Properties

Label 220.3.w.a.7.3
Level $220$
Weight $3$
Character 220.7
Analytic conductor $5.995$
Analytic rank $0$
Dimension $544$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(7,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 5, 14]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(544\)
Relative dimension: \(68\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.3
Character \(\chi\) \(=\) 220.7
Dual form 220.3.w.a.63.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.98295 + 0.260620i) q^{2} +(-1.14015 + 0.580936i) q^{3} +(3.86415 - 1.03359i) q^{4} +(1.56915 - 4.74740i) q^{5} +(2.10946 - 1.44911i) q^{6} +(5.70983 - 11.2062i) q^{7} +(-7.39304 + 3.05663i) q^{8} +(-4.32761 + 5.95644i) q^{9} +(-1.87427 + 9.82278i) q^{10} +(-10.9222 - 1.30573i) q^{11} +(-3.80527 + 3.42328i) q^{12} +(2.16315 + 13.6576i) q^{13} +(-8.40175 + 23.7094i) q^{14} +(0.968868 + 6.32433i) q^{15} +(13.8634 - 7.98790i) q^{16} +(2.20685 - 13.9335i) q^{17} +(7.02905 - 12.9392i) q^{18} +(-8.78672 - 2.85498i) q^{19} +(1.15657 - 19.9665i) q^{20} +16.0938i q^{21} +(21.9985 - 0.257355i) q^{22} +(-29.9456 - 29.9456i) q^{23} +(6.65348 - 7.77990i) q^{24} +(-20.0755 - 14.8987i) q^{25} +(-7.84885 - 26.5185i) q^{26} +(3.27541 - 20.6801i) q^{27} +(10.4811 - 49.2040i) q^{28} +(7.25970 + 22.3431i) q^{29} +(-3.56946 - 12.2883i) q^{30} +(-11.6482 + 16.0323i) q^{31} +(-25.4086 + 19.4526i) q^{32} +(13.2115 - 4.85639i) q^{33} +(-0.744723 + 28.2045i) q^{34} +(-44.2406 - 44.6910i) q^{35} +(-10.5660 + 27.4896i) q^{36} +(12.5830 - 24.6955i) q^{37} +(18.1677 + 3.37128i) q^{38} +(-10.4005 - 14.3151i) q^{39} +(2.91024 + 39.8940i) q^{40} +(-12.0228 - 3.90645i) q^{41} +(-4.19436 - 31.9131i) q^{42} +(25.4909 - 25.4909i) q^{43} +(-43.5548 + 6.24356i) q^{44} +(21.4869 + 29.8914i) q^{45} +(67.1849 + 51.5761i) q^{46} +(-11.5996 - 22.7655i) q^{47} +(-11.1659 + 17.1612i) q^{48} +(-64.1748 - 88.3290i) q^{49} +(43.6916 + 24.3113i) q^{50} +(5.57833 + 17.1683i) q^{51} +(22.4751 + 50.5392i) q^{52} +(-7.11181 + 1.12640i) q^{53} +(-1.10532 + 41.8612i) q^{54} +(-23.3374 + 49.8033i) q^{55} +(-7.95992 + 100.301i) q^{56} +(11.6768 - 1.84942i) q^{57} +(-20.2186 - 42.4131i) q^{58} +(-15.9174 - 48.9888i) q^{59} +(10.2806 + 23.4368i) q^{60} +(7.37946 + 10.1570i) q^{61} +(18.9194 - 34.8270i) q^{62} +(42.0390 + 82.5063i) q^{63} +(45.3141 - 45.1955i) q^{64} +(68.2323 + 11.1615i) q^{65} +(-24.9321 + 13.0731i) q^{66} +(57.2536 - 57.2536i) q^{67} +(-5.87390 - 56.1221i) q^{68} +(51.5390 + 16.7460i) q^{69} +(99.3741 + 77.0899i) q^{70} +(18.6543 + 25.6754i) q^{71} +(13.7876 - 57.2641i) q^{72} +(-25.0092 + 49.0833i) q^{73} +(-18.5152 + 52.2492i) q^{74} +(31.5444 + 5.32421i) q^{75} +(-36.9041 - 1.95022i) q^{76} +(-76.9963 + 114.941i) q^{77} +(24.3544 + 25.6754i) q^{78} +(-36.7254 + 50.5482i) q^{79} +(-16.1680 - 78.3492i) q^{80} +(-12.1971 - 37.5387i) q^{81} +(24.8587 + 4.61290i) q^{82} +(-17.1464 + 108.258i) q^{83} +(16.6344 + 62.1889i) q^{84} +(-62.6849 - 32.3405i) q^{85} +(-43.9036 + 57.1905i) q^{86} +(-21.2570 - 21.2570i) q^{87} +(84.7396 - 23.7319i) q^{88} +42.5205i q^{89} +(-50.3977 - 53.6732i) q^{90} +(165.401 + 53.7419i) q^{91} +(-146.666 - 84.7629i) q^{92} +(3.96692 - 25.0461i) q^{93} +(28.9345 + 42.1196i) q^{94} +(-27.3414 + 37.2342i) q^{95} +(17.6689 - 36.9397i) q^{96} +(-2.69477 - 17.0141i) q^{97} +(150.275 + 158.427i) q^{98} +(55.0446 - 59.4069i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 544 q - 10 q^{2} - 12 q^{5} - 20 q^{6} - 10 q^{8} - 28 q^{12} - 20 q^{13} - 36 q^{16} - 20 q^{17} - 10 q^{18} - 40 q^{20} + 86 q^{22} - 12 q^{25} + 140 q^{26} - 10 q^{28} - 370 q^{30} - 100 q^{33} - 476 q^{36}+ \cdots + 148 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.98295 + 0.260620i −0.991473 + 0.130310i
\(3\) −1.14015 + 0.580936i −0.380051 + 0.193645i −0.633571 0.773685i \(-0.718412\pi\)
0.253520 + 0.967330i \(0.418412\pi\)
\(4\) 3.86415 1.03359i 0.966039 0.258397i
\(5\) 1.56915 4.74740i 0.313830 0.949479i
\(6\) 2.10946 1.44911i 0.351576 0.241519i
\(7\) 5.70983 11.2062i 0.815691 1.60088i 0.0164553 0.999865i \(-0.494762\pi\)
0.799235 0.601018i \(-0.205238\pi\)
\(8\) −7.39304 + 3.05663i −0.924130 + 0.382078i
\(9\) −4.32761 + 5.95644i −0.480845 + 0.661827i
\(10\) −1.87427 + 9.82278i −0.187427 + 0.982278i
\(11\) −10.9222 1.30573i −0.992930 0.118703i
\(12\) −3.80527 + 3.42328i −0.317106 + 0.285273i
\(13\) 2.16315 + 13.6576i 0.166396 + 1.05058i 0.919617 + 0.392816i \(0.128499\pi\)
−0.753221 + 0.657768i \(0.771501\pi\)
\(14\) −8.40175 + 23.7094i −0.600125 + 1.69353i
\(15\) 0.968868 + 6.32433i 0.0645912 + 0.421622i
\(16\) 13.8634 7.98790i 0.866462 0.499244i
\(17\) 2.20685 13.9335i 0.129815 0.819617i −0.833750 0.552142i \(-0.813811\pi\)
0.963565 0.267475i \(-0.0861893\pi\)
\(18\) 7.02905 12.9392i 0.390503 0.718843i
\(19\) −8.78672 2.85498i −0.462459 0.150262i 0.0685150 0.997650i \(-0.478174\pi\)
−0.530974 + 0.847388i \(0.678174\pi\)
\(20\) 1.15657 19.9665i 0.0578287 0.998327i
\(21\) 16.0938i 0.766371i
\(22\) 21.9985 0.257355i 0.999932 0.0116980i
\(23\) −29.9456 29.9456i −1.30198 1.30198i −0.927054 0.374927i \(-0.877668\pi\)
−0.374927 0.927054i \(-0.622332\pi\)
\(24\) 6.65348 7.77990i 0.277228 0.324163i
\(25\) −20.0755 14.8987i −0.803022 0.595950i
\(26\) −7.84885 26.5185i −0.301879 1.01994i
\(27\) 3.27541 20.6801i 0.121311 0.765930i
\(28\) 10.4811 49.2040i 0.374325 1.75729i
\(29\) 7.25970 + 22.3431i 0.250334 + 0.770450i 0.994713 + 0.102692i \(0.0327458\pi\)
−0.744379 + 0.667758i \(0.767254\pi\)
\(30\) −3.56946 12.2883i −0.118982 0.409610i
\(31\) −11.6482 + 16.0323i −0.375747 + 0.517172i −0.954452 0.298366i \(-0.903558\pi\)
0.578704 + 0.815537i \(0.303558\pi\)
\(32\) −25.4086 + 19.4526i −0.794017 + 0.607895i
\(33\) 13.2115 4.85639i 0.400350 0.147163i
\(34\) −0.744723 + 28.2045i −0.0219036 + 0.829545i
\(35\) −44.2406 44.6910i −1.26402 1.27689i
\(36\) −10.5660 + 27.4896i −0.293501 + 0.763600i
\(37\) 12.5830 24.6955i 0.340080 0.667445i −0.656109 0.754666i \(-0.727799\pi\)
0.996189 + 0.0872213i \(0.0277987\pi\)
\(38\) 18.1677 + 3.37128i 0.478097 + 0.0887179i
\(39\) −10.4005 14.3151i −0.266680 0.367053i
\(40\) 2.91024 + 39.8940i 0.0727560 + 0.997350i
\(41\) −12.0228 3.90645i −0.293239 0.0952792i 0.158703 0.987326i \(-0.449269\pi\)
−0.451942 + 0.892047i \(0.649269\pi\)
\(42\) −4.19436 31.9131i −0.0998656 0.759837i
\(43\) 25.4909 25.4909i 0.592811 0.592811i −0.345579 0.938390i \(-0.612317\pi\)
0.938390 + 0.345579i \(0.112317\pi\)
\(44\) −43.5548 + 6.24356i −0.989881 + 0.141899i
\(45\) 21.4869 + 29.8914i 0.477487 + 0.664254i
\(46\) 67.1849 + 51.5761i 1.46054 + 1.12122i
\(47\) −11.5996 22.7655i −0.246800 0.484371i 0.734061 0.679084i \(-0.237623\pi\)
−0.980860 + 0.194712i \(0.937623\pi\)
\(48\) −11.1659 + 17.1612i −0.232623 + 0.357524i
\(49\) −64.1748 88.3290i −1.30969 1.80263i
\(50\) 43.6916 + 24.3113i 0.873833 + 0.486227i
\(51\) 5.57833 + 17.1683i 0.109379 + 0.336634i
\(52\) 22.4751 + 50.5392i 0.432213 + 0.971908i
\(53\) −7.11181 + 1.12640i −0.134185 + 0.0212528i −0.223166 0.974781i \(-0.571639\pi\)
0.0889806 + 0.996033i \(0.471639\pi\)
\(54\) −1.10532 + 41.8612i −0.0204689 + 0.775208i
\(55\) −23.3374 + 49.8033i −0.424317 + 0.905514i
\(56\) −7.95992 + 100.301i −0.142141 + 1.79108i
\(57\) 11.6768 1.84942i 0.204855 0.0324459i
\(58\) −20.2186 42.4131i −0.348597 0.731260i
\(59\) −15.9174 48.9888i −0.269787 0.830318i −0.990552 0.137139i \(-0.956209\pi\)
0.720765 0.693179i \(-0.243791\pi\)
\(60\) 10.2806 + 23.4368i 0.171344 + 0.390613i
\(61\) 7.37946 + 10.1570i 0.120975 + 0.166507i 0.865209 0.501411i \(-0.167186\pi\)
−0.744235 + 0.667918i \(0.767186\pi\)
\(62\) 18.9194 34.8270i 0.305151 0.561725i
\(63\) 42.0390 + 82.5063i 0.667286 + 1.30962i
\(64\) 45.3141 45.1955i 0.708032 0.706180i
\(65\) 68.2323 + 11.1615i 1.04973 + 0.171715i
\(66\) −24.9321 + 13.0731i −0.377759 + 0.198078i
\(67\) 57.2536 57.2536i 0.854532 0.854532i −0.136156 0.990687i \(-0.543475\pi\)
0.990687 + 0.136156i \(0.0434747\pi\)
\(68\) −5.87390 56.1221i −0.0863809 0.825326i
\(69\) 51.5390 + 16.7460i 0.746942 + 0.242696i
\(70\) 99.3741 + 77.0899i 1.41963 + 1.10128i
\(71\) 18.6543 + 25.6754i 0.262736 + 0.361625i 0.919921 0.392104i \(-0.128253\pi\)
−0.657185 + 0.753730i \(0.728253\pi\)
\(72\) 13.7876 57.2641i 0.191494 0.795335i
\(73\) −25.0092 + 49.0833i −0.342592 + 0.672374i −0.996445 0.0842474i \(-0.973151\pi\)
0.653853 + 0.756621i \(0.273151\pi\)
\(74\) −18.5152 + 52.2492i −0.250206 + 0.706070i
\(75\) 31.5444 + 5.32421i 0.420592 + 0.0709894i
\(76\) −36.9041 1.95022i −0.485581 0.0256608i
\(77\) −76.9963 + 114.941i −0.999953 + 1.49274i
\(78\) 24.3544 + 25.6754i 0.312236 + 0.329172i
\(79\) −36.7254 + 50.5482i −0.464878 + 0.639850i −0.975511 0.219948i \(-0.929411\pi\)
0.510633 + 0.859799i \(0.329411\pi\)
\(80\) −16.1680 78.3492i −0.202100 0.979365i
\(81\) −12.1971 37.5387i −0.150581 0.463440i
\(82\) 24.8587 + 4.61290i 0.303155 + 0.0562548i
\(83\) −17.1464 + 108.258i −0.206583 + 1.30432i 0.638475 + 0.769642i \(0.279566\pi\)
−0.845059 + 0.534674i \(0.820434\pi\)
\(84\) 16.6344 + 62.1889i 0.198028 + 0.740344i
\(85\) −62.6849 32.3405i −0.737470 0.380476i
\(86\) −43.9036 + 57.1905i −0.510507 + 0.665006i
\(87\) −21.2570 21.2570i −0.244334 0.244334i
\(88\) 84.7396 23.7319i 0.962950 0.269680i
\(89\) 42.5205i 0.477758i 0.971049 + 0.238879i \(0.0767799\pi\)
−0.971049 + 0.238879i \(0.923220\pi\)
\(90\) −50.3977 53.6732i −0.559975 0.596369i
\(91\) 165.401 + 53.7419i 1.81759 + 0.590571i
\(92\) −146.666 84.7629i −1.59419 0.921336i
\(93\) 3.96692 25.0461i 0.0426550 0.269313i
\(94\) 28.9345 + 42.1196i 0.307813 + 0.448081i
\(95\) −27.3414 + 37.2342i −0.287804 + 0.391939i
\(96\) 17.6689 36.9397i 0.184051 0.384789i
\(97\) −2.69477 17.0141i −0.0277811 0.175403i 0.969896 0.243518i \(-0.0783015\pi\)
−0.997677 + 0.0681150i \(0.978302\pi\)
\(98\) 150.275 + 158.427i 1.53342 + 1.61660i
\(99\) 55.0446 59.4069i 0.556006 0.600070i
\(100\) −92.9742 36.8212i −0.929742 0.368212i
\(101\) 85.4230 117.575i 0.845772 1.16411i −0.139007 0.990291i \(-0.544391\pi\)
0.984779 0.173814i \(-0.0556090\pi\)
\(102\) −15.5359 32.5901i −0.152313 0.319510i
\(103\) 14.9480 29.3370i 0.145126 0.284825i −0.806989 0.590567i \(-0.798904\pi\)
0.952115 + 0.305741i \(0.0989043\pi\)
\(104\) −57.7384 94.3592i −0.555177 0.907300i
\(105\) 76.4036 + 25.2536i 0.727654 + 0.240510i
\(106\) 13.8088 4.08707i 0.130271 0.0385572i
\(107\) −85.0458 + 43.3330i −0.794821 + 0.404981i −0.803741 0.594979i \(-0.797160\pi\)
0.00892073 + 0.999960i \(0.497160\pi\)
\(108\) −8.71806 83.2966i −0.0807228 0.771265i
\(109\) 70.5708 0.647438 0.323719 0.946153i \(-0.395067\pi\)
0.323719 + 0.946153i \(0.395067\pi\)
\(110\) 33.2971 104.839i 0.302701 0.953085i
\(111\) 35.4665i 0.319518i
\(112\) −10.3562 200.965i −0.0924659 1.79433i
\(113\) −50.8538 99.8062i −0.450033 0.883240i −0.998880 0.0473172i \(-0.984933\pi\)
0.548846 0.835923i \(-0.315067\pi\)
\(114\) −22.6724 + 6.71049i −0.198881 + 0.0588639i
\(115\) −189.153 + 95.1745i −1.64481 + 0.827604i
\(116\) 51.1461 + 78.8335i 0.440915 + 0.679599i
\(117\) −90.7119 46.2200i −0.775315 0.395043i
\(118\) 44.3308 + 92.9937i 0.375685 + 0.788082i
\(119\) −143.540 104.288i −1.20622 0.876372i
\(120\) −26.4940 43.7945i −0.220783 0.364954i
\(121\) 117.590 + 28.5229i 0.971819 + 0.235727i
\(122\) −17.2802 18.2175i −0.141641 0.149323i
\(123\) 15.9772 2.53054i 0.129896 0.0205735i
\(124\) −28.4395 + 73.9908i −0.229351 + 0.596700i
\(125\) −102.232 + 71.9282i −0.817854 + 0.575426i
\(126\) −104.864 152.649i −0.832253 1.21150i
\(127\) 189.532 + 30.0190i 1.49238 + 0.236370i 0.848680 0.528907i \(-0.177398\pi\)
0.643702 + 0.765277i \(0.277398\pi\)
\(128\) −78.0765 + 101.430i −0.609973 + 0.792422i
\(129\) −14.2549 + 43.8721i −0.110503 + 0.340093i
\(130\) −138.210 4.34990i −1.06315 0.0334608i
\(131\) 203.551 1.55383 0.776913 0.629608i \(-0.216784\pi\)
0.776913 + 0.629608i \(0.216784\pi\)
\(132\) 46.0319 32.4211i 0.348727 0.245615i
\(133\) −82.1642 + 82.1642i −0.617776 + 0.617776i
\(134\) −98.6095 + 128.452i −0.735892 + 0.958599i
\(135\) −93.0371 47.9998i −0.689164 0.355554i
\(136\) 26.2742 + 109.756i 0.193192 + 0.807032i
\(137\) 40.3614 + 6.39261i 0.294609 + 0.0466614i 0.301989 0.953311i \(-0.402349\pi\)
−0.00738061 + 0.999973i \(0.502349\pi\)
\(138\) −106.563 19.7744i −0.772198 0.143293i
\(139\) 14.2923 4.64385i 0.102822 0.0334090i −0.257154 0.966370i \(-0.582785\pi\)
0.359976 + 0.932961i \(0.382785\pi\)
\(140\) −217.145 126.966i −1.55103 0.906903i
\(141\) 26.4506 + 19.2175i 0.187593 + 0.136294i
\(142\) −43.6819 46.0513i −0.307619 0.324305i
\(143\) −5.79331 151.996i −0.0405126 1.06291i
\(144\) −12.4159 + 117.145i −0.0862213 + 0.813507i
\(145\) 117.463 + 0.594900i 0.810089 + 0.00410276i
\(146\) 36.7998 103.847i 0.252054 0.711284i
\(147\) 124.483 + 63.4270i 0.846820 + 0.431476i
\(148\) 23.0976 108.433i 0.156065 0.732654i
\(149\) 48.3138 35.1020i 0.324254 0.235584i −0.413735 0.910397i \(-0.635776\pi\)
0.737988 + 0.674813i \(0.235776\pi\)
\(150\) −63.9384 2.33654i −0.426256 0.0155769i
\(151\) 74.0712 227.968i 0.490538 1.50972i −0.333259 0.942835i \(-0.608148\pi\)
0.823797 0.566885i \(-0.191852\pi\)
\(152\) 73.6872 5.75076i 0.484784 0.0378339i
\(153\) 73.4437 + 73.4437i 0.480024 + 0.480024i
\(154\) 122.724 247.989i 0.796908 1.61032i
\(155\) 57.8341 + 80.4555i 0.373123 + 0.519068i
\(156\) −54.9851 44.5658i −0.352468 0.285678i
\(157\) −26.0580 + 13.2772i −0.165974 + 0.0845681i −0.535004 0.844849i \(-0.679690\pi\)
0.369030 + 0.929418i \(0.379690\pi\)
\(158\) 59.6507 109.806i 0.377536 0.694973i
\(159\) 7.45417 5.41577i 0.0468816 0.0340615i
\(160\) 52.4796 + 151.149i 0.327998 + 0.944679i
\(161\) −506.560 + 164.591i −3.14633 + 1.02231i
\(162\) 33.9694 + 71.2584i 0.209688 + 0.439867i
\(163\) 13.9140 + 87.8497i 0.0853621 + 0.538955i 0.992897 + 0.118978i \(0.0379619\pi\)
−0.907535 + 0.419977i \(0.862038\pi\)
\(164\) −50.4956 2.66847i −0.307900 0.0162712i
\(165\) −2.32434 70.3408i −0.0140869 0.426308i
\(166\) 5.78623 219.139i 0.0348568 1.32011i
\(167\) 9.33352 + 58.9295i 0.0558893 + 0.352871i 0.999746 + 0.0225173i \(0.00716810\pi\)
−0.943857 + 0.330354i \(0.892832\pi\)
\(168\) −49.1927 118.982i −0.292814 0.708227i
\(169\) −21.1220 + 6.86296i −0.124982 + 0.0406092i
\(170\) 132.729 + 47.7926i 0.780761 + 0.281133i
\(171\) 55.0310 39.9824i 0.321819 0.233815i
\(172\) 72.1536 124.848i 0.419498 0.725859i
\(173\) 254.328 129.587i 1.47010 0.749056i 0.478466 0.878106i \(-0.341193\pi\)
0.991638 + 0.129050i \(0.0411928\pi\)
\(174\) 47.6916 + 36.6116i 0.274090 + 0.210411i
\(175\) −281.586 + 139.901i −1.60906 + 0.799434i
\(176\) −161.849 + 69.1438i −0.919597 + 0.392863i
\(177\) 46.6076 + 46.6076i 0.263320 + 0.263320i
\(178\) −11.0817 84.3158i −0.0622565 0.473684i
\(179\) 30.4193 93.6208i 0.169940 0.523021i −0.829426 0.558616i \(-0.811333\pi\)
0.999366 + 0.0355947i \(0.0113325\pi\)
\(180\) 113.924 + 93.2964i 0.632913 + 0.518313i
\(181\) 170.356 123.771i 0.941195 0.683819i −0.00751269 0.999972i \(-0.502391\pi\)
0.948708 + 0.316153i \(0.102391\pi\)
\(182\) −341.987 63.4607i −1.87905 0.348685i
\(183\) −14.3142 7.29347i −0.0782199 0.0398550i
\(184\) 312.921 + 129.856i 1.70066 + 0.705741i
\(185\) −97.4946 98.4872i −0.526998 0.532363i
\(186\) −1.33867 + 50.6990i −0.00719717 + 0.272575i
\(187\) −42.2971 + 149.303i −0.226187 + 0.798413i
\(188\) −68.3527 75.9800i −0.363578 0.404149i
\(189\) −213.043 154.785i −1.12721 0.818968i
\(190\) 44.5126 80.9591i 0.234277 0.426100i
\(191\) −171.039 + 55.5739i −0.895491 + 0.290963i −0.720375 0.693585i \(-0.756030\pi\)
−0.175116 + 0.984548i \(0.556030\pi\)
\(192\) −25.4092 + 77.8543i −0.132340 + 0.405491i
\(193\) −121.790 19.2896i −0.631034 0.0999459i −0.167279 0.985910i \(-0.553498\pi\)
−0.463755 + 0.885964i \(0.653498\pi\)
\(194\) 9.77779 + 33.0357i 0.0504010 + 0.170287i
\(195\) −84.2793 + 26.9129i −0.432201 + 0.138015i
\(196\) −339.277 274.987i −1.73101 1.40299i
\(197\) 207.848 207.848i 1.05506 1.05506i 0.0566714 0.998393i \(-0.481951\pi\)
0.998393 0.0566714i \(-0.0180487\pi\)
\(198\) −93.6680 + 132.146i −0.473070 + 0.667407i
\(199\) −20.9279 −0.105166 −0.0525828 0.998617i \(-0.516745\pi\)
−0.0525828 + 0.998617i \(0.516745\pi\)
\(200\) 193.959 + 48.7835i 0.969796 + 0.243918i
\(201\) −32.0171 + 98.5385i −0.159289 + 0.490241i
\(202\) −138.747 + 255.407i −0.686866 + 1.26439i
\(203\) 291.832 + 46.2216i 1.43760 + 0.227693i
\(204\) 39.3005 + 60.5754i 0.192650 + 0.296938i
\(205\) −37.4110 + 50.9472i −0.182493 + 0.248523i
\(206\) −21.9952 + 62.0694i −0.106773 + 0.301308i
\(207\) 307.962 48.7764i 1.48774 0.235635i
\(208\) 139.084 + 172.061i 0.668673 + 0.827218i
\(209\) 92.2428 + 42.6558i 0.441353 + 0.204095i
\(210\) −158.086 30.1642i −0.752790 0.143639i
\(211\) 234.256 + 170.197i 1.11022 + 0.806621i 0.982698 0.185215i \(-0.0592982\pi\)
0.127520 + 0.991836i \(0.459298\pi\)
\(212\) −26.3169 + 11.7033i −0.124136 + 0.0552041i
\(213\) −36.1845 18.4369i −0.169880 0.0865582i
\(214\) 157.348 108.092i 0.735270 0.505101i
\(215\) −81.0164 161.014i −0.376820 0.748904i
\(216\) 38.9962 + 162.901i 0.180538 + 0.754170i
\(217\) 113.152 + 222.073i 0.521438 + 1.02338i
\(218\) −139.938 + 18.3921i −0.641918 + 0.0843675i
\(219\) 70.4912i 0.321877i
\(220\) −38.7032 + 216.569i −0.175924 + 0.984404i
\(221\) 195.072 0.882677
\(222\) −9.24326 70.3281i −0.0416363 0.316793i
\(223\) −320.680 + 163.395i −1.43803 + 0.732712i −0.987138 0.159867i \(-0.948893\pi\)
−0.450890 + 0.892580i \(0.648893\pi\)
\(224\) 72.9112 + 395.804i 0.325496 + 1.76698i
\(225\) 175.623 55.1029i 0.780545 0.244902i
\(226\) 126.852 + 184.657i 0.561291 + 0.817066i
\(227\) −131.133 + 257.362i −0.577676 + 1.13375i 0.398580 + 0.917134i \(0.369503\pi\)
−0.976256 + 0.216620i \(0.930497\pi\)
\(228\) 43.2093 19.2154i 0.189514 0.0842781i
\(229\) −96.6116 + 132.974i −0.421885 + 0.580675i −0.966067 0.258293i \(-0.916840\pi\)
0.544182 + 0.838967i \(0.316840\pi\)
\(230\) 350.275 238.023i 1.52294 1.03488i
\(231\) 21.0141 175.780i 0.0909703 0.760953i
\(232\) −121.966 142.993i −0.525714 0.616349i
\(233\) −33.7105 212.840i −0.144680 0.913476i −0.948079 0.318035i \(-0.896977\pi\)
0.803399 0.595442i \(-0.203023\pi\)
\(234\) 191.923 + 68.0106i 0.820183 + 0.290643i
\(235\) −126.278 + 19.3454i −0.537354 + 0.0823209i
\(236\) −112.142 172.848i −0.475176 0.732407i
\(237\) 12.5073 78.9677i 0.0527732 0.333197i
\(238\) 311.813 + 169.389i 1.31014 + 0.711717i
\(239\) 219.393 + 71.2851i 0.917962 + 0.298264i 0.729631 0.683842i \(-0.239692\pi\)
0.188332 + 0.982106i \(0.439692\pi\)
\(240\) 63.9499 + 79.9374i 0.266458 + 0.333072i
\(241\) 134.969i 0.560038i 0.959995 + 0.280019i \(0.0903407\pi\)
−0.959995 + 0.280019i \(0.909659\pi\)
\(242\) −240.609 25.9132i −0.994250 0.107079i
\(243\) 168.962 + 168.962i 0.695317 + 0.695317i
\(244\) 39.0135 + 31.6207i 0.159891 + 0.129593i
\(245\) −520.033 + 166.062i −2.12258 + 0.677803i
\(246\) −31.0225 + 9.18191i −0.126108 + 0.0373248i
\(247\) 19.9851 126.181i 0.0809115 0.510855i
\(248\) 37.1105 154.132i 0.149639 0.621499i
\(249\) −43.3416 133.392i −0.174063 0.535710i
\(250\) 183.974 169.273i 0.735897 0.677094i
\(251\) −99.4209 + 136.841i −0.396099 + 0.545184i −0.959760 0.280823i \(-0.909393\pi\)
0.563660 + 0.826007i \(0.309393\pi\)
\(252\) 247.723 + 275.366i 0.983027 + 1.09272i
\(253\) 287.972 + 366.173i 1.13823 + 1.44733i
\(254\) −383.656 10.1302i −1.51046 0.0398827i
\(255\) 90.2581 + 0.457120i 0.353953 + 0.00179263i
\(256\) 128.387 221.479i 0.501512 0.865151i
\(257\) 218.027 427.902i 0.848354 1.66499i 0.106614 0.994301i \(-0.465999\pi\)
0.741740 0.670688i \(-0.234001\pi\)
\(258\) 16.8328 90.7110i 0.0652433 0.351593i
\(259\) −204.895 282.014i −0.791101 1.08886i
\(260\) 275.197 27.3946i 1.05845 0.105364i
\(261\) −164.502 53.4500i −0.630277 0.204789i
\(262\) −403.631 + 53.0494i −1.54058 + 0.202479i
\(263\) −136.497 + 136.497i −0.519002 + 0.519002i −0.917269 0.398268i \(-0.869612\pi\)
0.398268 + 0.917269i \(0.369612\pi\)
\(264\) −82.8293 + 76.2862i −0.313747 + 0.288963i
\(265\) −5.81201 + 35.5300i −0.0219321 + 0.134076i
\(266\) 141.514 184.341i 0.532006 0.693010i
\(267\) −24.7017 48.4798i −0.0925157 0.181572i
\(268\) 162.060 280.414i 0.604702 1.04632i
\(269\) 203.979 + 280.753i 0.758287 + 1.04369i 0.997355 + 0.0726892i \(0.0231581\pi\)
−0.239068 + 0.971003i \(0.576842\pi\)
\(270\) 196.997 + 70.9338i 0.729620 + 0.262718i
\(271\) −105.639 325.122i −0.389811 1.19971i −0.932930 0.360058i \(-0.882757\pi\)
0.543119 0.839656i \(-0.317243\pi\)
\(272\) −80.7049 210.793i −0.296709 0.774976i
\(273\) −219.802 + 34.8133i −0.805137 + 0.127521i
\(274\) −81.7005 2.15725i −0.298177 0.00787318i
\(275\) 199.816 + 188.941i 0.726604 + 0.687057i
\(276\) 216.463 + 11.4391i 0.784286 + 0.0414461i
\(277\) −271.666 + 43.0277i −0.980744 + 0.155335i −0.626164 0.779691i \(-0.715376\pi\)
−0.354580 + 0.935026i \(0.615376\pi\)
\(278\) −27.1306 + 12.9334i −0.0975920 + 0.0465229i
\(279\) −45.0869 138.763i −0.161602 0.497359i
\(280\) 463.676 + 195.175i 1.65599 + 0.697055i
\(281\) 217.880 + 299.886i 0.775374 + 1.06721i 0.995777 + 0.0918017i \(0.0292626\pi\)
−0.220404 + 0.975409i \(0.570737\pi\)
\(282\) −57.4585 31.2136i −0.203753 0.110687i
\(283\) −157.212 308.545i −0.555518 1.09026i −0.982545 0.186026i \(-0.940439\pi\)
0.427027 0.904239i \(-0.359561\pi\)
\(284\) 98.6208 + 79.9329i 0.347256 + 0.281454i
\(285\) 9.54265 58.3362i 0.0334830 0.204688i
\(286\) 51.1009 + 299.890i 0.178674 + 1.04857i
\(287\) −112.425 + 112.425i −0.391723 + 0.391723i
\(288\) −5.91027 235.528i −0.0205218 0.817806i
\(289\) 85.5834 + 27.8077i 0.296136 + 0.0962205i
\(290\) −233.078 + 29.4335i −0.803716 + 0.101495i
\(291\) 12.9566 + 17.8332i 0.0445242 + 0.0612824i
\(292\) −45.9074 + 215.515i −0.157217 + 0.738064i
\(293\) −130.463 + 256.047i −0.445265 + 0.873882i 0.553882 + 0.832595i \(0.313146\pi\)
−0.999147 + 0.0412870i \(0.986854\pi\)
\(294\) −263.373 93.3298i −0.895825 0.317448i
\(295\) −257.546 1.30436i −0.873037 0.00442157i
\(296\) −17.5416 + 221.036i −0.0592621 + 0.746743i
\(297\) −62.7774 + 221.596i −0.211372 + 0.746115i
\(298\) −86.6554 + 82.1970i −0.290790 + 0.275829i
\(299\) 344.208 473.761i 1.15120 1.58449i
\(300\) 127.395 12.0304i 0.424651 0.0401012i
\(301\) −140.107 431.204i −0.465471 1.43257i
\(302\) −87.4664 + 471.352i −0.289624 + 1.56077i
\(303\) −29.0918 + 183.678i −0.0960124 + 0.606199i
\(304\) −144.619 + 30.6078i −0.475721 + 0.100683i
\(305\) 59.7985 19.0954i 0.196061 0.0626080i
\(306\) −164.776 126.494i −0.538483 0.413379i
\(307\) −250.280 250.280i −0.815245 0.815245i 0.170170 0.985415i \(-0.445568\pi\)
−0.985415 + 0.170170i \(0.945568\pi\)
\(308\) −178.724 + 523.732i −0.580273 + 1.70043i
\(309\) 42.1324i 0.136351i
\(310\) −135.650 144.466i −0.437581 0.466020i
\(311\) −257.788 83.7604i −0.828901 0.269326i −0.136318 0.990665i \(-0.543527\pi\)
−0.692582 + 0.721339i \(0.743527\pi\)
\(312\) 120.647 + 74.0414i 0.386690 + 0.237312i
\(313\) 59.7559 377.284i 0.190913 1.20538i −0.687035 0.726624i \(-0.741088\pi\)
0.877949 0.478755i \(-0.158912\pi\)
\(314\) 48.2113 33.1192i 0.153539 0.105475i
\(315\) 457.655 70.1114i 1.45287 0.222576i
\(316\) −89.6666 + 233.285i −0.283755 + 0.738243i
\(317\) 64.8925 + 409.715i 0.204708 + 1.29248i 0.849284 + 0.527937i \(0.177034\pi\)
−0.644575 + 0.764541i \(0.722966\pi\)
\(318\) −13.3698 + 12.6819i −0.0420433 + 0.0398802i
\(319\) −50.1181 253.515i −0.157110 0.794718i
\(320\) −143.457 286.042i −0.448302 0.893882i
\(321\) 71.7914 98.8124i 0.223649 0.307827i
\(322\) 961.585 458.395i 2.98629 1.42359i
\(323\) −59.1708 + 116.129i −0.183191 + 0.359533i
\(324\) −85.9309 132.449i −0.265219 0.408792i
\(325\) 160.054 306.412i 0.492475 0.942806i
\(326\) −50.4861 170.575i −0.154865 0.523236i
\(327\) −80.4614 + 40.9971i −0.246059 + 0.125373i
\(328\) 100.826 7.86871i 0.307395 0.0239900i
\(329\) −321.345 −0.976734
\(330\) 22.9412 + 138.876i 0.0695189 + 0.420837i
\(331\) 214.985i 0.649500i −0.945800 0.324750i \(-0.894720\pi\)
0.945800 0.324750i \(-0.105280\pi\)
\(332\) 45.6381 + 436.049i 0.137464 + 1.31340i
\(333\) 92.6430 + 181.822i 0.278207 + 0.546012i
\(334\) −33.8660 114.422i −0.101395 0.342579i
\(335\) −181.966 361.645i −0.543183 1.07954i
\(336\) 128.556 + 223.114i 0.382606 + 0.664031i
\(337\) −350.857 178.771i −1.04112 0.530477i −0.152109 0.988364i \(-0.548606\pi\)
−0.889010 + 0.457887i \(0.848606\pi\)
\(338\) 40.0952 19.1137i 0.118625 0.0565494i
\(339\) 115.962 + 84.2514i 0.342071 + 0.248529i
\(340\) −275.651 60.1782i −0.810738 0.176995i
\(341\) 148.158 159.899i 0.434480 0.468913i
\(342\) −98.7034 + 93.6251i −0.288606 + 0.273758i
\(343\) −747.573 + 118.404i −2.17951 + 0.345201i
\(344\) −110.539 + 266.371i −0.321334 + 0.774335i
\(345\) 160.372 218.399i 0.464847 0.633040i
\(346\) −470.546 + 323.246i −1.35996 + 0.934238i
\(347\) 461.418 + 73.0815i 1.32974 + 0.210609i 0.780551 0.625092i \(-0.214938\pi\)
0.549184 + 0.835701i \(0.314938\pi\)
\(348\) −104.112 60.1695i −0.299171 0.172901i
\(349\) 11.3458 34.9188i 0.0325095 0.100054i −0.933485 0.358616i \(-0.883249\pi\)
0.965995 + 0.258562i \(0.0832487\pi\)
\(350\) 521.909 350.803i 1.49117 1.00229i
\(351\) 289.526 0.824860
\(352\) 302.918 179.290i 0.860562 0.509345i
\(353\) 459.925 459.925i 1.30290 1.30290i 0.376479 0.926425i \(-0.377135\pi\)
0.926425 0.376479i \(-0.122865\pi\)
\(354\) −104.567 80.2736i −0.295388 0.226761i
\(355\) 151.163 48.2707i 0.425810 0.135974i
\(356\) 43.9487 + 164.306i 0.123451 + 0.461533i
\(357\) 224.243 + 35.5166i 0.628131 + 0.0994862i
\(358\) −35.9203 + 193.573i −0.100336 + 0.540707i
\(359\) −76.3153 + 24.7963i −0.212577 + 0.0690706i −0.413370 0.910563i \(-0.635648\pi\)
0.200792 + 0.979634i \(0.435648\pi\)
\(360\) −250.221 155.311i −0.695057 0.431419i
\(361\) −223.000 162.019i −0.617727 0.448805i
\(362\) −305.550 + 289.830i −0.844062 + 0.800635i
\(363\) −150.641 + 35.7919i −0.414988 + 0.0986003i
\(364\) 694.681 + 36.7108i 1.90846 + 0.100854i
\(365\) 193.775 + 195.748i 0.530890 + 0.536295i
\(366\) 30.2852 + 10.7320i 0.0827464 + 0.0293224i
\(367\) 127.184 + 64.8033i 0.346550 + 0.176576i 0.618598 0.785708i \(-0.287701\pi\)
−0.272048 + 0.962284i \(0.587701\pi\)
\(368\) −654.349 175.945i −1.77812 0.478111i
\(369\) 75.2985 54.7076i 0.204061 0.148259i
\(370\) 218.994 + 169.886i 0.591877 + 0.459151i
\(371\) −27.9846 + 86.1277i −0.0754302 + 0.232150i
\(372\) −10.5586 100.882i −0.0283834 0.271189i
\(373\) −278.179 278.179i −0.745788 0.745788i 0.227897 0.973685i \(-0.426815\pi\)
−0.973685 + 0.227897i \(0.926815\pi\)
\(374\) 44.9615 307.084i 0.120218 0.821080i
\(375\) 74.7739 141.399i 0.199397 0.377065i
\(376\) 155.342 + 132.850i 0.413143 + 0.353325i
\(377\) −289.448 + 147.481i −0.767768 + 0.391197i
\(378\) 462.793 + 251.407i 1.22432 + 0.665098i
\(379\) −495.949 + 360.328i −1.30857 + 0.950734i −1.00000 0.000466071i \(-0.999852\pi\)
−0.308574 + 0.951200i \(0.599852\pi\)
\(380\) −67.1665 + 172.138i −0.176754 + 0.452996i
\(381\) −233.535 + 75.8801i −0.612952 + 0.199160i
\(382\) 324.677 154.776i 0.849940 0.405173i
\(383\) −44.8932 283.445i −0.117215 0.740064i −0.974361 0.224991i \(-0.927765\pi\)
0.857146 0.515073i \(-0.172235\pi\)
\(384\) 30.0947 161.003i 0.0783717 0.419279i
\(385\) 424.852 + 545.892i 1.10351 + 1.41790i
\(386\) 246.529 + 6.50945i 0.638677 + 0.0168639i
\(387\) 41.5204 + 262.150i 0.107288 + 0.677389i
\(388\) −27.9986 62.9598i −0.0721613 0.162268i
\(389\) 443.797 144.198i 1.14087 0.370690i 0.323170 0.946341i \(-0.395251\pi\)
0.817695 + 0.575651i \(0.195251\pi\)
\(390\) 160.107 75.3316i 0.410531 0.193158i
\(391\) −483.332 + 351.161i −1.23614 + 0.898110i
\(392\) 744.436 + 456.862i 1.89907 + 1.16546i
\(393\) −232.079 + 118.250i −0.590533 + 0.300891i
\(394\) −357.982 + 466.320i −0.908583 + 1.18355i
\(395\) 182.345 + 253.668i 0.461632 + 0.642196i
\(396\) 151.299 286.451i 0.382067 0.723361i
\(397\) −250.793 250.793i −0.631720 0.631720i 0.316779 0.948499i \(-0.397399\pi\)
−0.948499 + 0.316779i \(0.897399\pi\)
\(398\) 41.4990 5.45423i 0.104269 0.0137041i
\(399\) 45.9475 141.412i 0.115157 0.354415i
\(400\) −397.325 46.1856i −0.993312 0.115464i
\(401\) −243.162 + 176.668i −0.606390 + 0.440568i −0.848141 0.529770i \(-0.822278\pi\)
0.241751 + 0.970338i \(0.422278\pi\)
\(402\) 37.8072 203.741i 0.0940477 0.506818i
\(403\) −244.160 124.406i −0.605855 0.308699i
\(404\) 208.564 542.619i 0.516247 1.34312i
\(405\) −197.350 0.999495i −0.487284 0.00246789i
\(406\) −590.733 15.5979i −1.45501 0.0384186i
\(407\) −169.680 + 253.300i −0.416903 + 0.622358i
\(408\) −93.7180 109.875i −0.229701 0.269302i
\(409\) 19.9686 + 14.5081i 0.0488230 + 0.0354720i 0.611929 0.790913i \(-0.290394\pi\)
−0.563106 + 0.826385i \(0.690394\pi\)
\(410\) 60.9062 110.776i 0.148552 0.270185i
\(411\) −49.7318 + 16.1588i −0.121002 + 0.0393159i
\(412\) 27.4388 128.813i 0.0665990 0.312652i
\(413\) −639.863 101.344i −1.54930 0.245386i
\(414\) −597.960 + 176.982i −1.44435 + 0.427492i
\(415\) 487.040 + 251.274i 1.17359 + 0.605480i
\(416\) −320.639 304.941i −0.770766 0.733030i
\(417\) −13.5976 + 13.5976i −0.0326082 + 0.0326082i
\(418\) −194.029 60.5440i −0.464185 0.144842i
\(419\) −18.9614 −0.0452539 −0.0226269 0.999744i \(-0.507203\pi\)
−0.0226269 + 0.999744i \(0.507203\pi\)
\(420\) 321.337 + 18.6137i 0.765089 + 0.0443183i
\(421\) −132.572 + 408.015i −0.314898 + 0.969157i 0.660898 + 0.750475i \(0.270175\pi\)
−0.975796 + 0.218681i \(0.929825\pi\)
\(422\) −508.874 276.440i −1.20586 0.655071i
\(423\) 185.800 + 29.4278i 0.439242 + 0.0695692i
\(424\) 49.1349 30.0656i 0.115884 0.0709095i
\(425\) −251.895 + 246.843i −0.592694 + 0.580808i
\(426\) 76.5569 + 27.1290i 0.179711 + 0.0636832i
\(427\) 155.956 24.7010i 0.365237 0.0578478i
\(428\) −283.842 + 255.348i −0.663181 + 0.596607i
\(429\) 94.9051 + 169.933i 0.221224 + 0.396114i
\(430\) 202.615 + 298.168i 0.471197 + 0.693415i
\(431\) −513.594 373.148i −1.19163 0.865772i −0.198197 0.980162i \(-0.563508\pi\)
−0.993436 + 0.114391i \(0.963508\pi\)
\(432\) −119.782 312.860i −0.277274 0.724213i
\(433\) 344.698 + 175.633i 0.796070 + 0.405618i 0.804207 0.594349i \(-0.202590\pi\)
−0.00813710 + 0.999967i \(0.502590\pi\)
\(434\) −282.251 410.870i −0.650348 0.946705i
\(435\) −134.271 + 67.5602i −0.308669 + 0.155311i
\(436\) 272.696 72.9412i 0.625450 0.167296i
\(437\) 177.630 + 348.618i 0.406475 + 0.797752i
\(438\) 18.3714 + 139.780i 0.0419438 + 0.319133i
\(439\) 23.8521i 0.0543328i −0.999631 0.0271664i \(-0.991352\pi\)
0.999631 0.0271664i \(-0.00864840\pi\)
\(440\) 20.3044 439.531i 0.0461464 0.998935i
\(441\) 803.850 1.82279
\(442\) −386.817 + 50.8395i −0.875151 + 0.115021i
\(443\) 605.407 308.470i 1.36661 0.696322i 0.391943 0.919990i \(-0.371803\pi\)
0.974665 + 0.223668i \(0.0718032\pi\)
\(444\) 36.6578 + 137.048i 0.0825626 + 0.308667i
\(445\) 201.862 + 66.7209i 0.453621 + 0.149935i
\(446\) 593.308 407.579i 1.33029 0.913854i
\(447\) −34.6930 + 68.0889i −0.0776130 + 0.152324i
\(448\) −247.733 765.857i −0.552976 1.70950i
\(449\) −37.5024 + 51.6176i −0.0835243 + 0.114961i −0.848735 0.528819i \(-0.822635\pi\)
0.765210 + 0.643780i \(0.222635\pi\)
\(450\) −333.889 + 155.037i −0.741976 + 0.344526i
\(451\) 126.215 + 58.3656i 0.279856 + 0.129414i
\(452\) −299.665 333.105i −0.662977 0.736957i
\(453\) 47.9823 + 302.948i 0.105921 + 0.668760i
\(454\) 192.955 544.511i 0.425011 1.19936i
\(455\) 514.672 700.893i 1.13115 1.54043i
\(456\) −80.6738 + 49.3643i −0.176916 + 0.108255i
\(457\) 45.1170 284.857i 0.0987242 0.623320i −0.887866 0.460102i \(-0.847813\pi\)
0.986590 0.163218i \(-0.0521873\pi\)
\(458\) 156.920 288.860i 0.342620 0.630699i
\(459\) −280.918 91.2758i −0.612022 0.198858i
\(460\) −632.544 + 563.275i −1.37509 + 1.22451i
\(461\) 210.778i 0.457219i −0.973518 0.228610i \(-0.926582\pi\)
0.973518 0.228610i \(-0.0734179\pi\)
\(462\) 4.14182 + 354.039i 0.00896498 + 0.766319i
\(463\) −425.161 425.161i −0.918275 0.918275i 0.0786294 0.996904i \(-0.474946\pi\)
−0.996904 + 0.0786294i \(0.974946\pi\)
\(464\) 279.118 + 251.761i 0.601547 + 0.542588i
\(465\) −112.679 58.1336i −0.242321 0.125018i
\(466\) 122.316 + 413.265i 0.262482 + 0.886834i
\(467\) 71.3695 450.609i 0.152826 0.964902i −0.785428 0.618953i \(-0.787557\pi\)
0.938253 0.345949i \(-0.112443\pi\)
\(468\) −398.297 84.8425i −0.851063 0.181287i
\(469\) −314.686 968.503i −0.670972 2.06504i
\(470\) 245.361 71.2715i 0.522044 0.151641i
\(471\) 21.9968 30.2760i 0.0467024 0.0642803i
\(472\) 267.418 + 313.522i 0.566564 + 0.664242i
\(473\) −311.701 + 245.133i −0.658988 + 0.518252i
\(474\) −4.22070 + 159.848i −0.00890442 + 0.337233i
\(475\) 133.863 + 188.226i 0.281816 + 0.396266i
\(476\) −662.454 254.624i −1.39171 0.534925i
\(477\) 24.0678 47.2357i 0.0504566 0.0990266i
\(478\) −453.623 84.1764i −0.949002 0.176101i
\(479\) 67.9061 + 93.4647i 0.141766 + 0.195125i 0.873996 0.485933i \(-0.161520\pi\)
−0.732230 + 0.681058i \(0.761520\pi\)
\(480\) −147.642 141.845i −0.307588 0.295510i
\(481\) 364.499 + 118.433i 0.757795 + 0.246223i
\(482\) −35.1756 267.636i −0.0729784 0.555262i
\(483\) 481.938 481.938i 0.997801 0.997801i
\(484\) 483.868 11.3229i 0.999726 0.0233943i
\(485\) −85.0012 13.9045i −0.175260 0.0286691i
\(486\) −379.078 291.008i −0.779995 0.598782i
\(487\) 310.925 + 610.224i 0.638449 + 1.25303i 0.952765 + 0.303708i \(0.0982249\pi\)
−0.314316 + 0.949318i \(0.601775\pi\)
\(488\) −85.6026 52.5345i −0.175415 0.107653i
\(489\) −66.8992 92.0788i −0.136808 0.188300i
\(490\) 987.918 464.822i 2.01616 0.948617i
\(491\) 101.745 + 313.138i 0.207220 + 0.637756i 0.999615 + 0.0277483i \(0.00883370\pi\)
−0.792395 + 0.610008i \(0.791166\pi\)
\(492\) 59.1229 26.2923i 0.120168 0.0534396i
\(493\) 327.338 51.8452i 0.663971 0.105163i
\(494\) −6.74418 + 255.419i −0.0136522 + 0.517043i
\(495\) −195.655 354.537i −0.395263 0.716236i
\(496\) −33.4185 + 315.307i −0.0673759 + 0.635699i
\(497\) 394.236 62.4408i 0.793231 0.125635i
\(498\) 120.709 + 253.213i 0.242387 + 0.508460i
\(499\) 119.220 + 366.921i 0.238918 + 0.735313i 0.996578 + 0.0826633i \(0.0263426\pi\)
−0.757660 + 0.652650i \(0.773657\pi\)
\(500\) −320.695 + 383.608i −0.641390 + 0.767215i
\(501\) −44.8759 61.7664i −0.0895727 0.123286i
\(502\) 161.483 297.260i 0.321679 0.592151i
\(503\) 181.255 + 355.732i 0.360347 + 0.707221i 0.998007 0.0630966i \(-0.0200976\pi\)
−0.637660 + 0.770318i \(0.720098\pi\)
\(504\) −562.987 481.474i −1.11704 0.955306i
\(505\) −424.132 590.029i −0.839865 1.16837i
\(506\) −666.464 651.051i −1.31712 1.28666i
\(507\) 20.0954 20.0954i 0.0396358 0.0396358i
\(508\) 763.410 79.9007i 1.50278 0.157285i
\(509\) −245.184 79.6652i −0.481698 0.156513i 0.0580947 0.998311i \(-0.481497\pi\)
−0.539793 + 0.841798i \(0.681497\pi\)
\(510\) −179.096 + 22.6166i −0.351169 + 0.0443462i
\(511\) 407.238 + 560.515i 0.796943 + 1.09690i
\(512\) −196.863 + 472.640i −0.384498 + 0.923126i
\(513\) −87.8215 + 172.359i −0.171192 + 0.335983i
\(514\) −320.816 + 905.329i −0.624156 + 1.76134i
\(515\) −115.819 116.998i −0.224891 0.227181i
\(516\) −9.73744 + 184.262i −0.0188710 + 0.357097i
\(517\) 96.9677 + 263.795i 0.187558 + 0.510242i
\(518\) 479.795 + 505.819i 0.926244 + 0.976485i
\(519\) −214.691 + 295.497i −0.413663 + 0.569358i
\(520\) −538.560 + 126.044i −1.03569 + 0.242391i
\(521\) −253.411 779.918i −0.486393 1.49696i −0.829953 0.557833i \(-0.811633\pi\)
0.343561 0.939131i \(-0.388367\pi\)
\(522\) 340.129 + 63.1160i 0.651589 + 0.120912i
\(523\) 11.9863 75.6784i 0.0229183 0.144701i −0.973576 0.228364i \(-0.926662\pi\)
0.996494 + 0.0836639i \(0.0266622\pi\)
\(524\) 786.554 210.388i 1.50106 0.401505i
\(525\) 239.777 323.092i 0.456719 0.615413i
\(526\) 235.093 306.241i 0.446945 0.582207i
\(527\) 197.680 + 197.680i 0.375105 + 0.375105i
\(528\) 144.364 172.858i 0.273417 0.327383i
\(529\) 1264.48i 2.39031i
\(530\) 2.26509 71.9689i 0.00427375 0.135790i
\(531\) 360.683 + 117.193i 0.679252 + 0.220703i
\(532\) −232.571 + 402.419i −0.437164 + 0.756427i
\(533\) 27.3455 172.653i 0.0513049 0.323926i
\(534\) 61.6169 + 89.6951i 0.115387 + 0.167968i
\(535\) 72.2695 + 471.742i 0.135083 + 0.881761i
\(536\) −248.275 + 598.281i −0.463200 + 1.11620i
\(537\) 19.7052 + 124.414i 0.0366949 + 0.231683i
\(538\) −477.649 503.558i −0.887824 0.935981i
\(539\) 585.598 + 1048.54i 1.08645 + 1.94535i
\(540\) −409.122 89.3167i −0.757633 0.165401i
\(541\) −92.3756 + 127.144i −0.170750 + 0.235017i −0.885812 0.464044i \(-0.846398\pi\)
0.715063 + 0.699060i \(0.246398\pi\)
\(542\) 294.209 + 617.169i 0.542821 + 1.13869i
\(543\) −122.329 + 240.084i −0.225284 + 0.442144i
\(544\) 214.970 + 396.959i 0.395166 + 0.729704i
\(545\) 110.736 335.027i 0.203185 0.614729i
\(546\) 426.784 126.318i 0.781655 0.231351i
\(547\) −681.405 + 347.193i −1.24571 + 0.634723i −0.947494 0.319775i \(-0.896393\pi\)
−0.298220 + 0.954497i \(0.596393\pi\)
\(548\) 162.570 17.0150i 0.296660 0.0310493i
\(549\) −92.4347 −0.168369
\(550\) −445.466 322.583i −0.809938 0.586515i
\(551\) 217.049i 0.393918i
\(552\) −432.216 + 33.7313i −0.783000 + 0.0611075i
\(553\) 356.756 + 700.173i 0.645128 + 1.26614i
\(554\) 527.485 156.123i 0.952139 0.281810i
\(555\) 168.373 + 55.6522i 0.303376 + 0.100274i
\(556\) 50.4278 32.7169i 0.0906975 0.0588434i
\(557\) −170.997 87.1273i −0.306996 0.156422i 0.293705 0.955896i \(-0.405112\pi\)
−0.600701 + 0.799474i \(0.705112\pi\)
\(558\) 125.569 + 263.410i 0.225035 + 0.472060i
\(559\) 403.285 + 293.003i 0.721439 + 0.524156i
\(560\) −970.312 266.179i −1.73270 0.475320i
\(561\) −38.5106 194.800i −0.0686463 0.347237i
\(562\) −510.201 537.874i −0.907830 0.957072i
\(563\) 853.232 135.139i 1.51551 0.240033i 0.657416 0.753528i \(-0.271649\pi\)
0.858093 + 0.513495i \(0.171649\pi\)
\(564\) 122.072 + 46.9202i 0.216440 + 0.0831918i
\(565\) −553.617 + 84.8124i −0.979852 + 0.150110i
\(566\) 392.155 + 570.856i 0.692853 + 1.00858i
\(567\) −490.308 77.6572i −0.864741 0.136962i
\(568\) −216.392 132.800i −0.380972 0.233803i
\(569\) 202.545 623.371i 0.355967 1.09556i −0.599479 0.800391i \(-0.704625\pi\)
0.955446 0.295165i \(-0.0953745\pi\)
\(570\) −3.71901 + 118.165i −0.00652459 + 0.207306i
\(571\) −135.907 −0.238016 −0.119008 0.992893i \(-0.537971\pi\)
−0.119008 + 0.992893i \(0.537971\pi\)
\(572\) −179.487 581.347i −0.313789 1.01634i
\(573\) 162.725 162.725i 0.283988 0.283988i
\(574\) 193.632 252.232i 0.337338 0.439428i
\(575\) 155.022 + 1047.33i 0.269604 + 1.82144i
\(576\) 73.1029 + 465.499i 0.126915 + 0.808158i
\(577\) 142.991 + 22.6475i 0.247818 + 0.0392505i 0.279108 0.960260i \(-0.409961\pi\)
−0.0312896 + 0.999510i \(0.509961\pi\)
\(578\) −176.954 32.8365i −0.306150 0.0568106i
\(579\) 150.065 48.7589i 0.259179 0.0842123i
\(580\) 454.510 119.110i 0.783637 0.205361i
\(581\) 1115.26 + 810.283i 1.91955 + 1.39463i
\(582\) −30.3398 31.9855i −0.0521303 0.0549579i
\(583\) 79.1475 3.01670i 0.135759 0.00517444i
\(584\) 34.8646 439.319i 0.0596997 0.752258i
\(585\) −361.765 + 358.119i −0.618402 + 0.612170i
\(586\) 191.970 541.730i 0.327593 0.924453i
\(587\) −27.7181 14.1231i −0.0472199 0.0240597i 0.430221 0.902724i \(-0.358436\pi\)
−0.477441 + 0.878664i \(0.658436\pi\)
\(588\) 546.577 + 116.428i 0.929553 + 0.198007i
\(589\) 148.121 107.616i 0.251479 0.182710i
\(590\) 511.040 64.5350i 0.866169 0.109381i
\(591\) −116.232 + 357.724i −0.196669 + 0.605286i
\(592\) −22.8223 442.874i −0.0385512 0.748099i
\(593\) 407.789 + 407.789i 0.687671 + 0.687671i 0.961717 0.274046i \(-0.0883621\pi\)
−0.274046 + 0.961717i \(0.588362\pi\)
\(594\) 66.7319 455.774i 0.112343 0.767297i
\(595\) −720.334 + 517.800i −1.21065 + 0.870252i
\(596\) 150.411 185.576i 0.252367 0.311370i
\(597\) 23.8610 12.1578i 0.0399682 0.0203648i
\(598\) −559.074 + 1029.15i −0.934906 + 1.72099i
\(599\) 411.162 298.727i 0.686414 0.498709i −0.189065 0.981964i \(-0.560546\pi\)
0.875479 + 0.483256i \(0.160546\pi\)
\(600\) −249.483 + 57.0573i −0.415805 + 0.0950955i
\(601\) −521.114 + 169.320i −0.867078 + 0.281731i −0.708582 0.705629i \(-0.750665\pi\)
−0.158496 + 0.987360i \(0.550665\pi\)
\(602\) 390.204 + 818.540i 0.648180 + 1.35970i
\(603\) 93.2566 + 588.799i 0.154654 + 0.976450i
\(604\) 50.5976 957.462i 0.0837709 1.58520i
\(605\) 319.926 513.490i 0.528803 0.848744i
\(606\) 9.81730 371.806i 0.0162002 0.613541i
\(607\) −62.2856 393.256i −0.102612 0.647868i −0.984363 0.176152i \(-0.943635\pi\)
0.881751 0.471716i \(-0.156365\pi\)
\(608\) 278.795 98.3841i 0.458544 0.161816i
\(609\) −359.584 + 116.836i −0.590451 + 0.191849i
\(610\) −113.601 + 53.4499i −0.186231 + 0.0876228i
\(611\) 285.830 207.667i 0.467806 0.339881i
\(612\) 359.708 + 207.887i 0.587759 + 0.339685i
\(613\) −391.518 + 199.488i −0.638692 + 0.325430i −0.743175 0.669097i \(-0.766681\pi\)
0.104483 + 0.994527i \(0.466681\pi\)
\(614\) 561.520 + 431.065i 0.914528 + 0.702059i
\(615\) 13.0571 79.8210i 0.0212311 0.129790i
\(616\) 217.905 1085.11i 0.353743 1.76155i
\(617\) −597.836 597.836i −0.968941 0.968941i 0.0305913 0.999532i \(-0.490261\pi\)
−0.999532 + 0.0305913i \(0.990261\pi\)
\(618\) −10.9805 83.5464i −0.0177679 0.135188i
\(619\) −30.6391 + 94.2974i −0.0494977 + 0.152338i −0.972750 0.231855i \(-0.925520\pi\)
0.923253 + 0.384193i \(0.125520\pi\)
\(620\) 306.638 + 251.116i 0.494577 + 0.405026i
\(621\) −717.362 + 521.194i −1.15517 + 0.839282i
\(622\) 533.010 + 98.9079i 0.856929 + 0.159016i
\(623\) 476.492 + 242.785i 0.764835 + 0.389703i
\(624\) −258.534 115.377i −0.414317 0.184899i
\(625\) 181.055 + 598.201i 0.289688 + 0.957121i
\(626\) −20.1652 + 763.707i −0.0322128 + 1.21998i
\(627\) −129.951 + 4.95307i −0.207258 + 0.00789964i
\(628\) −86.9689 + 78.2384i −0.138485 + 0.124583i
\(629\) −316.325 229.824i −0.502902 0.365380i
\(630\) −889.234 + 258.301i −1.41148 + 0.410002i
\(631\) 136.339 44.2994i 0.216069 0.0702050i −0.198982 0.980003i \(-0.563764\pi\)
0.415051 + 0.909798i \(0.363764\pi\)
\(632\) 117.005 485.960i 0.185135 0.768925i
\(633\) −365.961 57.9625i −0.578137 0.0915680i
\(634\) −235.458 795.531i −0.371385 1.25478i
\(635\) 439.917 852.681i 0.692782 1.34281i
\(636\) 23.2064 28.6319i 0.0364880 0.0450188i
\(637\) 1067.54 1067.54i 1.67589 1.67589i
\(638\) 165.453 + 489.645i 0.259330 + 0.767469i
\(639\) −233.662 −0.365669
\(640\) 359.015 + 529.819i 0.560961 + 0.827842i
\(641\) −124.564 + 383.368i −0.194327 + 0.598078i 0.805656 + 0.592383i \(0.201813\pi\)
−0.999984 + 0.00569511i \(0.998187\pi\)
\(642\) −116.606 + 214.650i −0.181629 + 0.334346i
\(643\) −311.199 49.2891i −0.483980 0.0766548i −0.0903232 0.995913i \(-0.528790\pi\)
−0.393656 + 0.919258i \(0.628790\pi\)
\(644\) −1787.31 + 1159.58i −2.77532 + 1.80059i
\(645\) 185.910 + 136.515i 0.288233 + 0.211652i
\(646\) 87.0670 245.699i 0.134779 0.380339i
\(647\) −935.119 + 148.108i −1.44532 + 0.228915i −0.829293 0.558814i \(-0.811257\pi\)
−0.616022 + 0.787729i \(0.711257\pi\)
\(648\) 204.915 + 240.243i 0.316227 + 0.370746i
\(649\) 109.888 + 555.850i 0.169318 + 0.856472i
\(650\) −237.523 + 649.312i −0.365419 + 0.998941i
\(651\) −258.021 187.463i −0.396345 0.287962i
\(652\) 144.566 + 325.083i 0.221728 + 0.498594i
\(653\) 27.7207 + 14.1244i 0.0424513 + 0.0216300i 0.475087 0.879939i \(-0.342416\pi\)
−0.432636 + 0.901569i \(0.642416\pi\)
\(654\) 148.866 102.265i 0.227624 0.156368i
\(655\) 319.402 966.339i 0.487637 1.47533i
\(656\) −197.881 + 41.8804i −0.301648 + 0.0638420i
\(657\) −184.132 361.379i −0.280262 0.550044i
\(658\) 637.211 83.7489i 0.968405 0.127278i
\(659\) 495.499i 0.751895i 0.926641 + 0.375948i \(0.122683\pi\)
−0.926641 + 0.375948i \(0.877317\pi\)
\(660\) −81.6851 269.405i −0.123765 0.408190i
\(661\) 278.241 0.420940 0.210470 0.977600i \(-0.432501\pi\)
0.210470 + 0.977600i \(0.432501\pi\)
\(662\) 56.0292 + 426.303i 0.0846362 + 0.643962i
\(663\) −222.411 + 113.324i −0.335462 + 0.170926i
\(664\) −204.141 852.768i −0.307441 1.28429i
\(665\) 261.138 + 518.994i 0.392689 + 0.780441i
\(666\) −231.092 336.399i −0.346986 0.505103i
\(667\) 451.680 886.471i 0.677181 1.32904i
\(668\) 96.9750 + 218.066i 0.145172 + 0.326446i
\(669\) 270.702 372.590i 0.404637 0.556935i
\(670\) 455.081 + 669.699i 0.679226 + 0.999551i
\(671\) −67.3379 120.572i −0.100355 0.179690i
\(672\) −313.067 408.920i −0.465873 0.608512i
\(673\) −104.338 658.765i −0.155034 0.978849i −0.935417 0.353547i \(-0.884976\pi\)
0.780383 0.625302i \(-0.215024\pi\)
\(674\) 742.322 + 263.052i 1.10137 + 0.390285i
\(675\) −373.863 + 366.365i −0.553872 + 0.542763i
\(676\) −74.5252 + 48.3510i −0.110244 + 0.0715252i
\(677\) −59.2079 + 373.824i −0.0874563 + 0.552178i 0.904588 + 0.426287i \(0.140179\pi\)
−0.992044 + 0.125890i \(0.959821\pi\)
\(678\) −251.904 136.844i −0.371540 0.201835i
\(679\) −206.050 66.9496i −0.303461 0.0986003i
\(680\) 562.285 + 47.4902i 0.826890 + 0.0698385i
\(681\) 369.611i 0.542748i
\(682\) −252.116 + 355.685i −0.369672 + 0.521532i
\(683\) 271.543 + 271.543i 0.397573 + 0.397573i 0.877376 0.479803i \(-0.159292\pi\)
−0.479803 + 0.877376i \(0.659292\pi\)
\(684\) 171.323 211.378i 0.250472 0.309032i
\(685\) 93.6813 181.580i 0.136761 0.265081i
\(686\) 1451.54 429.621i 2.11595 0.626270i
\(687\) 32.9022 207.736i 0.0478926 0.302382i
\(688\) 149.771 557.009i 0.217691 0.809605i
\(689\) −30.7678 94.6936i −0.0446557 0.137436i
\(690\) −261.091 + 474.870i −0.378392 + 0.688217i
\(691\) 295.402 406.585i 0.427499 0.588402i −0.539878 0.841743i \(-0.681530\pi\)
0.967377 + 0.253342i \(0.0815297\pi\)
\(692\) 848.824 763.614i 1.22662 1.10349i
\(693\) −351.429 956.044i −0.507113 1.37957i
\(694\) −934.014 24.6621i −1.34584 0.0355361i
\(695\) 0.380543 75.1381i 0.000547544 0.108112i
\(696\) 222.129 + 92.1793i 0.319151 + 0.132442i
\(697\) −80.9629 + 158.899i −0.116159 + 0.227975i
\(698\) −13.3976 + 72.1991i −0.0191943 + 0.103437i
\(699\) 162.082 + 223.086i 0.231876 + 0.319150i
\(700\) −943.492 + 831.643i −1.34785 + 1.18806i
\(701\) −812.067 263.857i −1.15844 0.376400i −0.334124 0.942529i \(-0.608441\pi\)
−0.824317 + 0.566129i \(0.808441\pi\)
\(702\) −574.114 + 75.4561i −0.817827 + 0.107487i
\(703\) −181.068 + 181.068i −0.257565 + 0.257565i
\(704\) −553.944 + 434.468i −0.786852 + 0.617142i
\(705\) 132.738 95.4162i 0.188280 0.135342i
\(706\) −792.142 + 1031.87i −1.12201 + 1.46158i
\(707\) −829.811 1628.60i −1.17371 2.30353i
\(708\) 228.272 + 131.926i 0.322418 + 0.186336i
\(709\) −93.5263 128.728i −0.131913 0.181563i 0.737951 0.674854i \(-0.235794\pi\)
−0.869864 + 0.493292i \(0.835794\pi\)
\(710\) −287.167 + 135.114i −0.404461 + 0.190302i
\(711\) −142.154 437.505i −0.199935 0.615338i
\(712\) −129.969 314.355i −0.182541 0.441511i
\(713\) 828.908 131.286i 1.16256 0.184132i
\(714\) −453.918 11.9854i −0.635739 0.0167863i
\(715\) −730.675 211.001i −1.02192 0.295106i
\(716\) 20.7792 393.206i 0.0290213 0.549171i
\(717\) −291.553 + 46.1775i −0.406629 + 0.0644038i
\(718\) 144.867 69.0591i 0.201764 0.0961825i
\(719\) 215.325 + 662.701i 0.299478 + 0.921698i 0.981680 + 0.190535i \(0.0610222\pi\)
−0.682203 + 0.731163i \(0.738978\pi\)
\(720\) 536.651 + 242.761i 0.745349 + 0.337168i
\(721\) −243.405 335.019i −0.337594 0.464659i
\(722\) 484.421 + 263.156i 0.670944 + 0.364482i
\(723\) −78.4084 153.885i −0.108449 0.212843i
\(724\) 530.355 654.349i 0.732534 0.903798i
\(725\) 187.141 556.709i 0.258125 0.767875i
\(726\) 289.384 110.233i 0.398601 0.151837i
\(727\) 200.970 200.970i 0.276437 0.276437i −0.555248 0.831685i \(-0.687377\pi\)
0.831685 + 0.555248i \(0.187377\pi\)
\(728\) −1387.08 + 108.252i −1.90533 + 0.148698i
\(729\) 47.0496 + 15.2873i 0.0645399 + 0.0209703i
\(730\) −435.261 337.655i −0.596247 0.462542i
\(731\) −298.922 411.432i −0.408923 0.562834i
\(732\) −62.8509 13.3881i −0.0858619 0.0182897i
\(733\) 327.790 643.323i 0.447189 0.877658i −0.551855 0.833940i \(-0.686080\pi\)
0.999044 0.0437176i \(-0.0139202\pi\)
\(734\) −269.088 95.3550i −0.366604 0.129911i
\(735\) 496.445 491.442i 0.675435 0.668628i
\(736\) 1343.39 + 178.353i 1.82526 + 0.242328i
\(737\) −700.095 + 550.580i −0.949925 + 0.747055i
\(738\) −135.055 + 128.106i −0.183001 + 0.173586i
\(739\) −191.895 + 264.121i −0.259669 + 0.357403i −0.918868 0.394565i \(-0.870895\pi\)
0.659199 + 0.751968i \(0.270895\pi\)
\(740\) −478.530 279.800i −0.646662 0.378109i
\(741\) 50.5172 + 155.476i 0.0681743 + 0.209819i
\(742\) 33.0454 178.080i 0.0445356 0.240000i
\(743\) 20.0681 126.705i 0.0270096 0.170532i −0.970496 0.241116i \(-0.922486\pi\)
0.997506 + 0.0705845i \(0.0224865\pi\)
\(744\) 47.2291 + 197.292i 0.0634799 + 0.265178i
\(745\) −90.8317 284.445i −0.121922 0.381805i
\(746\) 624.113 + 479.115i 0.836612 + 0.642246i
\(747\) −570.631 570.631i −0.763897 0.763897i
\(748\) −9.12420 + 620.649i −0.0121981 + 0.829744i
\(749\) 1200.46i 1.60275i
\(750\) −111.421 + 299.875i −0.148562 + 0.399833i
\(751\) −946.021 307.381i −1.25968 0.409295i −0.398300 0.917255i \(-0.630400\pi\)
−0.861381 + 0.507960i \(0.830400\pi\)
\(752\) −342.658 222.950i −0.455662 0.296476i
\(753\) 33.8589 213.777i 0.0449654 0.283900i
\(754\) 535.524 367.884i 0.710244 0.487909i
\(755\) −966.024 709.361i −1.27950 0.939550i
\(756\) −983.216 377.914i −1.30055 0.499886i
\(757\) 229.595 + 1449.61i 0.303296 + 1.91494i 0.394102 + 0.919067i \(0.371056\pi\)
−0.0908056 + 0.995869i \(0.528944\pi\)
\(758\) 889.533 843.766i 1.17353 1.11315i
\(759\) −541.055 250.200i −0.712852 0.329644i
\(760\) 88.3251 358.846i 0.116217 0.472166i
\(761\) 401.804 553.035i 0.527994 0.726722i −0.458829 0.888525i \(-0.651731\pi\)
0.986823 + 0.161803i \(0.0517309\pi\)
\(762\) 443.311 211.330i 0.581773 0.277336i
\(763\) 402.947 790.829i 0.528109 1.03647i
\(764\) −603.480 + 391.530i −0.789895 + 0.512474i
\(765\) 463.910 233.422i 0.606418 0.305127i
\(766\) 162.892 + 550.356i 0.212653 + 0.718480i
\(767\) 634.637 323.364i 0.827427 0.421595i
\(768\) −17.7157 + 327.104i −0.0230673 + 0.425916i
\(769\) 951.979 1.23794 0.618972 0.785413i \(-0.287549\pi\)