Properties

Label 220.3.w.a.7.4
Level $220$
Weight $3$
Character 220.7
Analytic conductor $5.995$
Analytic rank $0$
Dimension $544$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(7,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 5, 14]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(544\)
Relative dimension: \(68\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.4
Character \(\chi\) \(=\) 220.7
Dual form 220.3.w.a.63.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96643 + 0.364900i) q^{2} +(1.14015 - 0.580936i) q^{3} +(3.73370 - 1.43510i) q^{4} +(1.56915 - 4.74740i) q^{5} +(-2.03004 + 1.55841i) q^{6} +(-5.70983 + 11.2062i) q^{7} +(-6.81838 + 4.18445i) q^{8} +(-4.32761 + 5.95644i) q^{9} +(-1.35329 + 9.90801i) q^{10} +(10.9222 + 1.30573i) q^{11} +(3.42328 - 3.80527i) q^{12} +(2.16315 + 13.6576i) q^{13} +(7.13885 - 24.1197i) q^{14} +(-0.968868 - 6.32433i) q^{15} +(11.8810 - 10.7165i) q^{16} +(2.20685 - 13.9335i) q^{17} +(6.33643 - 13.2921i) q^{18} +(8.78672 + 2.85498i) q^{19} +(-0.954276 - 19.9772i) q^{20} +16.0938i q^{21} +(-21.9543 + 1.41790i) q^{22} +(29.9456 + 29.9456i) q^{23} +(-5.34309 + 8.73196i) q^{24} +(-20.0755 - 14.8987i) q^{25} +(-9.23734 - 26.0674i) q^{26} +(-3.27541 + 20.6801i) q^{27} +(-5.23677 + 50.0347i) q^{28} +(7.25970 + 22.3431i) q^{29} +(4.21296 + 12.0828i) q^{30} +(11.6482 - 16.0323i) q^{31} +(-19.4526 + 25.4086i) q^{32} +(13.2115 - 4.85639i) q^{33} +(0.744723 + 28.2045i) q^{34} +(44.2406 + 44.6910i) q^{35} +(-7.60987 + 28.4501i) q^{36} +(12.5830 - 24.6955i) q^{37} +(-18.3203 - 2.40784i) q^{38} +(10.4005 + 14.3151i) q^{39} +(9.16621 + 38.9356i) q^{40} +(-12.0228 - 3.90645i) q^{41} +(-5.87263 - 31.6473i) q^{42} +(-25.4909 + 25.4909i) q^{43} +(42.6541 - 10.7993i) q^{44} +(21.4869 + 29.8914i) q^{45} +(-69.8130 - 47.9587i) q^{46} +(11.5996 + 22.7655i) q^{47} +(7.32052 - 19.1205i) q^{48} +(-64.1748 - 88.3290i) q^{49} +(44.9137 + 21.9718i) q^{50} +(-5.57833 - 17.1683i) q^{51} +(27.6766 + 47.8889i) q^{52} +(-7.11181 + 1.12640i) q^{53} +(-1.10532 - 41.8612i) q^{54} +(23.3374 - 49.8033i) q^{55} +(-7.95992 - 100.301i) q^{56} +(11.6768 - 1.84942i) q^{57} +(-22.4287 - 41.2870i) q^{58} +(15.9174 + 48.9888i) q^{59} +(-12.6935 - 22.2227i) q^{60} +(7.37946 + 10.1570i) q^{61} +(-17.0551 + 35.7769i) q^{62} +(-42.0390 - 82.5063i) q^{63} +(28.9807 - 57.0624i) q^{64} +(68.2323 + 11.1615i) q^{65} +(-24.2075 + 14.3706i) q^{66} +(-57.2536 + 57.2536i) q^{67} +(-11.7563 - 55.1905i) q^{68} +(51.5390 + 16.7460i) q^{69} +(-103.304 - 71.7383i) q^{70} +(-18.6543 - 25.6754i) q^{71} +(4.58283 - 58.7220i) q^{72} +(-25.0092 + 49.0833i) q^{73} +(-15.7321 + 53.1534i) q^{74} +(-31.5444 - 5.32421i) q^{75} +(36.9041 - 1.95022i) q^{76} +(-76.9963 + 114.941i) q^{77} +(-25.6754 - 24.3544i) q^{78} +(36.7254 - 50.5482i) q^{79} +(-32.2323 - 73.2194i) q^{80} +(-12.1971 - 37.5387i) q^{81} +(25.0675 + 3.29463i) q^{82} +(17.1464 - 108.258i) q^{83} +(23.0962 + 60.0893i) q^{84} +(-62.6849 - 32.3405i) q^{85} +(40.8244 - 59.4277i) q^{86} +(21.2570 + 21.2570i) q^{87} +(-79.9357 + 36.8006i) q^{88} +42.5205i q^{89} +(-53.1599 - 50.9388i) q^{90} +(-165.401 - 53.7419i) q^{91} +(154.783 + 68.8327i) q^{92} +(3.96692 - 25.0461i) q^{93} +(-31.1169 - 40.5340i) q^{94} +(27.3414 - 37.2342i) q^{95} +(-7.41821 + 40.2704i) q^{96} +(-2.69477 - 17.0141i) q^{97} +(158.427 + 150.275i) q^{98} +(-55.0446 + 59.4069i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 544 q - 10 q^{2} - 12 q^{5} - 20 q^{6} - 10 q^{8} - 28 q^{12} - 20 q^{13} - 36 q^{16} - 20 q^{17} - 10 q^{18} - 40 q^{20} + 86 q^{22} - 12 q^{25} + 140 q^{26} - 10 q^{28} - 370 q^{30} - 100 q^{33} - 476 q^{36}+ \cdots + 148 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96643 + 0.364900i −0.983215 + 0.182450i
\(3\) 1.14015 0.580936i 0.380051 0.193645i −0.253520 0.967330i \(-0.581588\pi\)
0.633571 + 0.773685i \(0.281588\pi\)
\(4\) 3.73370 1.43510i 0.933424 0.358776i
\(5\) 1.56915 4.74740i 0.313830 0.949479i
\(6\) −2.03004 + 1.55841i −0.338341 + 0.259735i
\(7\) −5.70983 + 11.2062i −0.815691 + 1.60088i −0.0164553 + 0.999865i \(0.505238\pi\)
−0.799235 + 0.601018i \(0.794762\pi\)
\(8\) −6.81838 + 4.18445i −0.852298 + 0.523057i
\(9\) −4.32761 + 5.95644i −0.480845 + 0.661827i
\(10\) −1.35329 + 9.90801i −0.135329 + 0.990801i
\(11\) 10.9222 + 1.30573i 0.992930 + 0.118703i
\(12\) 3.42328 3.80527i 0.285273 0.317106i
\(13\) 2.16315 + 13.6576i 0.166396 + 1.05058i 0.919617 + 0.392816i \(0.128499\pi\)
−0.753221 + 0.657768i \(0.771501\pi\)
\(14\) 7.13885 24.1197i 0.509918 1.72284i
\(15\) −0.968868 6.32433i −0.0645912 0.421622i
\(16\) 11.8810 10.7165i 0.742560 0.669779i
\(17\) 2.20685 13.9335i 0.129815 0.819617i −0.833750 0.552142i \(-0.813811\pi\)
0.963565 0.267475i \(-0.0861893\pi\)
\(18\) 6.33643 13.2921i 0.352024 0.738449i
\(19\) 8.78672 + 2.85498i 0.462459 + 0.150262i 0.530974 0.847388i \(-0.321826\pi\)
−0.0685150 + 0.997650i \(0.521826\pi\)
\(20\) −0.954276 19.9772i −0.0477138 0.998861i
\(21\) 16.0938i 0.766371i
\(22\) −21.9543 + 1.41790i −0.997921 + 0.0644500i
\(23\) 29.9456 + 29.9456i 1.30198 + 1.30198i 0.927054 + 0.374927i \(0.122332\pi\)
0.374927 + 0.927054i \(0.377668\pi\)
\(24\) −5.34309 + 8.73196i −0.222629 + 0.363832i
\(25\) −20.0755 14.8987i −0.803022 0.595950i
\(26\) −9.23734 26.0674i −0.355282 1.00259i
\(27\) −3.27541 + 20.6801i −0.121311 + 0.765930i
\(28\) −5.23677 + 50.0347i −0.187027 + 1.78695i
\(29\) 7.25970 + 22.3431i 0.250334 + 0.770450i 0.994713 + 0.102692i \(0.0327458\pi\)
−0.744379 + 0.667758i \(0.767254\pi\)
\(30\) 4.21296 + 12.0828i 0.140432 + 0.402760i
\(31\) 11.6482 16.0323i 0.375747 0.517172i −0.578704 0.815537i \(-0.696442\pi\)
0.954452 + 0.298366i \(0.0964415\pi\)
\(32\) −19.4526 + 25.4086i −0.607895 + 0.794017i
\(33\) 13.2115 4.85639i 0.400350 0.147163i
\(34\) 0.744723 + 28.2045i 0.0219036 + 0.829545i
\(35\) 44.2406 + 44.6910i 1.26402 + 1.27689i
\(36\) −7.60987 + 28.4501i −0.211385 + 0.790281i
\(37\) 12.5830 24.6955i 0.340080 0.667445i −0.656109 0.754666i \(-0.727799\pi\)
0.996189 + 0.0872213i \(0.0277987\pi\)
\(38\) −18.3203 2.40784i −0.482112 0.0633642i
\(39\) 10.4005 + 14.3151i 0.266680 + 0.367053i
\(40\) 9.16621 + 38.9356i 0.229155 + 0.973390i
\(41\) −12.0228 3.90645i −0.293239 0.0952792i 0.158703 0.987326i \(-0.449269\pi\)
−0.451942 + 0.892047i \(0.649269\pi\)
\(42\) −5.87263 31.6473i −0.139825 0.753508i
\(43\) −25.4909 + 25.4909i −0.592811 + 0.592811i −0.938390 0.345579i \(-0.887683\pi\)
0.345579 + 0.938390i \(0.387683\pi\)
\(44\) 42.6541 10.7993i 0.969412 0.245439i
\(45\) 21.4869 + 29.8914i 0.477487 + 0.664254i
\(46\) −69.8130 47.9587i −1.51767 1.04258i
\(47\) 11.5996 + 22.7655i 0.246800 + 0.484371i 0.980860 0.194712i \(-0.0623773\pi\)
−0.734061 + 0.679084i \(0.762377\pi\)
\(48\) 7.32052 19.1205i 0.152511 0.398343i
\(49\) −64.1748 88.3290i −1.30969 1.80263i
\(50\) 44.9137 + 21.9718i 0.898274 + 0.439435i
\(51\) −5.57833 17.1683i −0.109379 0.336634i
\(52\) 27.6766 + 47.8889i 0.532242 + 0.920941i
\(53\) −7.11181 + 1.12640i −0.134185 + 0.0212528i −0.223166 0.974781i \(-0.571639\pi\)
0.0889806 + 0.996033i \(0.471639\pi\)
\(54\) −1.10532 41.8612i −0.0204689 0.775208i
\(55\) 23.3374 49.8033i 0.424317 0.905514i
\(56\) −7.95992 100.301i −0.142141 1.79108i
\(57\) 11.6768 1.84942i 0.204855 0.0324459i
\(58\) −22.4287 41.2870i −0.386701 0.711845i
\(59\) 15.9174 + 48.9888i 0.269787 + 0.830318i 0.990552 + 0.137139i \(0.0437906\pi\)
−0.720765 + 0.693179i \(0.756209\pi\)
\(60\) −12.6935 22.2227i −0.211559 0.370378i
\(61\) 7.37946 + 10.1570i 0.120975 + 0.166507i 0.865209 0.501411i \(-0.167186\pi\)
−0.744235 + 0.667918i \(0.767186\pi\)
\(62\) −17.0551 + 35.7769i −0.275082 + 0.577046i
\(63\) −42.0390 82.5063i −0.667286 1.30962i
\(64\) 28.9807 57.0624i 0.452823 0.891600i
\(65\) 68.2323 + 11.1615i 1.04973 + 0.171715i
\(66\) −24.2075 + 14.3706i −0.366780 + 0.217737i
\(67\) −57.2536 + 57.2536i −0.854532 + 0.854532i −0.990687 0.136156i \(-0.956525\pi\)
0.136156 + 0.990687i \(0.456525\pi\)
\(68\) −11.7563 55.1905i −0.172887 0.811624i
\(69\) 51.5390 + 16.7460i 0.746942 + 0.242696i
\(70\) −103.304 71.7383i −1.47577 1.02483i
\(71\) −18.6543 25.6754i −0.262736 0.361625i 0.657185 0.753730i \(-0.271747\pi\)
−0.919921 + 0.392104i \(0.871747\pi\)
\(72\) 4.58283 58.7220i 0.0636504 0.815583i
\(73\) −25.0092 + 49.0833i −0.342592 + 0.672374i −0.996445 0.0842474i \(-0.973151\pi\)
0.653853 + 0.756621i \(0.273151\pi\)
\(74\) −15.7321 + 53.1534i −0.212597 + 0.718290i
\(75\) −31.5444 5.32421i −0.420592 0.0709894i
\(76\) 36.9041 1.95022i 0.485581 0.0256608i
\(77\) −76.9963 + 114.941i −0.999953 + 1.49274i
\(78\) −25.6754 24.3544i −0.329172 0.312236i
\(79\) 36.7254 50.5482i 0.464878 0.639850i −0.510633 0.859799i \(-0.670589\pi\)
0.975511 + 0.219948i \(0.0705889\pi\)
\(80\) −32.2323 73.2194i −0.402904 0.915242i
\(81\) −12.1971 37.5387i −0.150581 0.463440i
\(82\) 25.0675 + 3.29463i 0.305701 + 0.0401784i
\(83\) 17.1464 108.258i 0.206583 1.30432i −0.638475 0.769642i \(-0.720434\pi\)
0.845059 0.534674i \(-0.179566\pi\)
\(84\) 23.0962 + 60.0893i 0.274955 + 0.715349i
\(85\) −62.6849 32.3405i −0.737470 0.380476i
\(86\) 40.8244 59.4277i 0.474702 0.691020i
\(87\) 21.2570 + 21.2570i 0.244334 + 0.244334i
\(88\) −79.9357 + 36.8006i −0.908360 + 0.418189i
\(89\) 42.5205i 0.477758i 0.971049 + 0.238879i \(0.0767799\pi\)
−0.971049 + 0.238879i \(0.923220\pi\)
\(90\) −53.1599 50.9388i −0.590666 0.565987i
\(91\) −165.401 53.7419i −1.81759 0.590571i
\(92\) 154.783 + 68.8327i 1.68242 + 0.748182i
\(93\) 3.96692 25.0461i 0.0426550 0.269313i
\(94\) −31.1169 40.5340i −0.331031 0.431213i
\(95\) 27.3414 37.2342i 0.287804 0.391939i
\(96\) −7.41821 + 40.2704i −0.0772730 + 0.419483i
\(97\) −2.69477 17.0141i −0.0277811 0.175403i 0.969896 0.243518i \(-0.0783015\pi\)
−0.997677 + 0.0681150i \(0.978302\pi\)
\(98\) 158.427 + 150.275i 1.61660 + 1.53342i
\(99\) −55.0446 + 59.4069i −0.556006 + 0.600070i
\(100\) −96.3372 26.8169i −0.963372 0.268169i
\(101\) 85.4230 117.575i 0.845772 1.16411i −0.139007 0.990291i \(-0.544391\pi\)
0.984779 0.173814i \(-0.0556090\pi\)
\(102\) 17.2341 + 31.7248i 0.168962 + 0.311027i
\(103\) −14.9480 + 29.3370i −0.145126 + 0.284825i −0.952115 0.305741i \(-0.901096\pi\)
0.806989 + 0.590567i \(0.201096\pi\)
\(104\) −71.8988 84.0711i −0.691334 0.808376i
\(105\) 76.4036 + 25.2536i 0.727654 + 0.240510i
\(106\) 13.5738 4.81009i 0.128055 0.0453782i
\(107\) 85.0458 43.3330i 0.794821 0.404981i −0.00892073 0.999960i \(-0.502840\pi\)
0.803741 + 0.594979i \(0.202840\pi\)
\(108\) 17.4487 + 81.9138i 0.161562 + 0.758461i
\(109\) 70.5708 0.647438 0.323719 0.946153i \(-0.395067\pi\)
0.323719 + 0.946153i \(0.395067\pi\)
\(110\) −27.7182 + 106.450i −0.251983 + 0.967732i
\(111\) 35.4665i 0.319518i
\(112\) 52.2523 + 194.329i 0.466539 + 1.73508i
\(113\) −50.8538 99.8062i −0.450033 0.883240i −0.998880 0.0473172i \(-0.984933\pi\)
0.548846 0.835923i \(-0.315067\pi\)
\(114\) −22.2867 + 7.89760i −0.195497 + 0.0692772i
\(115\) 189.153 95.1745i 1.64481 0.827604i
\(116\) 59.1701 + 73.0038i 0.510087 + 0.629343i
\(117\) −90.7119 46.2200i −0.775315 0.395043i
\(118\) −49.1765 90.5247i −0.416750 0.767159i
\(119\) 143.540 + 104.288i 1.20622 + 0.876372i
\(120\) 33.0700 + 39.0675i 0.275583 + 0.325562i
\(121\) 117.590 + 28.5229i 0.971819 + 0.235727i
\(122\) −18.2175 17.2802i −0.149323 0.141641i
\(123\) −15.9772 + 2.53054i −0.129896 + 0.0205735i
\(124\) 20.4827 76.5761i 0.165183 0.617549i
\(125\) −102.232 + 71.9282i −0.817854 + 0.575426i
\(126\) 112.773 + 146.903i 0.895027 + 1.16589i
\(127\) −189.532 30.0190i −1.49238 0.236370i −0.643702 0.765277i \(-0.722602\pi\)
−0.848680 + 0.528907i \(0.822602\pi\)
\(128\) −36.1664 + 122.784i −0.282550 + 0.959253i
\(129\) −14.2549 + 43.8721i −0.110503 + 0.340093i
\(130\) −138.247 + 2.94976i −1.06344 + 0.0226905i
\(131\) −203.551 −1.55383 −0.776913 0.629608i \(-0.783216\pi\)
−0.776913 + 0.629608i \(0.783216\pi\)
\(132\) 42.3585 37.0922i 0.320897 0.281001i
\(133\) −82.1642 + 82.1642i −0.617776 + 0.617776i
\(134\) 91.6934 133.477i 0.684279 0.996098i
\(135\) 93.0371 + 47.9998i 0.689164 + 0.355554i
\(136\) 43.2569 + 104.238i 0.318066 + 0.766458i
\(137\) 40.3614 + 6.39261i 0.294609 + 0.0466614i 0.301989 0.953311i \(-0.402349\pi\)
−0.00738061 + 0.999973i \(0.502349\pi\)
\(138\) −107.458 14.1233i −0.778684 0.102343i
\(139\) −14.2923 + 4.64385i −0.102822 + 0.0334090i −0.359976 0.932961i \(-0.617215\pi\)
0.257154 + 0.966370i \(0.417215\pi\)
\(140\) 229.317 + 103.373i 1.63798 + 0.738377i
\(141\) 26.4506 + 19.2175i 0.187593 + 0.136294i
\(142\) 46.0513 + 43.6819i 0.324305 + 0.307619i
\(143\) 5.79331 + 151.996i 0.0405126 + 1.06291i
\(144\) 12.4159 + 117.145i 0.0862213 + 0.813507i
\(145\) 117.463 + 0.594900i 0.810089 + 0.00410276i
\(146\) 31.2683 105.645i 0.214167 0.723594i
\(147\) −124.483 63.4270i −0.846820 0.431476i
\(148\) 11.5405 110.263i 0.0779761 0.745022i
\(149\) 48.3138 35.1020i 0.324254 0.235584i −0.413735 0.910397i \(-0.635776\pi\)
0.737988 + 0.674813i \(0.235776\pi\)
\(150\) 63.9726 1.04087i 0.426484 0.00693915i
\(151\) −74.0712 + 227.968i −0.490538 + 1.50972i 0.333259 + 0.942835i \(0.391852\pi\)
−0.823797 + 0.566885i \(0.808148\pi\)
\(152\) −71.8578 + 17.3013i −0.472749 + 0.113824i
\(153\) 73.4437 + 73.4437i 0.480024 + 0.480024i
\(154\) 109.466 254.119i 0.710818 1.65013i
\(155\) −57.8341 80.4555i −0.373123 0.519068i
\(156\) 59.3759 + 38.5223i 0.380615 + 0.246938i
\(157\) −26.0580 + 13.2772i −0.165974 + 0.0845681i −0.535004 0.844849i \(-0.679690\pi\)
0.369030 + 0.929418i \(0.379690\pi\)
\(158\) −53.7729 + 112.801i −0.340335 + 0.713928i
\(159\) −7.45417 + 5.41577i −0.0468816 + 0.0340615i
\(160\) 90.1004 + 132.219i 0.563127 + 0.826370i
\(161\) −506.560 + 164.591i −3.14633 + 1.02231i
\(162\) 37.6825 + 69.3665i 0.232608 + 0.428188i
\(163\) −13.9140 87.8497i −0.0853621 0.538955i −0.992897 0.118978i \(-0.962038\pi\)
0.907535 0.419977i \(-0.137962\pi\)
\(164\) −50.4956 + 2.66847i −0.307900 + 0.0162712i
\(165\) −2.32434 70.3408i −0.0140869 0.426308i
\(166\) 5.78623 + 219.139i 0.0348568 + 1.32011i
\(167\) −9.33352 58.9295i −0.0558893 0.352871i −0.999746 0.0225173i \(-0.992832\pi\)
0.943857 0.330354i \(-0.107168\pi\)
\(168\) −67.3438 109.734i −0.400856 0.653176i
\(169\) −21.1220 + 6.86296i −0.124982 + 0.0406092i
\(170\) 135.067 + 40.7216i 0.794509 + 0.239539i
\(171\) −55.0310 + 39.9824i −0.321819 + 0.233815i
\(172\) −58.5932 + 131.757i −0.340658 + 0.766030i
\(173\) 254.328 129.587i 1.47010 0.749056i 0.478466 0.878106i \(-0.341193\pi\)
0.991638 + 0.129050i \(0.0411928\pi\)
\(174\) −49.5572 34.0438i −0.284812 0.195654i
\(175\) 281.586 139.901i 1.60906 0.799434i
\(176\) 143.759 101.534i 0.816815 0.576900i
\(177\) 46.6076 + 46.6076i 0.263320 + 0.263320i
\(178\) −15.5157 83.6135i −0.0871670 0.469739i
\(179\) −30.4193 + 93.6208i −0.169940 + 0.523021i −0.999366 0.0355947i \(-0.988667\pi\)
0.829426 + 0.558616i \(0.188667\pi\)
\(180\) 123.123 + 80.7695i 0.684016 + 0.448719i
\(181\) 170.356 123.771i 0.941195 0.683819i −0.00751269 0.999972i \(-0.502391\pi\)
0.948708 + 0.316153i \(0.102391\pi\)
\(182\) 344.859 + 45.3250i 1.89483 + 0.249038i
\(183\) 14.3142 + 7.29347i 0.0782199 + 0.0398550i
\(184\) −329.486 78.8745i −1.79069 0.428666i
\(185\) −97.4946 98.4872i −0.526998 0.532363i
\(186\) 1.33867 + 50.6990i 0.00719717 + 0.272575i
\(187\) 42.2971 149.303i 0.226187 0.798413i
\(188\) 75.9800 + 68.3527i 0.404149 + 0.363578i
\(189\) −213.043 154.785i −1.12721 0.818968i
\(190\) −40.1782 + 83.1953i −0.211464 + 0.437870i
\(191\) 171.039 55.5739i 0.895491 0.290963i 0.175116 0.984548i \(-0.443970\pi\)
0.720375 + 0.693585i \(0.243970\pi\)
\(192\) −0.107267 81.8957i −0.000558682 0.426540i
\(193\) −121.790 19.2896i −0.631034 0.0999459i −0.167279 0.985910i \(-0.553498\pi\)
−0.463755 + 0.885964i \(0.653498\pi\)
\(194\) 11.5075 + 32.4737i 0.0593171 + 0.167390i
\(195\) 84.2793 26.9129i 0.432201 0.138015i
\(196\) −366.370 237.696i −1.86924 1.21274i
\(197\) 207.848 207.848i 1.05506 1.05506i 0.0566714 0.998393i \(-0.481951\pi\)
0.998393 0.0566714i \(-0.0180487\pi\)
\(198\) 86.5638 136.905i 0.437191 0.691441i
\(199\) 20.9279 0.105166 0.0525828 0.998617i \(-0.483255\pi\)
0.0525828 + 0.998617i \(0.483255\pi\)
\(200\) 199.226 + 17.5801i 0.996129 + 0.0879004i
\(201\) −32.0171 + 98.5385i −0.159289 + 0.490241i
\(202\) −125.075 + 262.373i −0.619185 + 1.29888i
\(203\) −291.832 46.2216i −1.43760 0.227693i
\(204\) −45.4661 56.0958i −0.222873 0.274980i
\(205\) −37.4110 + 50.9472i −0.182493 + 0.248523i
\(206\) 18.6890 63.1437i 0.0907234 0.306523i
\(207\) −307.962 + 48.7764i −1.48774 + 0.235635i
\(208\) 172.061 + 139.084i 0.827218 + 0.668673i
\(209\) 92.2428 + 42.6558i 0.441353 + 0.204095i
\(210\) −159.457 21.7796i −0.759321 0.103713i
\(211\) −234.256 170.197i −1.11022 0.806621i −0.127520 0.991836i \(-0.540702\pi\)
−0.982698 + 0.185215i \(0.940702\pi\)
\(212\) −24.9368 + 14.4118i −0.117627 + 0.0679802i
\(213\) −36.1845 18.4369i −0.169880 0.0865582i
\(214\) −151.424 + 116.245i −0.707591 + 0.543199i
\(215\) 81.0164 + 161.014i 0.376820 + 0.748904i
\(216\) −64.2020 154.711i −0.297232 0.716254i
\(217\) 113.152 + 222.073i 0.521438 + 1.02338i
\(218\) −138.772 + 25.7513i −0.636571 + 0.118125i
\(219\) 70.4912i 0.321877i
\(220\) 15.6620 219.442i 0.0711910 0.997463i
\(221\) 195.072 0.882677
\(222\) 12.9417 + 69.7424i 0.0582961 + 0.314155i
\(223\) 320.680 163.395i 1.43803 0.732712i 0.450890 0.892580i \(-0.351107\pi\)
0.987138 + 0.159867i \(0.0511067\pi\)
\(224\) −173.661 363.068i −0.775274 1.62084i
\(225\) 175.623 55.1029i 0.780545 0.244902i
\(226\) 136.420 + 177.705i 0.603627 + 0.786307i
\(227\) 131.133 257.362i 0.577676 1.13375i −0.398580 0.917134i \(-0.630497\pi\)
0.976256 0.216620i \(-0.0695032\pi\)
\(228\) 40.9434 23.6625i 0.179576 0.103783i
\(229\) −96.6116 + 132.974i −0.421885 + 0.580675i −0.966067 0.258293i \(-0.916840\pi\)
0.544182 + 0.838967i \(0.316840\pi\)
\(230\) −337.226 + 256.176i −1.46620 + 1.11381i
\(231\) −21.0141 + 175.780i −0.0909703 + 0.760953i
\(232\) −142.993 121.966i −0.616349 0.525714i
\(233\) −33.7105 212.840i −0.144680 0.913476i −0.948079 0.318035i \(-0.896977\pi\)
0.803399 0.595442i \(-0.203023\pi\)
\(234\) 195.244 + 57.7877i 0.834378 + 0.246956i
\(235\) 126.278 19.3454i 0.537354 0.0823209i
\(236\) 129.735 + 160.066i 0.549723 + 0.678246i
\(237\) 12.5073 78.9677i 0.0527732 0.333197i
\(238\) −320.317 152.698i −1.34587 0.641587i
\(239\) −219.393 71.2851i −0.917962 0.298264i −0.188332 0.982106i \(-0.560308\pi\)
−0.729631 + 0.683842i \(0.760308\pi\)
\(240\) −79.2855 64.7563i −0.330356 0.269818i
\(241\) 134.969i 0.560038i 0.959995 + 0.280019i \(0.0903407\pi\)
−0.959995 + 0.280019i \(0.909659\pi\)
\(242\) −241.641 13.1797i −0.998516 0.0544615i
\(243\) −168.962 168.962i −0.695317 0.695317i
\(244\) 42.1289 + 27.3327i 0.172659 + 0.112019i
\(245\) −520.033 + 166.062i −2.12258 + 0.677803i
\(246\) 30.4947 10.8062i 0.123962 0.0439278i
\(247\) −19.9851 + 126.181i −0.0809115 + 0.510855i
\(248\) −12.3351 + 158.056i −0.0497383 + 0.637321i
\(249\) −43.3416 133.392i −0.174063 0.535710i
\(250\) 174.785 178.746i 0.699140 0.714985i
\(251\) 99.4209 136.841i 0.396099 0.545184i −0.563660 0.826007i \(-0.690607\pi\)
0.959760 + 0.280823i \(0.0906073\pi\)
\(252\) −275.366 247.723i −1.09272 0.983027i
\(253\) 287.972 + 366.173i 1.13823 + 1.44733i
\(254\) 383.656 10.1302i 1.51046 0.0398827i
\(255\) −90.2581 0.457120i −0.353953 0.00179263i
\(256\) 26.3146 254.644i 0.102791 0.994703i
\(257\) 218.027 427.902i 0.848354 1.66499i 0.106614 0.994301i \(-0.465999\pi\)
0.741740 0.670688i \(-0.234001\pi\)
\(258\) 12.0223 91.4729i 0.0465982 0.354546i
\(259\) 204.895 + 282.014i 0.791101 + 1.08886i
\(260\) 270.776 56.2468i 1.04145 0.216334i
\(261\) −164.502 53.4500i −0.630277 0.204789i
\(262\) 400.269 74.2759i 1.52775 0.283496i
\(263\) 136.497 136.497i 0.519002 0.519002i −0.398268 0.917269i \(-0.630388\pi\)
0.917269 + 0.398268i \(0.130388\pi\)
\(264\) −69.7600 + 88.3958i −0.264242 + 0.334833i
\(265\) −5.81201 + 35.5300i −0.0219321 + 0.134076i
\(266\) 131.588 191.552i 0.494693 0.720120i
\(267\) 24.7017 + 48.4798i 0.0925157 + 0.181572i
\(268\) −131.603 + 295.932i −0.491055 + 1.10423i
\(269\) 203.979 + 280.753i 0.758287 + 1.04369i 0.997355 + 0.0726892i \(0.0231581\pi\)
−0.239068 + 0.971003i \(0.576842\pi\)
\(270\) −200.466 60.4391i −0.742467 0.223848i
\(271\) 105.639 + 325.122i 0.389811 + 1.19971i 0.932930 + 0.360058i \(0.117243\pi\)
−0.543119 + 0.839656i \(0.682757\pi\)
\(272\) −123.098 189.193i −0.452567 0.695562i
\(273\) −219.802 + 34.8133i −0.805137 + 0.127521i
\(274\) −81.7005 + 2.15725i −0.298177 + 0.00787318i
\(275\) −199.816 188.941i −0.726604 0.687057i
\(276\) 216.463 11.4391i 0.784286 0.0414461i
\(277\) −271.666 + 43.0277i −0.980744 + 0.155335i −0.626164 0.779691i \(-0.715376\pi\)
−0.354580 + 0.935026i \(0.615376\pi\)
\(278\) 26.4103 14.3471i 0.0950010 0.0516082i
\(279\) 45.0869 + 138.763i 0.161602 + 0.497359i
\(280\) −488.657 119.598i −1.74520 0.427134i
\(281\) 217.880 + 299.886i 0.775374 + 1.06721i 0.995777 + 0.0918017i \(0.0292626\pi\)
−0.220404 + 0.975409i \(0.570737\pi\)
\(282\) −59.0256 28.1380i −0.209311 0.0997800i
\(283\) 157.212 + 308.545i 0.555518 + 1.09026i 0.982545 + 0.186026i \(0.0595609\pi\)
−0.427027 + 0.904239i \(0.640439\pi\)
\(284\) −106.496 69.0933i −0.374987 0.243286i
\(285\) 9.54265 58.3362i 0.0334830 0.204688i
\(286\) −66.8555 296.775i −0.233760 1.03768i
\(287\) 112.425 112.425i 0.391723 0.391723i
\(288\) −67.1612 225.827i −0.233198 0.784121i
\(289\) 85.5834 + 27.8077i 0.296136 + 0.0962205i
\(290\) −231.200 + 41.6924i −0.797240 + 0.143767i
\(291\) −12.9566 17.8332i −0.0445242 0.0612824i
\(292\) −22.9372 + 219.153i −0.0785519 + 0.750523i
\(293\) −130.463 + 256.047i −0.445265 + 0.873882i 0.553882 + 0.832595i \(0.313146\pi\)
−0.999147 + 0.0412870i \(0.986854\pi\)
\(294\) 267.931 + 79.3011i 0.911329 + 0.269732i
\(295\) 257.546 + 1.30436i 0.873037 + 0.00442157i
\(296\) 17.5416 + 221.036i 0.0592621 + 0.746743i
\(297\) −62.7774 + 221.596i −0.211372 + 0.746115i
\(298\) −82.1970 + 86.6554i −0.275829 + 0.290790i
\(299\) −344.208 + 473.761i −1.15120 + 1.58449i
\(300\) −125.418 + 25.3904i −0.418060 + 0.0846348i
\(301\) −140.107 431.204i −0.465471 1.43257i
\(302\) 62.4704 475.311i 0.206855 1.57388i
\(303\) 29.0918 183.678i 0.0960124 0.606199i
\(304\) 134.990 60.2427i 0.444046 0.198167i
\(305\) 59.7985 19.0954i 0.196061 0.0626080i
\(306\) −171.221 117.622i −0.559547 0.384386i
\(307\) 250.280 + 250.280i 0.815245 + 0.815245i 0.985415 0.170170i \(-0.0544315\pi\)
−0.170170 + 0.985415i \(0.554432\pi\)
\(308\) −122.529 + 539.652i −0.397821 + 1.75212i
\(309\) 42.1324i 0.136351i
\(310\) 143.085 + 137.107i 0.461564 + 0.442279i
\(311\) 257.788 + 83.7604i 0.828901 + 0.269326i 0.692582 0.721339i \(-0.256473\pi\)
0.136318 + 0.990665i \(0.456473\pi\)
\(312\) −130.815 54.0852i −0.419280 0.173350i
\(313\) 59.7559 377.284i 0.190913 1.20538i −0.687035 0.726624i \(-0.741088\pi\)
0.877949 0.478755i \(-0.158912\pi\)
\(314\) 46.3963 35.6172i 0.147759 0.113431i
\(315\) −457.655 + 70.1114i −1.45287 + 0.222576i
\(316\) 64.5797 241.436i 0.204366 0.764039i
\(317\) 64.8925 + 409.715i 0.204708 + 1.29248i 0.849284 + 0.527937i \(0.177034\pi\)
−0.644575 + 0.764541i \(0.722966\pi\)
\(318\) 12.6819 13.3698i 0.0398802 0.0420433i
\(319\) 50.1181 + 253.515i 0.157110 + 0.794718i
\(320\) −225.423 227.122i −0.704447 0.709757i
\(321\) 71.7914 98.8124i 0.223649 0.307827i
\(322\) 936.055 508.501i 2.90700 1.57920i
\(323\) 59.1708 116.129i 0.183191 0.359533i
\(324\) −99.4119 122.654i −0.306827 0.378562i
\(325\) 160.054 306.412i 0.492475 0.942806i
\(326\) 59.4173 + 167.673i 0.182262 + 0.514335i
\(327\) 80.4614 40.9971i 0.246059 0.125373i
\(328\) 98.3224 23.6732i 0.299763 0.0721745i
\(329\) −321.345 −0.976734
\(330\) 30.2380 + 137.472i 0.0916304 + 0.416582i
\(331\) 214.985i 0.649500i 0.945800 + 0.324750i \(0.105280\pi\)
−0.945800 + 0.324750i \(0.894720\pi\)
\(332\) −91.3421 428.810i −0.275127 1.29160i
\(333\) 92.6430 + 181.822i 0.278207 + 0.546012i
\(334\) 39.8571 + 112.475i 0.119333 + 0.336751i
\(335\) 181.966 + 361.645i 0.543183 + 1.07954i
\(336\) 172.469 + 191.210i 0.513299 + 0.569077i
\(337\) −350.857 178.771i −1.04112 0.530477i −0.152109 0.988364i \(-0.548606\pi\)
−0.889010 + 0.457887i \(0.848606\pi\)
\(338\) 39.0307 21.2030i 0.115475 0.0627306i
\(339\) −115.962 84.2514i −0.342071 0.248529i
\(340\) −280.458 30.7903i −0.824878 0.0905597i
\(341\) 148.158 159.899i 0.434480 0.468913i
\(342\) 93.6251 98.7034i 0.273758 0.288606i
\(343\) 747.573 118.404i 2.17951 0.345201i
\(344\) 67.1411 280.472i 0.195178 0.815326i
\(345\) 160.372 218.399i 0.464847 0.633040i
\(346\) −452.832 + 347.627i −1.30876 + 1.00470i
\(347\) −461.418 73.0815i −1.32974 0.210609i −0.549184 0.835701i \(-0.685062\pi\)
−0.780551 + 0.625092i \(0.785062\pi\)
\(348\) 109.873 + 48.8613i 0.315728 + 0.140406i
\(349\) 11.3458 34.9188i 0.0325095 0.100054i −0.933485 0.358616i \(-0.883249\pi\)
0.965995 + 0.258562i \(0.0832487\pi\)
\(350\) −502.669 + 377.856i −1.43620 + 1.07959i
\(351\) −289.526 −0.824860
\(352\) −245.643 + 252.118i −0.697849 + 0.716245i
\(353\) 459.925 459.925i 1.30290 1.30290i 0.376479 0.926425i \(-0.377135\pi\)
0.926425 0.376479i \(-0.122865\pi\)
\(354\) −108.658 74.6435i −0.306943 0.210857i
\(355\) −151.163 + 48.2707i −0.425810 + 0.135974i
\(356\) 61.0212 + 158.758i 0.171408 + 0.445951i
\(357\) 224.243 + 35.5166i 0.628131 + 0.0994862i
\(358\) 25.6551 195.199i 0.0716622 0.545248i
\(359\) 76.3153 24.7963i 0.212577 0.0690706i −0.200792 0.979634i \(-0.564352\pi\)
0.413370 + 0.910563i \(0.364352\pi\)
\(360\) −271.585 113.900i −0.754404 0.316389i
\(361\) −223.000 162.019i −0.617727 0.448805i
\(362\) −289.830 + 305.550i −0.800635 + 0.844062i
\(363\) 150.641 35.7919i 0.414988 0.0986003i
\(364\) −694.681 + 36.7108i −1.90846 + 0.100854i
\(365\) 193.775 + 195.748i 0.530890 + 0.536295i
\(366\) −30.8093 9.11883i −0.0841785 0.0249148i
\(367\) −127.184 64.8033i −0.346550 0.176576i 0.272048 0.962284i \(-0.412299\pi\)
−0.618598 + 0.785708i \(0.712299\pi\)
\(368\) 676.693 + 34.8715i 1.83884 + 0.0947595i
\(369\) 75.2985 54.7076i 0.204061 0.148259i
\(370\) 227.654 + 158.092i 0.615282 + 0.427277i
\(371\) 27.9846 86.1277i 0.0754302 0.232150i
\(372\) −21.1325 99.2075i −0.0568077 0.266687i
\(373\) −278.179 278.179i −0.745788 0.745788i 0.227897 0.973685i \(-0.426815\pi\)
−0.973685 + 0.227897i \(0.926815\pi\)
\(374\) −28.6934 + 309.029i −0.0767204 + 0.826280i
\(375\) −74.7739 + 141.399i −0.199397 + 0.377065i
\(376\) −174.351 106.686i −0.463700 0.283738i
\(377\) −289.448 + 147.481i −0.767768 + 0.391197i
\(378\) 475.415 + 226.634i 1.25771 + 0.599561i
\(379\) 495.949 360.328i 1.30857 0.950734i 0.308574 0.951200i \(-0.400148\pi\)
1.00000 0.000466071i \(0.000148355\pi\)
\(380\) 48.6496 178.259i 0.128025 0.469102i
\(381\) −233.535 + 75.8801i −0.612952 + 0.199160i
\(382\) −316.057 + 171.694i −0.827374 + 0.449461i
\(383\) 44.8932 + 283.445i 0.117215 + 0.740064i 0.974361 + 0.224991i \(0.0722353\pi\)
−0.857146 + 0.515073i \(0.827765\pi\)
\(384\) 30.0947 + 161.003i 0.0783717 + 0.419279i
\(385\) 424.852 + 545.892i 1.10351 + 1.41790i
\(386\) 246.529 6.50945i 0.638677 0.0168639i
\(387\) −41.5204 262.150i −0.107288 0.677389i
\(388\) −34.4784 59.6582i −0.0888619 0.153758i
\(389\) 443.797 144.198i 1.14087 0.370690i 0.323170 0.946341i \(-0.395251\pi\)
0.817695 + 0.575651i \(0.195251\pi\)
\(390\) −155.909 + 83.6758i −0.399766 + 0.214553i
\(391\) 483.332 351.161i 1.23614 0.898110i
\(392\) 807.177 + 333.725i 2.05913 + 0.851338i
\(393\) −232.079 + 118.250i −0.590533 + 0.300891i
\(394\) −332.874 + 484.562i −0.844858 + 1.22985i
\(395\) −182.345 253.668i −0.461632 0.642196i
\(396\) −120.265 + 300.802i −0.303699 + 0.759601i
\(397\) −250.793 250.793i −0.631720 0.631720i 0.316779 0.948499i \(-0.397399\pi\)
−0.948499 + 0.316779i \(0.897399\pi\)
\(398\) −41.1533 + 7.63661i −0.103400 + 0.0191875i
\(399\) −45.9475 + 141.412i −0.115157 + 0.354415i
\(400\) −398.179 + 38.1276i −0.995447 + 0.0953189i
\(401\) −243.162 + 176.668i −0.606390 + 0.440568i −0.848141 0.529770i \(-0.822278\pi\)
0.241751 + 0.970338i \(0.422278\pi\)
\(402\) 27.0027 205.452i 0.0671708 0.511075i
\(403\) 244.160 + 124.406i 0.605855 + 0.308699i
\(404\) 150.212 561.578i 0.371811 1.39005i
\(405\) −197.350 0.999495i −0.487284 0.00246789i
\(406\) 590.733 15.5979i 1.45501 0.0384186i
\(407\) 169.680 253.300i 0.416903 0.622358i
\(408\) 109.875 + 93.7180i 0.269302 + 0.229701i
\(409\) 19.9686 + 14.5081i 0.0488230 + 0.0354720i 0.611929 0.790913i \(-0.290394\pi\)
−0.563106 + 0.826385i \(0.690394\pi\)
\(410\) 54.9755 113.835i 0.134087 0.277647i
\(411\) 49.7318 16.1588i 0.121002 0.0393159i
\(412\) −13.7095 + 130.987i −0.0332755 + 0.317930i
\(413\) −639.863 101.344i −1.54930 0.245386i
\(414\) 587.787 208.291i 1.41978 0.503118i
\(415\) −487.040 251.274i −1.17359 0.605480i
\(416\) −389.099 210.714i −0.935333 0.506523i
\(417\) −13.5976 + 13.5976i −0.0326082 + 0.0326082i
\(418\) −196.954 50.2203i −0.471182 0.120144i
\(419\) 18.9614 0.0452539 0.0226269 0.999744i \(-0.492797\pi\)
0.0226269 + 0.999744i \(0.492797\pi\)
\(420\) 321.509 15.3579i 0.765498 0.0365665i
\(421\) −132.572 + 408.015i −0.314898 + 0.969157i 0.660898 + 0.750475i \(0.270175\pi\)
−0.975796 + 0.218681i \(0.929825\pi\)
\(422\) 522.753 + 249.200i 1.23875 + 0.590522i
\(423\) −185.800 29.4278i −0.439242 0.0695692i
\(424\) 43.7776 37.4393i 0.103249 0.0883001i
\(425\) −251.895 + 246.843i −0.592694 + 0.580808i
\(426\) 77.8819 + 23.0512i 0.182821 + 0.0541107i
\(427\) −155.956 + 24.7010i −0.365237 + 0.0578478i
\(428\) 255.348 283.842i 0.596607 0.663181i
\(429\) 94.9051 + 169.933i 0.221224 + 0.396114i
\(430\) −218.067 287.061i −0.507133 0.667583i
\(431\) 513.594 + 373.148i 1.19163 + 0.865772i 0.993436 0.114391i \(-0.0364915\pi\)
0.198197 + 0.980162i \(0.436492\pi\)
\(432\) 182.703 + 280.801i 0.422923 + 0.650001i
\(433\) 344.698 + 175.633i 0.796070 + 0.405618i 0.804207 0.594349i \(-0.202590\pi\)
−0.00813710 + 0.999967i \(0.502590\pi\)
\(434\) −303.540 395.402i −0.699401 0.911066i
\(435\) 134.271 67.5602i 0.308669 0.155311i
\(436\) 263.490 101.276i 0.604334 0.232285i
\(437\) 177.630 + 348.618i 0.406475 + 0.797752i
\(438\) −25.7222 138.616i −0.0587266 0.316475i
\(439\) 23.8521i 0.0543328i 0.999631 + 0.0271664i \(0.00864840\pi\)
−0.999631 + 0.0271664i \(0.991352\pi\)
\(440\) 49.2761 + 437.232i 0.111991 + 0.993709i
\(441\) 803.850 1.82279
\(442\) −383.595 + 71.1817i −0.867862 + 0.161045i
\(443\) −605.407 + 308.470i −1.36661 + 0.696322i −0.974665 0.223668i \(-0.928197\pi\)
−0.391943 + 0.919990i \(0.628197\pi\)
\(444\) −50.8980 132.421i −0.114635 0.298246i
\(445\) 201.862 + 66.7209i 0.453621 + 0.149935i
\(446\) −570.973 + 438.321i −1.28021 + 0.982782i
\(447\) 34.6930 68.0889i 0.0776130 0.152324i
\(448\) 473.977 + 650.580i 1.05798 + 1.45219i
\(449\) −37.5024 + 51.6176i −0.0835243 + 0.114961i −0.848735 0.528819i \(-0.822635\pi\)
0.765210 + 0.643780i \(0.222635\pi\)
\(450\) −325.242 + 172.441i −0.722761 + 0.383202i
\(451\) −126.215 58.3656i −0.279856 0.129414i
\(452\) −333.105 299.665i −0.736957 0.662977i
\(453\) 47.9823 + 302.948i 0.105921 + 0.668760i
\(454\) −163.951 + 553.935i −0.361127 + 1.22012i
\(455\) −514.672 + 700.893i −1.13115 + 1.54043i
\(456\) −71.8778 + 61.4709i −0.157627 + 0.134805i
\(457\) 45.1170 284.857i 0.0987242 0.623320i −0.887866 0.460102i \(-0.847813\pi\)
0.986590 0.163218i \(-0.0521873\pi\)
\(458\) 141.458 296.739i 0.308859 0.647901i
\(459\) 280.918 + 91.2758i 0.612022 + 0.198858i
\(460\) 569.653 626.806i 1.23838 1.36262i
\(461\) 210.778i 0.457219i −0.973518 0.228610i \(-0.926582\pi\)
0.973518 0.228610i \(-0.0734179\pi\)
\(462\) −22.8194 353.327i −0.0493926 0.764778i
\(463\) 425.161 + 425.161i 0.918275 + 0.918275i 0.996904 0.0786294i \(-0.0250544\pi\)
−0.0786294 + 0.996904i \(0.525054\pi\)
\(464\) 325.691 + 187.659i 0.701920 + 0.404437i
\(465\) −112.679 58.1336i −0.242321 0.125018i
\(466\) 143.955 + 406.234i 0.308916 + 0.871747i
\(467\) −71.3695 + 450.609i −0.152826 + 0.964902i 0.785428 + 0.618953i \(0.212443\pi\)
−0.938253 + 0.345949i \(0.887557\pi\)
\(468\) −405.021 42.3907i −0.865430 0.0905783i
\(469\) −314.686 968.503i −0.670972 2.06504i
\(470\) −241.258 + 84.1203i −0.513315 + 0.178979i
\(471\) −21.9968 + 30.2760i −0.0467024 + 0.0642803i
\(472\) −313.522 267.418i −0.664242 0.566564i
\(473\) −311.701 + 245.133i −0.658988 + 0.518252i
\(474\) 4.22070 + 159.848i 0.00890442 + 0.337233i
\(475\) −133.863 188.226i −0.281816 0.396266i
\(476\) 685.601 + 183.385i 1.44034 + 0.385263i
\(477\) 24.0678 47.2357i 0.0504566 0.0990266i
\(478\) 457.433 + 60.1206i 0.956973 + 0.125775i
\(479\) −67.9061 93.4647i −0.141766 0.195125i 0.732230 0.681058i \(-0.238480\pi\)
−0.873996 + 0.485933i \(0.838480\pi\)
\(480\) 179.539 + 98.4074i 0.374040 + 0.205015i
\(481\) 364.499 + 118.433i 0.757795 + 0.246223i
\(482\) −49.2502 265.407i −0.102179 0.550637i
\(483\) −481.938 + 481.938i −0.997801 + 0.997801i
\(484\) 479.979 62.2579i 0.991692 0.128632i
\(485\) −85.0012 13.9045i −0.175260 0.0286691i
\(486\) 393.906 + 270.598i 0.810507 + 0.556786i
\(487\) −310.925 610.224i −0.638449 1.25303i −0.952765 0.303708i \(-0.901775\pi\)
0.314316 0.949318i \(-0.398225\pi\)
\(488\) −92.8173 38.3750i −0.190199 0.0786372i
\(489\) −66.8992 92.0788i −0.136808 0.188300i
\(490\) 962.012 516.309i 1.96329 1.05369i
\(491\) −101.745 313.138i −0.207220 0.637756i −0.999615 0.0277483i \(-0.991166\pi\)
0.792395 0.610008i \(-0.208834\pi\)
\(492\) −56.0225 + 32.3772i −0.113867 + 0.0658073i
\(493\) 327.338 51.8452i 0.663971 0.105163i
\(494\) −6.74418 255.419i −0.0136522 0.517043i
\(495\) 195.655 + 354.537i 0.395263 + 0.716236i
\(496\) −33.4185 315.307i −0.0673759 0.635699i
\(497\) 394.236 62.4408i 0.793231 0.125635i
\(498\) 133.903 + 246.490i 0.268882 + 0.494960i
\(499\) −119.220 366.921i −0.238918 0.735313i −0.996578 0.0826633i \(-0.973657\pi\)
0.757660 0.652650i \(-0.226343\pi\)
\(500\) −278.478 + 415.271i −0.556956 + 0.830542i
\(501\) −44.8759 61.7664i −0.0895727 0.123286i
\(502\) −145.571 + 305.367i −0.289982 + 0.608301i
\(503\) −181.255 355.732i −0.360347 0.707221i 0.637660 0.770318i \(-0.279902\pi\)
−0.998007 + 0.0630966i \(0.979902\pi\)
\(504\) 631.882 + 386.649i 1.25373 + 0.767160i
\(505\) −424.132 590.029i −0.839865 1.16837i
\(506\) −699.893 614.973i −1.38319 1.21536i
\(507\) −20.0954 + 20.0954i −0.0396358 + 0.0396358i
\(508\) −750.737 + 159.917i −1.47783 + 0.314797i
\(509\) −245.184 79.6652i −0.481698 0.156513i 0.0580947 0.998311i \(-0.481497\pi\)
−0.539793 + 0.841798i \(0.681497\pi\)
\(510\) 177.653 32.0363i 0.348339 0.0628163i
\(511\) −407.238 560.515i −0.796943 1.09690i
\(512\) 41.1738 + 510.342i 0.0804176 + 0.996761i
\(513\) −87.8215 + 172.359i −0.171192 + 0.335983i
\(514\) −272.593 + 920.997i −0.530337 + 1.79182i
\(515\) 115.819 + 116.998i 0.224891 + 0.227181i
\(516\) 9.73744 + 184.262i 0.0188710 + 0.357097i
\(517\) 96.9677 + 263.795i 0.187558 + 0.510242i
\(518\) −505.819 479.795i −0.976485 0.926244i
\(519\) 214.691 295.497i 0.413663 0.569358i
\(520\) −511.939 + 209.412i −0.984497 + 0.402715i
\(521\) −253.411 779.918i −0.486393 1.49696i −0.829953 0.557833i \(-0.811633\pi\)
0.343561 0.939131i \(-0.388367\pi\)
\(522\) 342.986 + 45.0788i 0.657061 + 0.0863579i
\(523\) −11.9863 + 75.6784i −0.0229183 + 0.144701i −0.996494 0.0836639i \(-0.973338\pi\)
0.973576 + 0.228364i \(0.0733378\pi\)
\(524\) −759.998 + 292.117i −1.45038 + 0.557475i
\(525\) 239.777 323.092i 0.456719 0.615413i
\(526\) −218.605 + 318.221i −0.415598 + 0.604982i
\(527\) −197.680 197.680i −0.375105 0.375105i
\(528\) 104.923 199.280i 0.198717 0.377424i
\(529\) 1264.48i 2.39031i
\(530\) −1.53601 71.9882i −0.00289813 0.135827i
\(531\) −360.683 117.193i −0.679252 0.220703i
\(532\) −188.862 + 424.690i −0.355004 + 0.798289i
\(533\) 27.3455 172.653i 0.0513049 0.323926i
\(534\) −66.2644 86.3185i −0.124091 0.161645i
\(535\) −72.2695 471.742i −0.135083 0.881761i
\(536\) 150.802 629.952i 0.281347 1.17528i
\(537\) 19.7052 + 124.414i 0.0366949 + 0.231683i
\(538\) −503.558 477.649i −0.935981 0.887824i
\(539\) −585.598 1048.54i −1.08645 1.94535i
\(540\) 416.257 + 45.6990i 0.770846 + 0.0846278i
\(541\) −92.3756 + 127.144i −0.170750 + 0.235017i −0.885812 0.464044i \(-0.846398\pi\)
0.715063 + 0.699060i \(0.246398\pi\)
\(542\) −326.368 600.783i −0.602156 1.10846i
\(543\) 122.329 240.084i 0.225284 0.442144i
\(544\) 311.101 + 327.116i 0.571877 + 0.601316i
\(545\) 110.736 335.027i 0.203185 0.614729i
\(546\) 419.523 148.664i 0.768357 0.272278i
\(547\) 681.405 347.193i 1.24571 0.634723i 0.298220 0.954497i \(-0.403607\pi\)
0.947494 + 0.319775i \(0.103607\pi\)
\(548\) 159.871 34.0546i 0.291736 0.0621435i
\(549\) −92.4347 −0.168369
\(550\) 461.869 + 298.626i 0.839761 + 0.542956i
\(551\) 217.049i 0.393918i
\(552\) −421.485 + 101.482i −0.763560 + 0.183844i
\(553\) 356.756 + 700.173i 0.645128 + 1.26614i
\(554\) 518.511 183.742i 0.935941 0.331664i
\(555\) −168.373 55.6522i −0.303376 0.100274i
\(556\) −46.6987 + 37.8496i −0.0839905 + 0.0680749i
\(557\) −170.997 87.1273i −0.306996 0.156422i 0.293705 0.955896i \(-0.405112\pi\)
−0.600701 + 0.799474i \(0.705112\pi\)
\(558\) −139.295 256.416i −0.249633 0.459527i
\(559\) −403.285 293.003i −0.721439 0.524156i
\(560\) 1004.55 + 56.8692i 1.79384 + 0.101552i
\(561\) −38.5106 194.800i −0.0686463 0.347237i
\(562\) −537.874 510.201i −0.957072 0.907830i
\(563\) −853.232 + 135.139i −1.51551 + 0.240033i −0.858093 0.513495i \(-0.828351\pi\)
−0.657416 + 0.753528i \(0.728351\pi\)
\(564\) 126.337 + 33.7929i 0.224002 + 0.0599164i
\(565\) −553.617 + 84.8124i −0.979852 + 0.150110i
\(566\) −421.734 549.366i −0.745112 0.970611i
\(567\) 490.308 + 77.6572i 0.864741 + 0.136962i
\(568\) 234.629 + 97.0067i 0.413080 + 0.170787i
\(569\) 202.545 623.371i 0.355967 1.09556i −0.599479 0.800391i \(-0.704625\pi\)
0.955446 0.295165i \(-0.0953745\pi\)
\(570\) 2.52195 + 118.196i 0.00442447 + 0.207362i
\(571\) 135.907 0.238016 0.119008 0.992893i \(-0.462029\pi\)
0.119008 + 0.992893i \(0.462029\pi\)
\(572\) 239.760 + 559.192i 0.419161 + 0.977609i
\(573\) 162.725 162.725i 0.283988 0.283988i
\(574\) −180.051 + 262.099i −0.313678 + 0.456618i
\(575\) −155.022 1047.33i −0.269604 1.82144i
\(576\) 214.472 + 419.566i 0.372347 + 0.728412i
\(577\) 142.991 + 22.6475i 0.247818 + 0.0392505i 0.279108 0.960260i \(-0.409961\pi\)
−0.0312896 + 0.999510i \(0.509961\pi\)
\(578\) −178.441 23.4525i −0.308721 0.0405753i
\(579\) −150.065 + 48.7589i −0.259179 + 0.0842123i
\(580\) 439.424 166.350i 0.757628 0.286810i
\(581\) 1115.26 + 810.283i 1.91955 + 1.39463i
\(582\) 31.9855 + 30.3398i 0.0549579 + 0.0521303i
\(583\) −79.1475 + 3.01670i −0.135759 + 0.00517444i
\(584\) −34.8646 439.319i −0.0596997 0.752258i
\(585\) −361.765 + 358.119i −0.618402 + 0.612170i
\(586\) 163.114 551.105i 0.278351 0.940453i
\(587\) 27.7181 + 14.1231i 0.0472199 + 0.0240597i 0.477441 0.878664i \(-0.341564\pi\)
−0.430221 + 0.902724i \(0.641564\pi\)
\(588\) −555.804 58.1720i −0.945245 0.0989320i
\(589\) 148.121 107.616i 0.251479 0.182710i
\(590\) −506.922 + 91.4136i −0.859190 + 0.154938i
\(591\) 116.232 357.724i 0.196669 0.605286i
\(592\) −115.150 428.251i −0.194511 0.723397i
\(593\) 407.789 + 407.789i 0.687671 + 0.687671i 0.961717 0.274046i \(-0.0883621\pi\)
−0.274046 + 0.961717i \(0.588362\pi\)
\(594\) 42.5868 458.661i 0.0716950 0.772157i
\(595\) 720.334 517.800i 1.21065 0.870252i
\(596\) 130.014 200.396i 0.218144 0.336234i
\(597\) 23.8610 12.1578i 0.0399682 0.0203648i
\(598\) 503.985 1057.22i 0.842784 1.76793i
\(599\) −411.162 + 298.727i −0.686414 + 0.498709i −0.875479 0.483256i \(-0.839454\pi\)
0.189065 + 0.981964i \(0.439454\pi\)
\(600\) 237.361 95.6936i 0.395601 0.159489i
\(601\) −521.114 + 169.320i −0.867078 + 0.281731i −0.708582 0.705629i \(-0.750665\pi\)
−0.158496 + 0.987360i \(0.550665\pi\)
\(602\) 432.857 + 796.808i 0.719031 + 1.32360i
\(603\) −93.2566 588.799i −0.154654 0.976450i
\(604\) 50.5976 + 957.462i 0.0837709 + 1.58520i
\(605\) 319.926 513.490i 0.528803 0.848744i
\(606\) 9.81730 + 371.806i 0.0162002 + 0.613541i
\(607\) 62.2856 + 393.256i 0.102612 + 0.647868i 0.984363 + 0.176152i \(0.0563651\pi\)
−0.881751 + 0.471716i \(0.843635\pi\)
\(608\) −243.466 + 167.721i −0.400437 + 0.275857i
\(609\) −359.584 + 116.836i −0.590451 + 0.191849i
\(610\) −110.622 + 59.3704i −0.181347 + 0.0973285i
\(611\) −285.830 + 207.667i −0.467806 + 0.339881i
\(612\) 379.615 + 168.817i 0.620287 + 0.275845i
\(613\) −391.518 + 199.488i −0.638692 + 0.325430i −0.743175 0.669097i \(-0.766681\pi\)
0.104483 + 0.994527i \(0.466681\pi\)
\(614\) −583.486 400.831i −0.950303 0.652820i
\(615\) −13.0571 + 79.8210i −0.0212311 + 0.129790i
\(616\) 44.0253 1105.90i 0.0714696 1.79529i
\(617\) −597.836 597.836i −0.968941 0.968941i 0.0305913 0.999532i \(-0.490261\pi\)
−0.999532 + 0.0305913i \(0.990261\pi\)
\(618\) −15.3741 82.8505i −0.0248773 0.134062i
\(619\) 30.6391 94.2974i 0.0494977 0.152338i −0.923253 0.384193i \(-0.874480\pi\)
0.972750 + 0.231855i \(0.0744796\pi\)
\(620\) −331.397 217.399i −0.534511 0.350643i
\(621\) −717.362 + 521.194i −1.15517 + 0.839282i
\(622\) −537.487 70.6421i −0.864126 0.113572i
\(623\) −476.492 242.785i −0.764835 0.389703i
\(624\) 276.975 + 58.6201i 0.443870 + 0.0939425i
\(625\) 181.055 + 598.201i 0.289688 + 0.957121i
\(626\) 20.1652 + 763.707i 0.0322128 + 1.21998i
\(627\) 129.951 4.95307i 0.207258 0.00789964i
\(628\) −78.2384 + 86.9689i −0.124583 + 0.138485i
\(629\) −316.325 229.824i −0.502902 0.365380i
\(630\) 874.364 304.868i 1.38788 0.483917i
\(631\) −136.339 + 44.2994i −0.216069 + 0.0702050i −0.415051 0.909798i \(-0.636236\pi\)
0.198982 + 0.980003i \(0.436236\pi\)
\(632\) −38.8913 + 498.333i −0.0615368 + 0.788501i
\(633\) −365.961 57.9625i −0.578137 0.0915680i
\(634\) −277.112 781.997i −0.437085 1.23343i
\(635\) −439.917 + 852.681i −0.692782 + 1.34281i
\(636\) −20.0594 + 30.9183i −0.0315400 + 0.0486137i
\(637\) 1067.54 1067.54i 1.67589 1.67589i
\(638\) −191.062 480.232i −0.299469 0.752714i
\(639\) 233.662 0.365669
\(640\) 526.156 + 364.363i 0.822118 + 0.569317i
\(641\) −124.564 + 383.368i −0.194327 + 0.598078i 0.805656 + 0.592383i \(0.201813\pi\)
−0.999984 + 0.00569511i \(0.998187\pi\)
\(642\) −105.116 + 220.504i −0.163732 + 0.343465i
\(643\) 311.199 + 49.2891i 0.483980 + 0.0766548i 0.393656 0.919258i \(-0.371210\pi\)
0.0903232 + 0.995913i \(0.471210\pi\)
\(644\) −1655.13 + 1341.50i −2.57009 + 2.08307i
\(645\) 185.910 + 136.515i 0.288233 + 0.211652i
\(646\) −73.9797 + 249.951i −0.114520 + 0.386922i
\(647\) 935.119 148.108i 1.44532 0.228915i 0.616022 0.787729i \(-0.288743\pi\)
0.829293 + 0.558814i \(0.188743\pi\)
\(648\) 240.243 + 204.915i 0.370746 + 0.316227i
\(649\) 109.888 + 555.850i 0.169318 + 0.856472i
\(650\) −202.926 + 660.941i −0.312194 + 1.01683i
\(651\) 258.021 + 187.463i 0.396345 + 0.287962i
\(652\) −178.024 308.036i −0.273043 0.472448i
\(653\) 27.7207 + 14.1244i 0.0424513 + 0.0216300i 0.475087 0.879939i \(-0.342416\pi\)
−0.432636 + 0.901569i \(0.642416\pi\)
\(654\) −143.262 + 109.978i −0.219055 + 0.168163i
\(655\) −319.402 + 966.339i −0.487637 + 1.47533i
\(656\) −184.706 + 82.4297i −0.281564 + 0.125655i
\(657\) −184.132 361.379i −0.280262 0.550044i
\(658\) 631.903 117.259i 0.960339 0.178205i
\(659\) 495.499i 0.751895i −0.926641 0.375948i \(-0.877317\pi\)
0.926641 0.375948i \(-0.122683\pi\)
\(660\) −109.625 259.296i −0.166098 0.392872i
\(661\) 278.241 0.420940 0.210470 0.977600i \(-0.432501\pi\)
0.210470 + 0.977600i \(0.432501\pi\)
\(662\) −78.4479 422.752i −0.118501 0.638598i
\(663\) 222.411 113.324i 0.335462 0.170926i
\(664\) 336.091 + 809.895i 0.506161 + 1.21972i
\(665\) 261.138 + 518.994i 0.392689 + 0.780441i
\(666\) −248.523 323.735i −0.373157 0.486089i
\(667\) −451.680 + 886.471i −0.677181 + 1.32904i
\(668\) −119.418 206.630i −0.178770 0.309327i
\(669\) 270.702 372.590i 0.404637 0.556935i
\(670\) −489.788 644.750i −0.731027 0.962314i
\(671\) 67.3379 + 120.572i 0.100355 + 0.179690i
\(672\) −408.920 313.067i −0.608512 0.465873i
\(673\) −104.338 658.765i −0.155034 0.978849i −0.935417 0.353547i \(-0.884976\pi\)
0.780383 0.625302i \(-0.215024\pi\)
\(674\) 755.169 + 223.512i 1.12043 + 0.331620i
\(675\) 373.863 366.365i 0.553872 0.542763i
\(676\) −69.0141 + 55.9364i −0.102092 + 0.0827462i
\(677\) −59.2079 + 373.824i −0.0874563 + 0.552178i 0.904588 + 0.426287i \(0.140179\pi\)
−0.992044 + 0.125890i \(0.959821\pi\)
\(678\) 258.775 + 123.360i 0.381673 + 0.181947i
\(679\) 206.050 + 66.9496i 0.303461 + 0.0986003i
\(680\) 562.737 41.7924i 0.827555 0.0614594i
\(681\) 369.611i 0.542748i
\(682\) −232.995 + 368.494i −0.341634 + 0.540313i
\(683\) −271.543 271.543i −0.397573 0.397573i 0.479803 0.877376i \(-0.340708\pi\)
−0.877376 + 0.479803i \(0.840708\pi\)
\(684\) −148.090 + 228.257i −0.216506 + 0.333709i
\(685\) 93.6813 181.580i 0.136761 0.265081i
\(686\) −1426.84 + 505.623i −2.07995 + 0.737059i
\(687\) −32.9022 + 207.736i −0.0478926 + 0.302382i
\(688\) −29.6840 + 576.029i −0.0431454 + 0.837251i
\(689\) −30.7678 94.6936i −0.0446557 0.137436i
\(690\) −235.667 + 487.986i −0.341547 + 0.707226i
\(691\) −295.402 + 406.585i −0.427499 + 0.588402i −0.967377 0.253342i \(-0.918470\pi\)
0.539878 + 0.841743i \(0.318470\pi\)
\(692\) 763.614 848.824i 1.10349 1.22662i
\(693\) −351.429 956.044i −0.507113 1.37957i
\(694\) 934.014 24.6621i 1.34584 0.0355361i
\(695\) −0.380543 + 75.1381i −0.000547544 + 0.108112i
\(696\) −233.888 55.9895i −0.336046 0.0804447i
\(697\) −80.9629 + 158.899i −0.116159 + 0.227975i
\(698\) −9.56885 + 72.8055i −0.0137090 + 0.104306i
\(699\) −162.082 223.086i −0.231876 0.319150i
\(700\) 850.584 926.452i 1.21512 1.32350i
\(701\) −812.067 263.857i −1.15844 0.376400i −0.334124 0.942529i \(-0.608441\pi\)
−0.824317 + 0.566129i \(0.808441\pi\)
\(702\) 569.332 105.648i 0.811015 0.150496i
\(703\) 181.068 181.068i 0.257565 0.257565i
\(704\) 391.042 585.408i 0.555457 0.831545i
\(705\) 132.738 95.4162i 0.188280 0.135342i
\(706\) −736.584 + 1072.24i −1.04332 + 1.51875i
\(707\) 829.811 + 1628.60i 1.17371 + 2.30353i
\(708\) 240.905 + 107.132i 0.340262 + 0.151316i
\(709\) −93.5263 128.728i −0.131913 0.181563i 0.737951 0.674854i \(-0.235794\pi\)
−0.869864 + 0.493292i \(0.835794\pi\)
\(710\) 279.637 150.080i 0.393855 0.211381i
\(711\) 142.154 + 437.505i 0.199935 + 0.615338i
\(712\) −177.925 289.921i −0.249895 0.407192i
\(713\) 828.908 131.286i 1.16256 0.184132i
\(714\) −453.918 + 11.9854i −0.635739 + 0.0167863i
\(715\) 730.675 + 211.001i 1.02192 + 0.295106i
\(716\) 20.7792 + 393.206i 0.0290213 + 0.549171i
\(717\) −291.553 + 46.1775i −0.406629 + 0.0644038i
\(718\) −141.020 + 76.6077i −0.196407 + 0.106696i
\(719\) −215.325 662.701i −0.299478 0.921698i −0.981680 0.190535i \(-0.938978\pi\)
0.682203 0.731163i \(-0.261022\pi\)
\(720\) 575.616 + 124.875i 0.799466 + 0.173437i
\(721\) −243.405 335.019i −0.337594 0.464659i
\(722\) 497.634 + 237.226i 0.689243 + 0.328567i
\(723\) 78.4084 + 153.885i 0.108449 + 0.212843i
\(724\) 458.435 706.603i 0.633197 0.975970i
\(725\) 187.141 556.709i 0.258125 0.767875i
\(726\) −283.164 + 125.351i −0.390033 + 0.172660i
\(727\) −200.970 + 200.970i −0.276437 + 0.276437i −0.831685 0.555248i \(-0.812623\pi\)
0.555248 + 0.831685i \(0.312623\pi\)
\(728\) 1352.65 325.679i 1.85803 0.447361i
\(729\) 47.0496 + 15.2873i 0.0645399 + 0.0209703i
\(730\) −452.473 314.215i −0.619826 0.430432i
\(731\) 298.922 + 411.432i 0.408923 + 0.562834i
\(732\) 63.9119 + 6.68920i 0.0873113 + 0.00913825i
\(733\) 327.790 643.323i 0.447189 0.877658i −0.551855 0.833940i \(-0.686080\pi\)
0.999044 0.0437176i \(-0.0139202\pi\)
\(734\) 273.745 + 81.0219i 0.372949 + 0.110384i
\(735\) −496.445 + 491.442i −0.675435 + 0.668628i
\(736\) −1343.39 + 178.353i −1.82526 + 0.242328i
\(737\) −700.095 + 550.580i −0.949925 + 0.747055i
\(738\) −128.106 + 135.055i −0.173586 + 0.183001i
\(739\) 191.895 264.121i 0.259669 0.357403i −0.659199 0.751968i \(-0.729105\pi\)
0.918868 + 0.394565i \(0.129105\pi\)
\(740\) −505.354 227.806i −0.682911 0.307847i
\(741\) 50.5172 + 155.476i 0.0681743 + 0.209819i
\(742\) −23.6017 + 179.576i −0.0318082 + 0.242016i
\(743\) −20.0681 + 126.705i −0.0270096 + 0.170532i −0.997506 0.0705845i \(-0.977514\pi\)
0.970496 + 0.241116i \(0.0775135\pi\)
\(744\) 77.7564 + 187.373i 0.104511 + 0.251846i
\(745\) −90.8317 284.445i −0.121922 0.381805i
\(746\) 648.527 + 445.512i 0.869339 + 0.597201i
\(747\) 570.631 + 570.631i 0.763897 + 0.763897i
\(748\) −56.3410 618.153i −0.0753222 0.826408i
\(749\) 1200.46i 1.60275i
\(750\) 95.4411 305.337i 0.127255 0.407116i
\(751\) 946.021 + 307.381i 1.25968 + 0.409295i 0.861381 0.507960i \(-0.169600\pi\)
0.398300 + 0.917255i \(0.369600\pi\)
\(752\) 381.779 + 146.169i 0.507685 + 0.194374i
\(753\) 33.8589 213.777i 0.0449654 0.283900i
\(754\) 515.364 395.632i 0.683507 0.524710i
\(755\) 966.024 + 709.361i 1.27950 + 0.939550i
\(756\) −1017.57 272.181i −1.34599 0.360028i
\(757\) 229.595 + 1449.61i 0.303296 + 1.91494i 0.394102 + 0.919067i \(0.371056\pi\)
−0.0908056 + 0.995869i \(0.528944\pi\)
\(758\) −843.766 + 889.533i −1.11315 + 1.17353i
\(759\) 541.055 + 250.200i 0.712852 + 0.329644i
\(760\) −30.6194 + 368.286i −0.0402886 + 0.484586i
\(761\) 401.804 553.035i 0.527994 0.726722i −0.458829 0.888525i \(-0.651731\pi\)
0.986823 + 0.161803i \(0.0517309\pi\)
\(762\) 431.541 234.430i 0.566327 0.307651i
\(763\) −402.947 + 790.829i −0.528109 + 1.03647i
\(764\) 558.852 452.954i 0.731482 0.592872i
\(765\) 463.910 233.422i 0.606418 0.305127i
\(766\) −191.708 540.993i −0.250272 0.706257i
\(767\) −634.637 + 323.364i −0.827427 + 0.421595i
\(768\) −117.929 305.620i −0.153554 0.397942i
\(769\) 951.979 1.23794 0.618972 0.785413i \(-0.287549\pi\)