | ✓ | 96 | 5.c | odd | 4 | 1 | inner |
220.3.x.a | ✓ | 96 | 11.c | even | 5 | 1 | inner |
220.3.x.a | ✓ | 96 | 55.k | odd | 20 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).