Properties

Label 220.3.w.a.7.19
Level $220$
Weight $3$
Character 220.7
Analytic conductor $5.995$
Analytic rank $0$
Dimension $544$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(7,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 5, 14]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(544\)
Relative dimension: \(68\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.19
Character \(\chi\) \(=\) 220.7
Dual form 220.3.w.a.63.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37635 + 1.45109i) q^{2} +(-2.01897 + 1.02872i) q^{3} +(-0.211311 - 3.99441i) q^{4} +(4.19108 - 2.72669i) q^{5} +(1.28605 - 4.34558i) q^{6} +(-2.63142 + 5.16446i) q^{7} +(6.08708 + 5.19109i) q^{8} +(-2.27209 + 3.12726i) q^{9} +(-1.81173 + 9.83451i) q^{10} +(-9.84371 - 4.90931i) q^{11} +(4.53575 + 7.84722i) q^{12} +(-2.39288 - 15.1080i) q^{13} +(-3.87232 - 10.9265i) q^{14} +(-5.65667 + 9.81653i) q^{15} +(-15.9107 + 1.68813i) q^{16} +(-1.91459 + 12.0882i) q^{17} +(-1.41074 - 7.60122i) q^{18} +(-24.2978 - 7.89483i) q^{19} +(-11.7772 - 16.1647i) q^{20} -13.1339i q^{21} +(20.6723 - 7.52715i) q^{22} +(11.4273 + 11.4273i) q^{23} +(-17.6298 - 4.21877i) q^{24} +(10.1303 - 22.8556i) q^{25} +(25.2165 + 17.3217i) q^{26} +(4.56045 - 28.7936i) q^{27} +(21.1850 + 9.41969i) q^{28} +(-16.0454 - 49.3826i) q^{29} +(-6.45909 - 21.7193i) q^{30} +(7.84453 - 10.7971i) q^{31} +(19.4491 - 25.4113i) q^{32} +(24.9244 - 0.214638i) q^{33} +(-14.9059 - 19.4159i) q^{34} +(3.05338 + 28.8197i) q^{35} +(12.9717 + 8.41484i) q^{36} +(4.00077 - 7.85195i) q^{37} +(44.8984 - 24.3922i) q^{38} +(20.3730 + 28.0411i) q^{39} +(39.6660 + 5.15867i) q^{40} +(-75.7259 - 24.6048i) q^{41} +(19.0584 + 18.0768i) q^{42} +(-54.5989 + 54.5989i) q^{43} +(-17.5297 + 40.3573i) q^{44} +(-0.995428 + 19.3019i) q^{45} +(-32.3100 + 0.854028i) q^{46} +(-22.4582 - 44.0767i) q^{47} +(30.3866 - 19.7759i) q^{48} +(9.05424 + 12.4621i) q^{49} +(19.2226 + 46.1573i) q^{50} +(-8.56986 - 26.3753i) q^{51} +(-59.8422 + 12.7506i) q^{52} +(-21.8861 + 3.46642i) q^{53} +(35.5052 + 46.2477i) q^{54} +(-54.6420 + 6.26545i) q^{55} +(-42.8269 + 17.7765i) q^{56} +(57.1780 - 9.05611i) q^{57} +(93.7425 + 44.6846i) q^{58} +(-15.0901 - 46.4424i) q^{59} +(40.4066 + 20.5207i) q^{60} +(55.4322 + 76.2959i) q^{61} +(4.87066 + 26.2437i) q^{62} +(-10.1718 - 19.9633i) q^{63} +(10.1052 + 63.1972i) q^{64} +(-51.2237 - 56.7944i) q^{65} +(-33.9933 + 36.4630i) q^{66} +(-5.11791 + 5.11791i) q^{67} +(48.6899 + 5.09328i) q^{68} +(-34.8268 - 11.3159i) q^{69} +(-46.0225 - 35.2354i) q^{70} +(10.7606 + 14.8107i) q^{71} +(-30.0643 + 7.24129i) q^{72} +(-46.5762 + 91.4110i) q^{73} +(5.88740 + 16.6125i) q^{74} +(3.05911 + 56.5659i) q^{75} +(-26.4008 + 98.7237i) q^{76} +(51.2569 - 37.9190i) q^{77} +(-68.7305 - 9.03133i) q^{78} +(47.7369 - 65.7043i) q^{79} +(-62.0800 + 50.4586i) q^{80} +(9.66242 + 29.7379i) q^{81} +(139.929 - 76.0200i) q^{82} +(9.70086 - 61.2488i) q^{83} +(-52.4621 + 2.77533i) q^{84} +(24.9367 + 55.8832i) q^{85} +(-4.08049 - 154.375i) q^{86} +(83.1957 + 83.1957i) q^{87} +(-34.4348 - 80.9830i) q^{88} -11.2250i q^{89} +(-26.6387 - 28.0107i) q^{90} +(84.3215 + 27.3977i) q^{91} +(43.2307 - 48.0601i) q^{92} +(-4.73074 + 29.8687i) q^{93} +(94.8695 + 28.0762i) q^{94} +(-123.361 + 33.1647i) q^{95} +(-13.1261 + 71.3121i) q^{96} +(7.98092 + 50.3895i) q^{97} +(-30.5454 - 4.01373i) q^{98} +(37.7185 - 19.6295i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 544 q - 10 q^{2} - 12 q^{5} - 20 q^{6} - 10 q^{8} - 28 q^{12} - 20 q^{13} - 36 q^{16} - 20 q^{17} - 10 q^{18} - 40 q^{20} + 86 q^{22} - 12 q^{25} + 140 q^{26} - 10 q^{28} - 370 q^{30} - 100 q^{33} - 476 q^{36}+ \cdots + 148 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37635 + 1.45109i −0.688176 + 0.725544i
\(3\) −2.01897 + 1.02872i −0.672990 + 0.342905i −0.756865 0.653571i \(-0.773270\pi\)
0.0838758 + 0.996476i \(0.473270\pi\)
\(4\) −0.211311 3.99441i −0.0528277 0.998604i
\(5\) 4.19108 2.72669i 0.838216 0.545338i
\(6\) 1.28605 4.34558i 0.214342 0.724263i
\(7\) −2.63142 + 5.16446i −0.375918 + 0.737780i −0.999015 0.0443641i \(-0.985874\pi\)
0.623098 + 0.782144i \(0.285874\pi\)
\(8\) 6.08708 + 5.19109i 0.760885 + 0.648886i
\(9\) −2.27209 + 3.12726i −0.252454 + 0.347474i
\(10\) −1.81173 + 9.83451i −0.181173 + 0.983451i
\(11\) −9.84371 4.90931i −0.894883 0.446301i
\(12\) 4.53575 + 7.84722i 0.377979 + 0.653935i
\(13\) −2.39288 15.1080i −0.184068 1.16216i −0.890705 0.454582i \(-0.849789\pi\)
0.706637 0.707576i \(-0.250211\pi\)
\(14\) −3.87232 10.9265i −0.276594 0.780467i
\(15\) −5.65667 + 9.81653i −0.377111 + 0.654436i
\(16\) −15.9107 + 1.68813i −0.994418 + 0.105508i
\(17\) −1.91459 + 12.0882i −0.112623 + 0.711072i 0.865167 + 0.501484i \(0.167212\pi\)
−0.977790 + 0.209588i \(0.932788\pi\)
\(18\) −1.41074 7.60122i −0.0783743 0.422290i
\(19\) −24.2978 7.89483i −1.27883 0.415517i −0.410663 0.911787i \(-0.634703\pi\)
−0.868168 + 0.496270i \(0.834703\pi\)
\(20\) −11.7772 16.1647i −0.588858 0.808237i
\(21\) 13.1339i 0.625422i
\(22\) 20.6723 7.52715i 0.939648 0.342143i
\(23\) 11.4273 + 11.4273i 0.496839 + 0.496839i 0.910453 0.413613i \(-0.135733\pi\)
−0.413613 + 0.910453i \(0.635733\pi\)
\(24\) −17.6298 4.21877i −0.734574 0.175782i
\(25\) 10.1303 22.8556i 0.405212 0.914223i
\(26\) 25.2165 + 17.3217i 0.969867 + 0.666220i
\(27\) 4.56045 28.7936i 0.168906 1.06643i
\(28\) 21.1850 + 9.41969i 0.756608 + 0.336417i
\(29\) −16.0454 49.3826i −0.553289 1.70285i −0.700421 0.713730i \(-0.747004\pi\)
0.147132 0.989117i \(-0.452996\pi\)
\(30\) −6.45909 21.7193i −0.215303 0.723978i
\(31\) 7.84453 10.7971i 0.253049 0.348292i −0.663527 0.748152i \(-0.730941\pi\)
0.916576 + 0.399860i \(0.130941\pi\)
\(32\) 19.4491 25.4113i 0.607784 0.794102i
\(33\) 24.9244 0.214638i 0.755286 0.00650418i
\(34\) −14.9059 19.4159i −0.438410 0.571055i
\(35\) 3.05338 + 28.8197i 0.0872394 + 0.823421i
\(36\) 12.9717 + 8.41484i 0.360325 + 0.233746i
\(37\) 4.00077 7.85195i 0.108129 0.212215i −0.830602 0.556867i \(-0.812003\pi\)
0.938730 + 0.344652i \(0.112003\pi\)
\(38\) 44.8984 24.3922i 1.18154 0.641899i
\(39\) 20.3730 + 28.0411i 0.522385 + 0.719002i
\(40\) 39.6660 + 5.15867i 0.991649 + 0.128967i
\(41\) −75.7259 24.6048i −1.84697 0.600118i −0.997352 0.0727233i \(-0.976831\pi\)
−0.849621 0.527395i \(-0.823169\pi\)
\(42\) 19.0584 + 18.0768i 0.453771 + 0.430400i
\(43\) −54.5989 + 54.5989i −1.26974 + 1.26974i −0.323519 + 0.946222i \(0.604866\pi\)
−0.946222 + 0.323519i \(0.895134\pi\)
\(44\) −17.5297 + 40.3573i −0.398403 + 0.917210i
\(45\) −0.995428 + 19.3019i −0.0221206 + 0.428931i
\(46\) −32.3100 + 0.854028i −0.702391 + 0.0185658i
\(47\) −22.4582 44.0767i −0.477834 0.937802i −0.996561 0.0828618i \(-0.973594\pi\)
0.518727 0.854940i \(-0.326406\pi\)
\(48\) 30.3866 19.7759i 0.633054 0.411997i
\(49\) 9.05424 + 12.4621i 0.184780 + 0.254328i
\(50\) 19.2226 + 46.1573i 0.384451 + 0.923145i
\(51\) −8.56986 26.3753i −0.168036 0.517163i
\(52\) −59.8422 + 12.7506i −1.15081 + 0.245205i
\(53\) −21.8861 + 3.46642i −0.412945 + 0.0654041i −0.359451 0.933164i \(-0.617036\pi\)
−0.0534944 + 0.998568i \(0.517036\pi\)
\(54\) 35.5052 + 46.2477i 0.657504 + 0.856439i
\(55\) −54.6420 + 6.26545i −0.993490 + 0.113917i
\(56\) −42.8269 + 17.7765i −0.764765 + 0.317438i
\(57\) 57.1780 9.05611i 1.00312 0.158879i
\(58\) 93.7425 + 44.6846i 1.61625 + 0.770423i
\(59\) −15.0901 46.4424i −0.255764 0.787159i −0.993678 0.112265i \(-0.964189\pi\)
0.737915 0.674894i \(-0.235811\pi\)
\(60\) 40.4066 + 20.5207i 0.673444 + 0.342012i
\(61\) 55.4322 + 76.2959i 0.908725 + 1.25075i 0.967600 + 0.252487i \(0.0812486\pi\)
−0.0588751 + 0.998265i \(0.518751\pi\)
\(62\) 4.87066 + 26.2437i 0.0785590 + 0.423285i
\(63\) −10.1718 19.9633i −0.161457 0.316877i
\(64\) 10.1052 + 63.1972i 0.157893 + 0.987456i
\(65\) −51.2237 56.7944i −0.788057 0.873760i
\(66\) −33.9933 + 36.4630i −0.515050 + 0.552469i
\(67\) −5.11791 + 5.11791i −0.0763867 + 0.0763867i −0.744268 0.667881i \(-0.767201\pi\)
0.667881 + 0.744268i \(0.267201\pi\)
\(68\) 48.6899 + 5.09328i 0.716029 + 0.0749012i
\(69\) −34.8268 11.3159i −0.504736 0.163999i
\(70\) −46.0225 35.2354i −0.657464 0.503363i
\(71\) 10.7606 + 14.8107i 0.151558 + 0.208602i 0.878044 0.478579i \(-0.158848\pi\)
−0.726486 + 0.687181i \(0.758848\pi\)
\(72\) −30.0643 + 7.24129i −0.417560 + 0.100573i
\(73\) −46.5762 + 91.4110i −0.638030 + 1.25220i 0.314932 + 0.949114i \(0.398018\pi\)
−0.952962 + 0.303090i \(0.901982\pi\)
\(74\) 5.88740 + 16.6125i 0.0795595 + 0.224493i
\(75\) 3.05911 + 56.5659i 0.0407882 + 0.754212i
\(76\) −26.4008 + 98.7237i −0.347380 + 1.29900i
\(77\) 51.2569 37.9190i 0.665674 0.492454i
\(78\) −68.7305 9.03133i −0.881161 0.115786i
\(79\) 47.7369 65.7043i 0.604265 0.831700i −0.391825 0.920040i \(-0.628156\pi\)
0.996090 + 0.0883400i \(0.0281562\pi\)
\(80\) −62.0800 + 50.4586i −0.776000 + 0.630733i
\(81\) 9.66242 + 29.7379i 0.119289 + 0.367134i
\(82\) 139.929 76.0200i 1.70645 0.927073i
\(83\) 9.70086 61.2488i 0.116878 0.737937i −0.857744 0.514078i \(-0.828134\pi\)
0.974621 0.223860i \(-0.0718657\pi\)
\(84\) −52.4621 + 2.77533i −0.624549 + 0.0330396i
\(85\) 24.9367 + 55.8832i 0.293373 + 0.657449i
\(86\) −4.08049 154.375i −0.0474475 1.79506i
\(87\) 83.1957 + 83.1957i 0.956273 + 0.956273i
\(88\) −34.4348 80.9830i −0.391305 0.920261i
\(89\) 11.2250i 0.126124i −0.998010 0.0630619i \(-0.979913\pi\)
0.998010 0.0630619i \(-0.0200865\pi\)
\(90\) −26.6387 28.0107i −0.295985 0.311230i
\(91\) 84.3215 + 27.3977i 0.926610 + 0.301074i
\(92\) 43.2307 48.0601i 0.469899 0.522392i
\(93\) −4.73074 + 29.8687i −0.0508682 + 0.321169i
\(94\) 94.8695 + 28.0762i 1.00925 + 0.298683i
\(95\) −123.361 + 33.1647i −1.29853 + 0.349102i
\(96\) −13.1261 + 71.3121i −0.136731 + 0.742835i
\(97\) 7.98092 + 50.3895i 0.0822775 + 0.519480i 0.994062 + 0.108812i \(0.0347045\pi\)
−0.911785 + 0.410668i \(0.865295\pi\)
\(98\) −30.5454 4.01373i −0.311688 0.0409564i
\(99\) 37.7185 19.6295i 0.380995 0.198278i
\(100\) −93.4352 35.6350i −0.934352 0.356350i
\(101\) −46.9062 + 64.5609i −0.464418 + 0.639216i −0.975418 0.220364i \(-0.929275\pi\)
0.511000 + 0.859581i \(0.329275\pi\)
\(102\) 50.0680 + 23.8661i 0.490863 + 0.233981i
\(103\) −17.4529 + 34.2533i −0.169446 + 0.332556i −0.960077 0.279737i \(-0.909753\pi\)
0.790631 + 0.612293i \(0.209753\pi\)
\(104\) 63.8616 104.386i 0.614053 1.00371i
\(105\) −35.8120 55.0451i −0.341067 0.524239i
\(106\) 25.0929 36.5297i 0.236725 0.344619i
\(107\) −2.13636 + 1.08853i −0.0199660 + 0.0101732i −0.463945 0.885864i \(-0.653566\pi\)
0.443979 + 0.896037i \(0.353566\pi\)
\(108\) −115.977 12.1320i −1.07386 0.112333i
\(109\) 35.3156 0.323997 0.161998 0.986791i \(-0.448206\pi\)
0.161998 + 0.986791i \(0.448206\pi\)
\(110\) 66.1149 87.9137i 0.601044 0.799216i
\(111\) 19.9685i 0.179896i
\(112\) 33.1495 86.6123i 0.295978 0.773324i
\(113\) 70.3792 + 138.127i 0.622825 + 1.22236i 0.959756 + 0.280834i \(0.0906110\pi\)
−0.336931 + 0.941529i \(0.609389\pi\)
\(114\) −65.5559 + 95.4347i −0.575051 + 0.837147i
\(115\) 79.0515 + 16.7340i 0.687404 + 0.145513i
\(116\) −193.864 + 74.5269i −1.67124 + 0.642473i
\(117\) 52.6837 + 26.8437i 0.450288 + 0.229433i
\(118\) 88.1612 + 42.0241i 0.747129 + 0.356136i
\(119\) −57.3910 41.6970i −0.482278 0.350395i
\(120\) −85.3911 + 30.3898i −0.711593 + 0.253248i
\(121\) 72.7973 + 96.6517i 0.601631 + 0.798774i
\(122\) −187.006 24.5730i −1.53284 0.201418i
\(123\) 178.200 28.2240i 1.44878 0.229464i
\(124\) −44.7856 29.0528i −0.361174 0.234296i
\(125\) −19.8632 123.412i −0.158905 0.987294i
\(126\) 42.9684 + 12.7163i 0.341019 + 0.100923i
\(127\) 158.623 + 25.1234i 1.24900 + 0.197822i 0.745696 0.666286i \(-0.232117\pi\)
0.503305 + 0.864109i \(0.332117\pi\)
\(128\) −105.613 72.3181i −0.825101 0.564985i
\(129\) 54.0667 166.400i 0.419121 1.28992i
\(130\) 152.916 + 3.83894i 1.17627 + 0.0295303i
\(131\) 64.7703 0.494430 0.247215 0.968961i \(-0.420485\pi\)
0.247215 + 0.968961i \(0.420485\pi\)
\(132\) −6.12415 99.5132i −0.0463951 0.753888i
\(133\) 104.710 104.710i 0.787295 0.787295i
\(134\) −0.382491 14.4706i −0.00285441 0.107989i
\(135\) −59.3980 133.111i −0.439985 0.986008i
\(136\) −74.4053 + 63.6432i −0.547098 + 0.467965i
\(137\) −148.793 23.5665i −1.08608 0.172018i −0.412371 0.911016i \(-0.635299\pi\)
−0.673708 + 0.738998i \(0.735299\pi\)
\(138\) 64.3543 34.9621i 0.466336 0.253348i
\(139\) −157.194 + 51.0755i −1.13089 + 0.367449i −0.813915 0.580984i \(-0.802668\pi\)
−0.316978 + 0.948433i \(0.602668\pi\)
\(140\) 114.473 18.2864i 0.817663 0.130617i
\(141\) 90.6847 + 65.8863i 0.643154 + 0.467279i
\(142\) −36.3021 4.77016i −0.255648 0.0335927i
\(143\) −50.6153 + 160.467i −0.353953 + 1.12214i
\(144\) 30.8713 53.5925i 0.214384 0.372170i
\(145\) −201.898 163.216i −1.39240 1.12562i
\(146\) −68.5401 193.400i −0.469452 1.32466i
\(147\) −31.1002 15.8463i −0.211566 0.107798i
\(148\) −32.2093 14.3215i −0.217631 0.0967670i
\(149\) 38.4172 27.9117i 0.257834 0.187327i −0.451358 0.892343i \(-0.649060\pi\)
0.709191 + 0.705016i \(0.249060\pi\)
\(150\) −86.2925 73.4155i −0.575283 0.489437i
\(151\) 1.37473 4.23100i 0.00910420 0.0280198i −0.946401 0.322993i \(-0.895311\pi\)
0.955505 + 0.294974i \(0.0953108\pi\)
\(152\) −106.920 174.189i −0.703421 1.14598i
\(153\) −33.4529 33.4529i −0.218647 0.218647i
\(154\) −15.5238 + 126.568i −0.100804 + 0.821871i
\(155\) 3.43678 66.6410i 0.0221727 0.429942i
\(156\) 107.703 87.3037i 0.690402 0.559639i
\(157\) −16.4961 + 8.40517i −0.105071 + 0.0535361i −0.505736 0.862688i \(-0.668779\pi\)
0.400665 + 0.916224i \(0.368779\pi\)
\(158\) 29.6398 + 159.703i 0.187594 + 1.01078i
\(159\) 40.6214 29.5132i 0.255480 0.185617i
\(160\) 12.2240 159.532i 0.0764002 0.997077i
\(161\) −89.0859 + 28.9458i −0.553328 + 0.179787i
\(162\) −56.4511 26.9088i −0.348464 0.166103i
\(163\) −22.6295 142.877i −0.138831 0.876546i −0.954540 0.298083i \(-0.903653\pi\)
0.815709 0.578463i \(-0.196347\pi\)
\(164\) −82.2802 + 307.680i −0.501709 + 1.87610i
\(165\) 103.875 68.8608i 0.629546 0.417338i
\(166\) 75.5256 + 98.3767i 0.454973 + 0.592631i
\(167\) 5.85235 + 36.9503i 0.0350440 + 0.221259i 0.998995 0.0448205i \(-0.0142716\pi\)
−0.963951 + 0.266080i \(0.914272\pi\)
\(168\) 68.1791 79.9469i 0.405828 0.475875i
\(169\) −61.7986 + 20.0796i −0.365672 + 0.118814i
\(170\) −115.413 40.7297i −0.678900 0.239586i
\(171\) 79.8960 58.0478i 0.467228 0.339461i
\(172\) 229.628 + 206.553i 1.33505 + 1.20089i
\(173\) −126.447 + 64.4278i −0.730906 + 0.372415i −0.779499 0.626404i \(-0.784526\pi\)
0.0485932 + 0.998819i \(0.484526\pi\)
\(174\) −235.231 + 6.21769i −1.35190 + 0.0357339i
\(175\) 91.3795 + 112.460i 0.522169 + 0.642630i
\(176\) 164.908 + 61.4931i 0.936976 + 0.349393i
\(177\) 78.2424 + 78.2424i 0.442047 + 0.442047i
\(178\) 16.2885 + 15.4496i 0.0915083 + 0.0867953i
\(179\) 51.3148 157.931i 0.286675 0.882294i −0.699217 0.714909i \(-0.746468\pi\)
0.985892 0.167384i \(-0.0535321\pi\)
\(180\) 77.3101 0.102547i 0.429501 0.000569705i
\(181\) 34.5119 25.0744i 0.190674 0.138533i −0.488353 0.872646i \(-0.662402\pi\)
0.679027 + 0.734114i \(0.262402\pi\)
\(182\) −155.813 + 84.6490i −0.856113 + 0.465105i
\(183\) −190.403 97.0150i −1.04045 0.530137i
\(184\) 10.2388 + 128.879i 0.0556456 + 0.700430i
\(185\) −4.64230 43.8170i −0.0250935 0.236849i
\(186\) −36.8310 47.9746i −0.198016 0.257928i
\(187\) 78.1915 109.594i 0.418136 0.586062i
\(188\) −171.315 + 99.0212i −0.911249 + 0.526708i
\(189\) 136.703 + 99.3203i 0.723295 + 0.525504i
\(190\) 121.663 224.654i 0.640331 1.18239i
\(191\) 226.751 73.6758i 1.18718 0.385737i 0.352149 0.935944i \(-0.385451\pi\)
0.835029 + 0.550207i \(0.185451\pi\)
\(192\) −85.4140 117.198i −0.444865 0.610405i
\(193\) −46.1134 7.30364i −0.238929 0.0378427i 0.0358212 0.999358i \(-0.488595\pi\)
−0.274751 + 0.961516i \(0.588595\pi\)
\(194\) −84.1042 57.7727i −0.433527 0.297798i
\(195\) 161.844 + 61.9714i 0.829971 + 0.317802i
\(196\) 47.8655 38.7997i 0.244212 0.197958i
\(197\) −94.3879 + 94.3879i −0.479126 + 0.479126i −0.904852 0.425726i \(-0.860019\pi\)
0.425726 + 0.904852i \(0.360019\pi\)
\(198\) −23.4298 + 81.7499i −0.118333 + 0.412878i
\(199\) −335.923 −1.68806 −0.844028 0.536299i \(-0.819822\pi\)
−0.844028 + 0.536299i \(0.819822\pi\)
\(200\) 180.309 86.5364i 0.901547 0.432682i
\(201\) 5.06802 15.5978i 0.0252141 0.0776009i
\(202\) −29.1240 156.923i −0.144178 0.776849i
\(203\) 297.256 + 47.0808i 1.46432 + 0.231925i
\(204\) −103.543 + 39.8049i −0.507564 + 0.195122i
\(205\) −384.463 + 103.360i −1.87543 + 0.504197i
\(206\) −25.6832 72.4703i −0.124676 0.351797i
\(207\) −61.7000 + 9.77232i −0.298068 + 0.0472093i
\(208\) 63.5767 + 236.340i 0.305657 + 1.13625i
\(209\) 200.422 + 197.000i 0.958958 + 0.942583i
\(210\) 129.165 + 23.7951i 0.615072 + 0.113310i
\(211\) 90.9735 + 66.0961i 0.431154 + 0.313252i 0.782110 0.623140i \(-0.214143\pi\)
−0.350956 + 0.936392i \(0.614143\pi\)
\(212\) 18.4711 + 86.6896i 0.0871277 + 0.408913i
\(213\) −36.9614 18.8328i −0.173528 0.0884167i
\(214\) 1.36083 4.59824i 0.00635902 0.0214871i
\(215\) −79.9539 + 377.702i −0.371879 + 1.75676i
\(216\) 177.230 151.595i 0.820509 0.701830i
\(217\) 35.1187 + 68.9244i 0.161837 + 0.317624i
\(218\) −48.6068 + 51.2461i −0.222967 + 0.235074i
\(219\) 232.470i 1.06150i
\(220\) 36.5732 + 216.939i 0.166242 + 0.986085i
\(221\) 187.211 0.847108
\(222\) −28.9760 27.4837i −0.130523 0.123800i
\(223\) −206.304 + 105.117i −0.925131 + 0.471378i −0.850584 0.525840i \(-0.823751\pi\)
−0.0745471 + 0.997217i \(0.523751\pi\)
\(224\) 80.0566 + 167.312i 0.357396 + 0.746928i
\(225\) 48.4584 + 83.6100i 0.215371 + 0.371600i
\(226\) −297.301 87.9850i −1.31549 0.389314i
\(227\) 40.9502 80.3693i 0.180397 0.354050i −0.783045 0.621965i \(-0.786335\pi\)
0.963443 + 0.267915i \(0.0863347\pi\)
\(228\) −48.2562 226.479i −0.211650 0.993329i
\(229\) 66.4852 91.5091i 0.290329 0.399603i −0.638792 0.769379i \(-0.720566\pi\)
0.929121 + 0.369776i \(0.120566\pi\)
\(230\) −133.085 + 91.6787i −0.578631 + 0.398603i
\(231\) −64.4782 + 129.286i −0.279127 + 0.559680i
\(232\) 158.680 383.889i 0.683965 1.65469i
\(233\) −16.1589 102.023i −0.0693514 0.437868i −0.997794 0.0663909i \(-0.978852\pi\)
0.928442 0.371477i \(-0.121148\pi\)
\(234\) −111.464 + 39.5023i −0.476341 + 0.168813i
\(235\) −214.308 123.492i −0.911947 0.525499i
\(236\) −182.322 + 70.0897i −0.772549 + 0.296990i
\(237\) −28.7884 + 181.763i −0.121470 + 0.766931i
\(238\) 139.496 25.8896i 0.586119 0.108780i
\(239\) −91.4706 29.7206i −0.382722 0.124354i 0.111336 0.993783i \(-0.464487\pi\)
−0.494058 + 0.869429i \(0.664487\pi\)
\(240\) 73.4300 165.737i 0.305958 0.690571i
\(241\) 144.550i 0.599791i 0.953972 + 0.299895i \(0.0969518\pi\)
−0.953972 + 0.299895i \(0.903048\pi\)
\(242\) −240.445 27.3914i −0.993574 0.113188i
\(243\) 135.425 + 135.425i 0.557306 + 0.557306i
\(244\) 293.044 237.541i 1.20100 0.973531i
\(245\) 71.9273 + 27.5415i 0.293581 + 0.112414i
\(246\) −204.310 + 297.429i −0.830527 + 1.20906i
\(247\) −61.1338 + 385.984i −0.247505 + 1.56269i
\(248\) 103.799 25.0010i 0.418544 0.100810i
\(249\) 43.4219 + 133.639i 0.174385 + 0.536702i
\(250\) 206.420 + 141.035i 0.825680 + 0.564139i
\(251\) 58.6480 80.7220i 0.233657 0.321602i −0.676047 0.736859i \(-0.736308\pi\)
0.909704 + 0.415257i \(0.136308\pi\)
\(252\) −77.5921 + 44.8488i −0.307905 + 0.177971i
\(253\) −56.3869 168.587i −0.222873 0.666353i
\(254\) −254.778 + 195.597i −1.00306 + 0.770069i
\(255\) −107.834 87.1737i −0.422880 0.341858i
\(256\) 250.300 53.7185i 0.977736 0.209838i
\(257\) 159.712 313.452i 0.621447 1.21966i −0.338893 0.940825i \(-0.610052\pi\)
0.960340 0.278833i \(-0.0899475\pi\)
\(258\) 167.046 + 307.481i 0.647466 + 1.19178i
\(259\) 30.0233 + 41.3236i 0.115920 + 0.159551i
\(260\) −216.036 + 216.610i −0.830908 + 0.833116i
\(261\) 190.889 + 62.0235i 0.731375 + 0.237638i
\(262\) −89.1467 + 93.9874i −0.340255 + 0.358730i
\(263\) −145.248 + 145.248i −0.552275 + 0.552275i −0.927097 0.374822i \(-0.877704\pi\)
0.374822 + 0.927097i \(0.377704\pi\)
\(264\) 152.831 + 128.078i 0.578906 + 0.485146i
\(265\) −82.2745 + 74.2047i −0.310470 + 0.280018i
\(266\) 7.82560 + 296.062i 0.0294196 + 1.11302i
\(267\) 11.5473 + 22.6629i 0.0432485 + 0.0848799i
\(268\) 21.5245 + 19.3616i 0.0803154 + 0.0722447i
\(269\) −87.2157 120.042i −0.324222 0.446253i 0.615528 0.788115i \(-0.288943\pi\)
−0.939750 + 0.341861i \(0.888943\pi\)
\(270\) 274.908 + 97.0161i 1.01818 + 0.359319i
\(271\) −117.527 361.712i −0.433680 1.33473i −0.894433 0.447202i \(-0.852421\pi\)
0.460753 0.887528i \(-0.347579\pi\)
\(272\) 10.0560 195.564i 0.0369704 0.718986i
\(273\) −198.427 + 31.4278i −0.726839 + 0.115120i
\(274\) 238.988 183.476i 0.872220 0.669619i
\(275\) −211.925 + 175.251i −0.770636 + 0.637276i
\(276\) −37.8412 + 141.504i −0.137106 + 0.512695i
\(277\) −18.6000 + 2.94595i −0.0671480 + 0.0106352i −0.189918 0.981800i \(-0.560822\pi\)
0.122770 + 0.992435i \(0.460822\pi\)
\(278\) 142.239 298.400i 0.511653 1.07338i
\(279\) 15.9418 + 49.0638i 0.0571390 + 0.175856i
\(280\) −131.020 + 191.279i −0.467927 + 0.683138i
\(281\) −225.323 310.130i −0.801860 1.10366i −0.992529 0.122011i \(-0.961066\pi\)
0.190669 0.981654i \(-0.438934\pi\)
\(282\) −220.421 + 40.9087i −0.781635 + 0.145066i
\(283\) 201.552 + 395.568i 0.712197 + 1.39777i 0.908779 + 0.417278i \(0.137016\pi\)
−0.196582 + 0.980487i \(0.562984\pi\)
\(284\) 56.8863 46.1120i 0.200304 0.162366i
\(285\) 214.944 193.862i 0.754191 0.680216i
\(286\) −163.187 294.306i −0.570583 1.02904i
\(287\) 326.337 326.337i 1.13706 1.13706i
\(288\) 35.2776 + 118.559i 0.122492 + 0.411664i
\(289\) 132.396 + 43.0180i 0.458117 + 0.148851i
\(290\) 514.723 68.3303i 1.77491 0.235622i
\(291\) −67.9498 93.5248i −0.233504 0.321391i
\(292\) 374.975 + 166.729i 1.28416 + 0.570988i
\(293\) −92.7576 + 182.047i −0.316579 + 0.621321i −0.993384 0.114842i \(-0.963364\pi\)
0.676805 + 0.736162i \(0.263364\pi\)
\(294\) 65.7992 23.3189i 0.223807 0.0793161i
\(295\) −189.878 153.498i −0.643653 0.520332i
\(296\) 65.1132 27.0271i 0.219977 0.0913078i
\(297\) −186.248 + 261.047i −0.627099 + 0.878946i
\(298\) −12.3732 + 94.1631i −0.0415209 + 0.315984i
\(299\) 145.300 199.988i 0.485953 0.668857i
\(300\) 225.301 24.1723i 0.751004 0.0805745i
\(301\) −138.301 425.646i −0.459471 1.41411i
\(302\) 4.24743 + 7.81820i 0.0140643 + 0.0258881i
\(303\) 28.2874 178.600i 0.0933577 0.589437i
\(304\) 399.922 + 84.5945i 1.31553 + 0.278271i
\(305\) 440.356 + 168.616i 1.44379 + 0.552838i
\(306\) 94.5862 2.50013i 0.309105 0.00817036i
\(307\) 197.102 + 197.102i 0.642027 + 0.642027i 0.951054 0.309026i \(-0.100003\pi\)
−0.309026 + 0.951054i \(0.600003\pi\)
\(308\) −162.295 196.729i −0.526932 0.638729i
\(309\) 87.1104i 0.281911i
\(310\) 91.9717 + 96.7085i 0.296683 + 0.311963i
\(311\) −444.086 144.292i −1.42793 0.463962i −0.509816 0.860283i \(-0.670287\pi\)
−0.918112 + 0.396322i \(0.870287\pi\)
\(312\) −21.5514 + 276.447i −0.0690749 + 0.886047i
\(313\) 83.8361 529.321i 0.267847 1.69112i −0.376524 0.926407i \(-0.622881\pi\)
0.644371 0.764713i \(-0.277119\pi\)
\(314\) 10.5078 35.5057i 0.0334642 0.113076i
\(315\) −97.0645 55.9323i −0.308141 0.177563i
\(316\) −272.537 176.797i −0.862460 0.559485i
\(317\) −1.93423 12.2122i −0.00610166 0.0385244i 0.984450 0.175667i \(-0.0562082\pi\)
−0.990551 + 0.137143i \(0.956208\pi\)
\(318\) −13.0831 + 99.5657i −0.0411419 + 0.313100i
\(319\) −84.4884 + 564.879i −0.264854 + 1.77078i
\(320\) 214.671 + 237.311i 0.670846 + 0.741596i
\(321\) 3.19345 4.39541i 0.00994845 0.0136929i
\(322\) 80.6107 169.111i 0.250344 0.525189i
\(323\) 141.955 278.602i 0.439488 0.862544i
\(324\) 116.744 44.8796i 0.360320 0.138517i
\(325\) −369.544 98.3585i −1.13706 0.302642i
\(326\) 238.473 + 163.812i 0.731513 + 0.502490i
\(327\) −71.3012 + 36.3298i −0.218046 + 0.111100i
\(328\) −333.224 542.871i −1.01593 1.65510i
\(329\) 286.729 0.871517
\(330\) −43.0455 + 245.508i −0.130441 + 0.743965i
\(331\) 236.741i 0.715229i 0.933869 + 0.357614i \(0.116410\pi\)
−0.933869 + 0.357614i \(0.883590\pi\)
\(332\) −246.703 25.8067i −0.743081 0.0777311i
\(333\) 15.4650 + 30.3518i 0.0464415 + 0.0911465i
\(334\) −61.6730 42.3643i −0.184650 0.126839i
\(335\) −7.49461 + 35.4045i −0.0223720 + 0.105685i
\(336\) 22.1716 + 208.969i 0.0659870 + 0.621931i
\(337\) −131.068 66.7824i −0.388925 0.198167i 0.248583 0.968610i \(-0.420035\pi\)
−0.637509 + 0.770443i \(0.720035\pi\)
\(338\) 55.9194 117.312i 0.165442 0.347076i
\(339\) −284.187 206.474i −0.838310 0.609068i
\(340\) 217.951 111.416i 0.641033 0.327694i
\(341\) −130.225 + 67.7720i −0.381893 + 0.198745i
\(342\) −25.7325 + 195.830i −0.0752412 + 0.572603i
\(343\) −368.703 + 58.3968i −1.07494 + 0.170253i
\(344\) −615.775 + 48.9202i −1.79004 + 0.142210i
\(345\) −176.817 + 47.5360i −0.512513 + 0.137786i
\(346\) 80.5447 272.161i 0.232788 0.786591i
\(347\) −203.667 32.2577i −0.586937 0.0929616i −0.144099 0.989563i \(-0.546028\pi\)
−0.442838 + 0.896602i \(0.646028\pi\)
\(348\) 314.738 349.898i 0.904420 1.00546i
\(349\) 54.6641 168.239i 0.156631 0.482059i −0.841692 0.539958i \(-0.818440\pi\)
0.998322 + 0.0578988i \(0.0184401\pi\)
\(350\) −288.960 22.1852i −0.825600 0.0633862i
\(351\) −445.927 −1.27045
\(352\) −316.203 + 154.660i −0.898304 + 0.439374i
\(353\) 183.025 183.025i 0.518484 0.518484i −0.398628 0.917113i \(-0.630514\pi\)
0.917113 + 0.398628i \(0.130514\pi\)
\(354\) −221.226 + 5.84750i −0.624931 + 0.0165184i
\(355\) 85.4829 + 32.7320i 0.240797 + 0.0922029i
\(356\) −44.8373 + 2.37197i −0.125948 + 0.00666283i
\(357\) 158.765 + 25.1459i 0.444720 + 0.0704367i
\(358\) 158.544 + 291.830i 0.442860 + 0.815168i
\(359\) 113.014 36.7204i 0.314802 0.102285i −0.147355 0.989084i \(-0.547076\pi\)
0.462156 + 0.886798i \(0.347076\pi\)
\(360\) −106.257 + 112.325i −0.295159 + 0.312014i
\(361\) 235.999 + 171.464i 0.653738 + 0.474968i
\(362\) −11.1154 + 84.5910i −0.0307056 + 0.233677i
\(363\) −246.403 120.249i −0.678795 0.331264i
\(364\) 91.6198 342.605i 0.251703 0.941222i
\(365\) 54.0449 + 510.110i 0.148068 + 1.39756i
\(366\) 402.839 142.764i 1.10065 0.390066i
\(367\) 373.233 + 190.172i 1.01698 + 0.518179i 0.881292 0.472572i \(-0.156674\pi\)
0.135692 + 0.990751i \(0.456674\pi\)
\(368\) −201.107 162.526i −0.546486 0.441646i
\(369\) 249.002 180.910i 0.674802 0.490272i
\(370\) 69.9717 + 53.5712i 0.189113 + 0.144787i
\(371\) 39.6894 122.151i 0.106980 0.329249i
\(372\) 120.308 + 12.5850i 0.323408 + 0.0338305i
\(373\) −417.840 417.840i −1.12022 1.12022i −0.991709 0.128507i \(-0.958982\pi\)
−0.128507 0.991709i \(-0.541018\pi\)
\(374\) 51.4110 + 264.302i 0.137463 + 0.706690i
\(375\) 167.059 + 228.731i 0.445490 + 0.609949i
\(376\) 92.1011 384.881i 0.244950 1.02362i
\(377\) −707.679 + 360.581i −1.87713 + 0.956447i
\(378\) −332.274 + 61.6679i −0.879031 + 0.163143i
\(379\) 346.843 251.996i 0.915153 0.664897i −0.0271600 0.999631i \(-0.508646\pi\)
0.942313 + 0.334734i \(0.108646\pi\)
\(380\) 158.541 + 485.746i 0.417213 + 1.27828i
\(381\) −346.100 + 112.455i −0.908399 + 0.295157i
\(382\) −205.179 + 430.439i −0.537118 + 1.12680i
\(383\) 29.4309 + 185.820i 0.0768431 + 0.485168i 0.995856 + 0.0909415i \(0.0289876\pi\)
−0.919013 + 0.394227i \(0.871012\pi\)
\(384\) 287.624 + 37.3622i 0.749021 + 0.0972975i
\(385\) 111.428 298.683i 0.289425 0.775800i
\(386\) 74.0665 56.8622i 0.191882 0.147311i
\(387\) −46.6915 294.798i −0.120650 0.761753i
\(388\) 199.590 42.5270i 0.514408 0.109606i
\(389\) −655.963 + 213.135i −1.68628 + 0.547906i −0.986113 0.166074i \(-0.946891\pi\)
−0.700167 + 0.713980i \(0.746891\pi\)
\(390\) −312.681 + 149.556i −0.801746 + 0.383477i
\(391\) −160.014 + 116.257i −0.409244 + 0.297333i
\(392\) −9.57792 + 122.859i −0.0244335 + 0.313416i
\(393\) −130.769 + 66.6302i −0.332746 + 0.169543i
\(394\) −7.05415 266.876i −0.0179039 0.677351i
\(395\) 20.9141 405.536i 0.0529471 1.02667i
\(396\) −86.3786 146.515i −0.218128 0.369988i
\(397\) 67.5852 + 67.5852i 0.170240 + 0.170240i 0.787085 0.616845i \(-0.211589\pi\)
−0.616845 + 0.787085i \(0.711589\pi\)
\(398\) 462.349 487.454i 1.16168 1.22476i
\(399\) −103.690 + 319.124i −0.259874 + 0.799809i
\(400\) −122.597 + 380.749i −0.306493 + 0.951873i
\(401\) 604.138 438.932i 1.50658 1.09459i 0.538913 0.842362i \(-0.318835\pi\)
0.967667 0.252232i \(-0.0811647\pi\)
\(402\) 15.6584 + 28.8222i 0.0389511 + 0.0716970i
\(403\) −181.894 92.6794i −0.451349 0.229974i
\(404\) 267.795 + 173.720i 0.662858 + 0.430001i
\(405\) 121.582 + 98.2874i 0.300202 + 0.242685i
\(406\) −477.448 + 366.545i −1.17598 + 0.902821i
\(407\) −77.9300 + 57.6513i −0.191474 + 0.141649i
\(408\) 84.7511 205.036i 0.207723 0.502538i
\(409\) −123.716 89.8852i −0.302485 0.219768i 0.426180 0.904638i \(-0.359859\pi\)
−0.728665 + 0.684870i \(0.759859\pi\)
\(410\) 379.172 700.150i 0.924809 1.70768i
\(411\) 324.651 105.486i 0.789906 0.256656i
\(412\) 140.510 + 62.4761i 0.341043 + 0.151641i
\(413\) 279.558 + 44.2777i 0.676896 + 0.107210i
\(414\) 70.7405 102.982i 0.170871 0.248750i
\(415\) −126.350 283.150i −0.304457 0.682289i
\(416\) −430.454 233.032i −1.03475 0.560172i
\(417\) 264.828 264.828i 0.635079 0.635079i
\(418\) −561.716 + 19.6892i −1.34382 + 0.0471033i
\(419\) 148.419 0.354222 0.177111 0.984191i \(-0.443325\pi\)
0.177111 + 0.984191i \(0.443325\pi\)
\(420\) −212.305 + 154.680i −0.505489 + 0.368285i
\(421\) −225.265 + 693.295i −0.535071 + 1.64678i 0.208423 + 0.978039i \(0.433167\pi\)
−0.743495 + 0.668742i \(0.766833\pi\)
\(422\) −221.123 + 41.0390i −0.523988 + 0.0972488i
\(423\) 188.866 + 29.9135i 0.446493 + 0.0707175i
\(424\) −151.217 92.5123i −0.356644 0.218189i
\(425\) 256.888 + 166.216i 0.604442 + 0.391097i
\(426\) 78.1998 27.7137i 0.183568 0.0650556i
\(427\) −539.893 + 85.5106i −1.26439 + 0.200259i
\(428\) 4.79947 + 8.30348i 0.0112137 + 0.0194007i
\(429\) −62.8839 376.046i −0.146583 0.876564i
\(430\) −438.035 635.872i −1.01868 1.47877i
\(431\) 389.660 + 283.105i 0.904084 + 0.656855i 0.939512 0.342517i \(-0.111279\pi\)
−0.0354281 + 0.999372i \(0.511279\pi\)
\(432\) −23.9528 + 465.824i −0.0554463 + 1.07830i
\(433\) −51.4435 26.2118i −0.118807 0.0605353i 0.393577 0.919292i \(-0.371238\pi\)
−0.512384 + 0.858756i \(0.671238\pi\)
\(434\) −148.351 43.9038i −0.341823 0.101161i
\(435\) 575.529 + 121.831i 1.32306 + 0.280071i
\(436\) −7.46258 141.065i −0.0171160 0.323544i
\(437\) −187.442 367.875i −0.428928 0.841819i
\(438\) 337.334 + 319.960i 0.770168 + 0.730502i
\(439\) 396.815i 0.903906i −0.892042 0.451953i \(-0.850727\pi\)
0.892042 0.451953i \(-0.149273\pi\)
\(440\) −365.135 245.513i −0.829852 0.557984i
\(441\) −59.5443 −0.135021
\(442\) −257.668 + 271.659i −0.582959 + 0.614614i
\(443\) −404.354 + 206.029i −0.912763 + 0.465076i −0.846296 0.532713i \(-0.821173\pi\)
−0.0664669 + 0.997789i \(0.521173\pi\)
\(444\) 79.7624 4.21956i 0.179645 0.00950351i
\(445\) −30.6071 47.0449i −0.0687801 0.105719i
\(446\) 131.413 444.044i 0.294648 0.995614i
\(447\) −48.8499 + 95.8733i −0.109284 + 0.214482i
\(448\) −352.970 114.111i −0.787880 0.254712i
\(449\) −22.3783 + 30.8011i −0.0498403 + 0.0685992i −0.833210 0.552957i \(-0.813499\pi\)
0.783369 + 0.621556i \(0.213499\pi\)
\(450\) −188.021 44.7594i −0.417825 0.0994654i
\(451\) 624.631 + 613.965i 1.38499 + 1.36134i
\(452\) 536.865 310.312i 1.18775 0.686530i
\(453\) 1.57695 + 9.95646i 0.00348112 + 0.0219789i
\(454\) 60.2610 + 170.039i 0.132733 + 0.374535i
\(455\) 428.104 115.093i 0.940887 0.252951i
\(456\) 395.058 + 241.691i 0.866356 + 0.530024i
\(457\) −14.7197 + 92.9365i −0.0322094 + 0.203362i −0.998545 0.0539222i \(-0.982828\pi\)
0.966336 + 0.257284i \(0.0828277\pi\)
\(458\) 41.2806 + 222.425i 0.0901323 + 0.485643i
\(459\) 339.332 + 110.256i 0.739285 + 0.240208i
\(460\) 50.1381 319.300i 0.108996 0.694131i
\(461\) 566.953i 1.22983i −0.788592 0.614916i \(-0.789190\pi\)
0.788592 0.614916i \(-0.210810\pi\)
\(462\) −98.8606 271.507i −0.213984 0.587677i
\(463\) 122.032 + 122.032i 0.263569 + 0.263569i 0.826502 0.562933i \(-0.190327\pi\)
−0.562933 + 0.826502i \(0.690327\pi\)
\(464\) 338.657 + 758.624i 0.729864 + 1.63497i
\(465\) 61.6159 + 138.081i 0.132507 + 0.296949i
\(466\) 170.285 + 116.972i 0.365418 + 0.251013i
\(467\) 0.555465 3.50707i 0.00118943 0.00750979i −0.987086 0.160188i \(-0.948790\pi\)
0.988276 + 0.152678i \(0.0487899\pi\)
\(468\) 96.0921 216.113i 0.205325 0.461779i
\(469\) −12.9638 39.8986i −0.0276415 0.0850717i
\(470\) 474.161 141.010i 1.00885 0.300022i
\(471\) 24.6585 33.9396i 0.0523536 0.0720585i
\(472\) 149.232 361.033i 0.316170 0.764900i
\(473\) 805.498 269.413i 1.70296 0.569583i
\(474\) −224.131 291.944i −0.472849 0.615915i
\(475\) −426.585 + 475.363i −0.898074 + 1.00076i
\(476\) −154.428 + 238.055i −0.324428 + 0.500115i
\(477\) 38.8868 76.3196i 0.0815236 0.159999i
\(478\) 169.023 91.8259i 0.353605 0.192104i
\(479\) −274.282 377.516i −0.572613 0.788134i 0.420248 0.907409i \(-0.361943\pi\)
−0.992861 + 0.119275i \(0.961943\pi\)
\(480\) 139.434 + 334.666i 0.290486 + 0.697221i
\(481\) −128.201 41.6550i −0.266530 0.0866008i
\(482\) −209.754 198.951i −0.435175 0.412762i
\(483\) 150.085 150.085i 0.310734 0.310734i
\(484\) 370.684 311.206i 0.765876 0.642988i
\(485\) 170.845 + 189.425i 0.352259 + 0.390567i
\(486\) −382.907 + 10.1211i −0.787875 + 0.0208253i
\(487\) 59.4939 + 116.763i 0.122164 + 0.239761i 0.943987 0.329982i \(-0.107043\pi\)
−0.821823 + 0.569743i \(0.807043\pi\)
\(488\) −58.6383 + 752.173i −0.120161 + 1.54134i
\(489\) 192.668 + 265.185i 0.394004 + 0.542301i
\(490\) −138.962 + 66.4660i −0.283597 + 0.135645i
\(491\) −260.437 801.543i −0.530422 1.63247i −0.753338 0.657633i \(-0.771558\pi\)
0.222916 0.974838i \(-0.428442\pi\)
\(492\) −150.394 705.839i −0.305679 1.43463i
\(493\) 627.668 99.4128i 1.27316 0.201649i
\(494\) −475.954 619.960i −0.963470 1.25498i
\(495\) 104.558 185.115i 0.211228 0.373971i
\(496\) −106.585 + 185.031i −0.214889 + 0.373047i
\(497\) −104.805 + 16.5995i −0.210875 + 0.0333994i
\(498\) −253.685 120.925i −0.509409 0.242821i
\(499\) 67.0271 + 206.288i 0.134323 + 0.413404i 0.995484 0.0949285i \(-0.0302623\pi\)
−0.861161 + 0.508332i \(0.830262\pi\)
\(500\) −488.760 + 105.420i −0.977521 + 0.210840i
\(501\) −49.8271 68.5811i −0.0994552 0.136888i
\(502\) 36.4145 + 196.205i 0.0725388 + 0.390847i
\(503\) 2.37690 + 4.66493i 0.00472545 + 0.00927421i 0.893357 0.449347i \(-0.148343\pi\)
−0.888632 + 0.458621i \(0.848343\pi\)
\(504\) 41.7145 174.321i 0.0827670 0.345874i
\(505\) −20.5501 + 398.479i −0.0406933 + 0.789066i
\(506\) 322.243 + 150.213i 0.636844 + 0.296864i
\(507\) 104.113 104.113i 0.205352 0.205352i
\(508\) 66.8347 638.916i 0.131564 1.25771i
\(509\) 324.222 + 105.346i 0.636978 + 0.206967i 0.609664 0.792660i \(-0.291304\pi\)
0.0273144 + 0.999627i \(0.491304\pi\)
\(510\) 274.915 36.4953i 0.539048 0.0715595i
\(511\) −349.526 481.082i −0.684005 0.941452i
\(512\) −266.551 + 437.143i −0.520608 + 0.853796i
\(513\) −338.129 + 663.616i −0.659122 + 1.29360i
\(514\) 235.027 + 663.176i 0.457251 + 1.29023i
\(515\) 20.2516 + 191.147i 0.0393234 + 0.371159i
\(516\) −676.096 180.803i −1.31026 0.350392i
\(517\) 4.68582 + 544.132i 0.00906349 + 1.05248i
\(518\) −101.287 13.3093i −0.195534 0.0256936i
\(519\) 189.014 260.155i 0.364189 0.501263i
\(520\) −16.9784 611.619i −0.0326507 1.17619i
\(521\) −73.1392 225.099i −0.140382 0.432052i 0.856006 0.516966i \(-0.172939\pi\)
−0.996388 + 0.0849136i \(0.972939\pi\)
\(522\) −352.732 + 191.630i −0.675731 + 0.367108i
\(523\) 153.156 966.991i 0.292842 1.84893i −0.201275 0.979535i \(-0.564508\pi\)
0.494117 0.869396i \(-0.335492\pi\)
\(524\) −13.6867 258.719i −0.0261196 0.493739i
\(525\) −300.182 133.050i −0.571775 0.253429i
\(526\) −10.8553 410.681i −0.0206374 0.780763i
\(527\) 115.498 + 115.498i 0.219162 + 0.219162i
\(528\) −396.203 + 45.4906i −0.750384 + 0.0861565i
\(529\) 267.834i 0.506302i
\(530\) 5.56124 221.519i 0.0104929 0.417961i
\(531\) 179.524 + 58.3307i 0.338086 + 0.109851i
\(532\) −440.383 396.130i −0.827787 0.744605i
\(533\) −190.528 + 1202.95i −0.357463 + 2.25694i
\(534\) −48.7791 14.4360i −0.0913467 0.0270337i
\(535\) −5.98557 + 10.3873i −0.0111880 + 0.0194155i
\(536\) −57.7207 + 4.58562i −0.107688 + 0.00855526i
\(537\) 58.8628 + 371.645i 0.109614 + 0.692077i
\(538\) 294.231 + 38.6626i 0.546898 + 0.0718635i
\(539\) −27.9470 167.123i −0.0518498 0.310062i
\(540\) −519.150 + 265.388i −0.961388 + 0.491459i
\(541\) 173.455 238.741i 0.320620 0.441295i −0.618036 0.786149i \(-0.712072\pi\)
0.938656 + 0.344854i \(0.112072\pi\)
\(542\) 686.634 + 327.300i 1.26685 + 0.603875i
\(543\) −43.8841 + 86.1274i −0.0808178 + 0.158614i
\(544\) 269.940 + 283.757i 0.496213 + 0.521612i
\(545\) 148.011 96.2949i 0.271579 0.176688i
\(546\) 227.501 331.191i 0.416668 0.606576i
\(547\) −600.518 + 305.979i −1.09784 + 0.559377i −0.906525 0.422152i \(-0.861275\pi\)
−0.191314 + 0.981529i \(0.561275\pi\)
\(548\) −62.6927 + 599.320i −0.114403 + 1.09365i
\(549\) −364.544 −0.664015
\(550\) 37.3790 548.728i 0.0679618 0.997688i
\(551\) 1326.56i 2.40756i
\(552\) −153.252 249.670i −0.277630 0.452301i
\(553\) 213.711 + 419.431i 0.386457 + 0.758465i
\(554\) 21.3253 31.0449i 0.0384934 0.0560377i
\(555\) 54.4479 + 83.6895i 0.0981043 + 0.150792i
\(556\) 237.233 + 617.106i 0.426679 + 1.10990i
\(557\) 134.416 + 68.4883i 0.241321 + 0.122959i 0.570469 0.821319i \(-0.306761\pi\)
−0.329148 + 0.944278i \(0.606761\pi\)
\(558\) −93.1374 44.3961i −0.166913 0.0795629i
\(559\) 955.530 + 694.233i 1.70936 + 1.24192i
\(560\) −97.2327 453.388i −0.173630 0.809621i
\(561\) −45.1254 + 301.703i −0.0804374 + 0.537795i
\(562\) 760.149 + 99.8851i 1.35258 + 0.177731i
\(563\) 761.878 120.670i 1.35325 0.214333i 0.562663 0.826686i \(-0.309777\pi\)
0.790584 + 0.612353i \(0.209777\pi\)
\(564\) 244.015 376.155i 0.432650 0.666941i
\(565\) 671.595 + 386.999i 1.18866 + 0.684954i
\(566\) −851.410 251.971i −1.50426 0.445179i
\(567\) −179.006 28.3517i −0.315707 0.0500031i
\(568\) −11.3830 + 146.013i −0.0200405 + 0.257066i
\(569\) −228.564 + 703.449i −0.401695 + 1.23629i 0.521929 + 0.852989i \(0.325213\pi\)
−0.923624 + 0.383300i \(0.874787\pi\)
\(570\) −14.5289 + 578.725i −0.0254893 + 1.01531i
\(571\) 856.728 1.50040 0.750200 0.661211i \(-0.229957\pi\)
0.750200 + 0.661211i \(0.229957\pi\)
\(572\) 651.666 + 168.270i 1.13928 + 0.294178i
\(573\) −382.011 + 382.011i −0.666687 + 0.666687i
\(574\) 24.3891 + 922.699i 0.0424897 + 1.60749i
\(575\) 376.939 145.415i 0.655547 0.252896i
\(576\) −220.594 111.988i −0.382976 0.194424i
\(577\) −819.702 129.828i −1.42063 0.225005i −0.601617 0.798784i \(-0.705477\pi\)
−0.819010 + 0.573779i \(0.805477\pi\)
\(578\) −244.646 + 132.910i −0.423263 + 0.229948i
\(579\) 100.615 32.6917i 0.173773 0.0564624i
\(580\) −609.287 + 840.955i −1.05050 + 1.44992i
\(581\) 290.790 + 211.271i 0.500499 + 0.363634i
\(582\) 229.235 + 30.1220i 0.393875 + 0.0517560i
\(583\) 232.458 + 73.3232i 0.398727 + 0.125769i
\(584\) −758.036 + 314.645i −1.29801 + 0.538775i
\(585\) 293.996 31.1481i 0.502557 0.0532447i
\(586\) −136.499 385.160i −0.232934 0.657270i
\(587\) 239.702 + 122.134i 0.408351 + 0.208065i 0.646086 0.763265i \(-0.276405\pi\)
−0.237735 + 0.971330i \(0.576405\pi\)
\(588\) −56.7250 + 127.575i −0.0964711 + 0.216965i
\(589\) −275.846 + 200.414i −0.468329 + 0.340261i
\(590\) 484.077 64.2621i 0.820470 0.108919i
\(591\) 93.4679 287.665i 0.158152 0.486742i
\(592\) −50.3999 + 131.684i −0.0851350 + 0.222439i
\(593\) −210.325 210.325i −0.354680 0.354680i 0.507167 0.861848i \(-0.330693\pi\)
−0.861848 + 0.507167i \(0.830693\pi\)
\(594\) −122.459 629.555i −0.206159 1.05986i
\(595\) −354.225 18.2679i −0.595337 0.0307024i
\(596\) −119.609 147.556i −0.200686 0.247578i
\(597\) 678.218 345.570i 1.13604 0.578843i
\(598\) 90.2166 + 486.097i 0.150864 + 0.812872i
\(599\) −869.672 + 631.853i −1.45187 + 1.05485i −0.466483 + 0.884530i \(0.654479\pi\)
−0.985389 + 0.170317i \(0.945521\pi\)
\(600\) −275.017 + 360.201i −0.458362 + 0.600336i
\(601\) −513.641 + 166.892i −0.854644 + 0.277691i −0.703390 0.710804i \(-0.748331\pi\)
−0.151254 + 0.988495i \(0.548331\pi\)
\(602\) 808.000 + 385.152i 1.34219 + 0.639788i
\(603\) −4.37670 27.6334i −0.00725821 0.0458265i
\(604\) −17.1908 4.59720i −0.0284617 0.00761126i
\(605\) 568.639 + 206.579i 0.939899 + 0.341453i
\(606\) 220.230 + 286.863i 0.363416 + 0.473372i
\(607\) −142.206 897.855i −0.234277 1.47917i −0.771771 0.635900i \(-0.780629\pi\)
0.537494 0.843267i \(-0.319371\pi\)
\(608\) −673.188 + 463.890i −1.10722 + 0.762978i
\(609\) −648.584 + 210.738i −1.06500 + 0.346039i
\(610\) −850.761 + 406.921i −1.39469 + 0.667084i
\(611\) −612.173 + 444.769i −1.00192 + 0.727937i
\(612\) −126.556 + 140.694i −0.206791 + 0.229892i
\(613\) −251.624 + 128.209i −0.410480 + 0.209150i −0.647022 0.762471i \(-0.723986\pi\)
0.236542 + 0.971621i \(0.423986\pi\)
\(614\) −557.295 + 14.7306i −0.907647 + 0.0239912i
\(615\) 669.890 604.184i 1.08925 0.982414i
\(616\) 508.846 + 35.2632i 0.826048 + 0.0572455i
\(617\) −201.200 201.200i −0.326094 0.326094i 0.525005 0.851099i \(-0.324063\pi\)
−0.851099 + 0.525005i \(0.824063\pi\)
\(618\) 126.405 + 119.895i 0.204539 + 0.194004i
\(619\) −92.1660 + 283.658i −0.148895 + 0.458252i −0.997491 0.0707893i \(-0.977448\pi\)
0.848596 + 0.529041i \(0.177448\pi\)
\(620\) −266.918 + 0.354049i −0.430513 + 0.000571048i
\(621\) 381.147 276.919i 0.613763 0.445925i
\(622\) 820.599 445.810i 1.31929 0.716737i
\(623\) 57.9711 + 29.5377i 0.0930515 + 0.0474121i
\(624\) −371.486 411.761i −0.595330 0.659873i
\(625\) −419.754 463.068i −0.671606 0.740908i
\(626\) 652.703 + 850.185i 1.04266 + 1.35812i
\(627\) −607.303 191.559i −0.968586 0.305517i
\(628\) 37.0596 + 64.1161i 0.0590120 + 0.102096i
\(629\) 87.2563 + 63.3954i 0.138722 + 0.100788i
\(630\) 214.758 63.8665i 0.340885 0.101375i
\(631\) −181.799 + 59.0701i −0.288113 + 0.0936135i −0.449508 0.893276i \(-0.648401\pi\)
0.161395 + 0.986890i \(0.448401\pi\)
\(632\) 631.656 152.141i 0.999455 0.240729i
\(633\) −251.667 39.8601i −0.397578 0.0629701i
\(634\) 20.3832 + 14.0016i 0.0321501 + 0.0220845i
\(635\) 733.306 327.222i 1.15481 0.515310i
\(636\) −126.472 156.022i −0.198855 0.245318i
\(637\) 166.612 166.612i 0.261557 0.261557i
\(638\) −703.404 900.073i −1.10251 1.41077i
\(639\) −70.7661 −0.110745
\(640\) −639.821 15.1170i −0.999721 0.0236203i
\(641\) −168.963 + 520.014i −0.263593 + 0.811255i 0.728422 + 0.685129i \(0.240254\pi\)
−0.992014 + 0.126126i \(0.959746\pi\)
\(642\) 1.98281 + 10.6836i 0.00308849 + 0.0166411i
\(643\) 87.4537 + 13.8513i 0.136009 + 0.0215417i 0.224068 0.974574i \(-0.428066\pi\)
−0.0880588 + 0.996115i \(0.528066\pi\)
\(644\) 134.446 + 349.729i 0.208767 + 0.543058i
\(645\) −227.124 844.819i −0.352130 1.30980i
\(646\) 208.896 + 589.443i 0.323368 + 0.912450i
\(647\) 512.994 81.2502i 0.792881 0.125580i 0.253160 0.967424i \(-0.418530\pi\)
0.539720 + 0.841844i \(0.318530\pi\)
\(648\) −95.5560 + 231.175i −0.147463 + 0.356752i
\(649\) −79.4581 + 531.247i −0.122432 + 0.818563i
\(650\) 651.349 400.864i 1.00208 0.616714i
\(651\) −141.807 103.029i −0.217830 0.158263i
\(652\) −565.928 + 120.583i −0.867988 + 0.184943i
\(653\) 404.694 + 206.202i 0.619747 + 0.315777i 0.735524 0.677499i \(-0.236936\pi\)
−0.115778 + 0.993275i \(0.536936\pi\)
\(654\) 45.4178 153.467i 0.0694462 0.234659i
\(655\) 271.457 176.609i 0.414439 0.269631i
\(656\) 1246.39 + 263.645i 1.89998 + 0.401898i
\(657\) −180.041 353.350i −0.274035 0.537823i
\(658\) −394.640 + 416.069i −0.599757 + 0.632324i
\(659\) 513.775i 0.779628i 0.920894 + 0.389814i \(0.127461\pi\)
−0.920894 + 0.389814i \(0.872539\pi\)
\(660\) −297.008 400.369i −0.450013 0.606620i
\(661\) 98.3245 0.148751 0.0743756 0.997230i \(-0.476304\pi\)
0.0743756 + 0.997230i \(0.476304\pi\)
\(662\) −343.532 325.839i −0.518930 0.492203i
\(663\) −377.973 + 192.587i −0.570095 + 0.290478i
\(664\) 376.998 322.469i 0.567768 0.485645i
\(665\) 153.337 724.362i 0.230581 1.08927i
\(666\) −65.3284 19.3337i −0.0980907 0.0290295i
\(667\) 380.954 747.665i 0.571146 1.12094i
\(668\) 146.358 31.1847i 0.219099 0.0466837i
\(669\) 308.386 424.457i 0.460965 0.634464i
\(670\) −41.0599 59.6044i −0.0612834 0.0889618i
\(671\) −171.099 1023.17i −0.254990 1.52484i
\(672\) −333.748 255.442i −0.496649 0.380122i
\(673\) −63.4796 400.795i −0.0943234 0.595534i −0.988896 0.148611i \(-0.952520\pi\)
0.894572 0.446923i \(-0.147480\pi\)
\(674\) 277.302 98.2748i 0.411428 0.145808i
\(675\) −611.895 395.920i −0.906511 0.586547i
\(676\) 93.2649 + 242.606i 0.137966 + 0.358885i
\(677\) 107.145 676.485i 0.158264 0.999239i −0.772871 0.634564i \(-0.781180\pi\)
0.931135 0.364676i \(-0.118820\pi\)
\(678\) 690.753 128.199i 1.01881 0.189085i
\(679\) −281.236 91.3791i −0.414191 0.134579i
\(680\) −138.303 + 469.614i −0.203387 + 0.690609i
\(681\) 204.389i 0.300131i
\(682\) 80.8929 282.247i 0.118611 0.413851i
\(683\) −522.218 522.218i −0.764595 0.764595i 0.212555 0.977149i \(-0.431822\pi\)
−0.977149 + 0.212555i \(0.931822\pi\)
\(684\) −248.750 306.872i −0.363670 0.448643i
\(685\) −687.861 + 306.943i −1.00418 + 0.448092i
\(686\) 422.726 615.395i 0.616219 0.897077i
\(687\) −40.0948 + 253.148i −0.0583621 + 0.368484i
\(688\) 776.536 960.875i 1.12869 1.39662i
\(689\) 104.742 + 322.361i 0.152020 + 0.467868i
\(690\) 174.383 322.003i 0.252730 0.466671i
\(691\) −687.245 + 945.912i −0.994566 + 1.36890i −0.0659660 + 0.997822i \(0.521013\pi\)
−0.928600 + 0.371081i \(0.878987\pi\)
\(692\) 284.071 + 491.466i 0.410507 + 0.710211i
\(693\) 2.12231 + 246.449i 0.00306249 + 0.355626i
\(694\) 327.126 251.141i 0.471363 0.361874i
\(695\) −519.546 + 642.681i −0.747549 + 0.924721i
\(696\) 74.5429 + 938.296i 0.107102 + 1.34813i
\(697\) 442.412 868.283i 0.634738 1.24574i
\(698\) 168.892 + 310.878i 0.241966 + 0.445384i
\(699\) 137.577 + 189.359i 0.196820 + 0.270899i
\(700\) 429.903 388.772i 0.614147 0.555388i
\(701\) 241.466 + 78.4571i 0.344459 + 0.111922i 0.476137 0.879371i \(-0.342036\pi\)
−0.131678 + 0.991293i \(0.542036\pi\)
\(702\) 613.753 647.080i 0.874292 0.921766i
\(703\) −159.200 + 159.200i −0.226457 + 0.226457i
\(704\) 210.782 671.704i 0.299407 0.954126i
\(705\) 559.719 + 28.8655i 0.793927 + 0.0409440i
\(706\) 13.6785 + 517.492i 0.0193747 + 0.732991i
\(707\) −209.992 412.132i −0.297018 0.582931i
\(708\) 295.999 329.066i 0.418078 0.464782i
\(709\) −104.083 143.258i −0.146803 0.202057i 0.729283 0.684213i \(-0.239854\pi\)
−0.876086 + 0.482156i \(0.839854\pi\)
\(710\) −165.152 + 78.9924i −0.232608 + 0.111257i
\(711\) 97.0119 + 298.572i 0.136444 + 0.419932i
\(712\) 58.2700 68.3276i 0.0818399 0.0959657i
\(713\) 213.023 33.7395i 0.298770 0.0473205i
\(714\) −255.006 + 195.772i −0.357151 + 0.274191i
\(715\) 225.410 + 810.541i 0.315259 + 1.13362i
\(716\) −641.684 171.600i −0.896206 0.239665i
\(717\) 215.250 34.0923i 0.300210 0.0475486i
\(718\) −102.262 + 214.533i −0.142426 + 0.298793i
\(719\) −165.942 510.715i −0.230795 0.710314i −0.997651 0.0684951i \(-0.978180\pi\)
0.766857 0.641818i \(-0.221820\pi\)
\(720\) −16.7461 308.787i −0.0232584 0.428871i
\(721\) −130.974 180.270i −0.181656 0.250027i
\(722\) −573.627 + 106.462i −0.794497 + 0.147454i
\(723\) −148.700 291.841i −0.205671 0.403653i
\(724\) −107.450 132.556i −0.148412 0.183089i
\(725\) −1291.21 133.535i −1.78098 0.184186i
\(726\) 513.629 192.047i 0.707477 0.264527i
\(727\) 311.604 311.604i 0.428616 0.428616i −0.459541 0.888157i \(-0.651986\pi\)
0.888157 + 0.459541i \(0.151986\pi\)
\(728\) 371.048 + 604.493i 0.509682 + 0.830347i
\(729\) −680.375 221.067i −0.933299 0.303247i
\(730\) −814.598 623.666i −1.11589 0.854338i
\(731\) −555.469 764.537i −0.759875 1.04588i
\(732\) −347.284 + 781.048i −0.474432 + 1.06701i
\(733\) 281.430 552.338i 0.383943 0.753531i −0.615457 0.788171i \(-0.711028\pi\)
0.999400 + 0.0346400i \(0.0110285\pi\)
\(734\) −789.656 + 279.851i −1.07583 + 0.381268i
\(735\) −173.551 + 18.3873i −0.236124 + 0.0250168i
\(736\) 512.633 68.1315i 0.696512 0.0925700i
\(737\) 75.5047 25.2538i 0.102449 0.0342657i
\(738\) −80.1973 + 610.320i −0.108668 + 0.826992i
\(739\) −570.920 + 785.804i −0.772558 + 1.06333i 0.223506 + 0.974702i \(0.428250\pi\)
−0.996064 + 0.0886324i \(0.971750\pi\)
\(740\) −174.042 + 27.8023i −0.235192 + 0.0375707i
\(741\) −273.640 842.178i −0.369285 1.13654i
\(742\) 122.626 + 225.716i 0.165264 + 0.304200i
\(743\) 53.6467 338.712i 0.0722028 0.455870i −0.924926 0.380147i \(-0.875873\pi\)
0.997129 0.0757234i \(-0.0241266\pi\)
\(744\) −183.848 + 157.256i −0.247107 + 0.211365i
\(745\) 84.9029 221.732i 0.113964 0.297627i
\(746\) 1181.42 31.2276i 1.58367 0.0418601i
\(747\) 169.500 + 169.500i 0.226908 + 0.226908i
\(748\) −454.285 289.171i −0.607333 0.386592i
\(749\) 13.8975i 0.0185548i
\(750\) −561.840 72.3974i −0.749120 0.0965298i
\(751\) 183.845 + 59.7347i 0.244800 + 0.0795402i 0.428847 0.903377i \(-0.358920\pi\)
−0.184047 + 0.982917i \(0.558920\pi\)
\(752\) 431.732 + 663.378i 0.574112 + 0.882152i
\(753\) −35.3684 + 223.307i −0.0469700 + 0.296557i
\(754\) 450.782 1523.19i 0.597854 2.02015i
\(755\) −5.77500 21.4809i −0.00764901 0.0284515i
\(756\) 367.840 567.035i 0.486561 0.750046i
\(757\) −23.9273 151.071i −0.0316080 0.199565i 0.966831 0.255417i \(-0.0822126\pi\)
−0.998439 + 0.0558515i \(0.982213\pi\)
\(758\) −111.709 + 850.135i −0.147374 + 1.12155i
\(759\) 287.272 + 282.366i 0.378487 + 0.372024i
\(760\) −923.068 438.500i −1.21456 0.576974i
\(761\) 388.289 534.434i 0.510236 0.702279i −0.473723 0.880674i \(-0.657090\pi\)
0.983959 + 0.178395i \(0.0570904\pi\)
\(762\) 313.174 656.999i 0.410989 0.862203i
\(763\) −92.9304 + 182.386i −0.121796 + 0.239038i
\(764\) −342.207 890.169i −0.447915 1.16514i
\(765\) −231.420 48.9881i −0.302510 0.0640367i
\(766\) −310.148 213.046i −0.404893 0.278128i
\(767\) −665.545 + 339.112i −0.867725 + 0.442128i
\(768\) −450.088 + 365.944i −0.586052 + 0.476490i
\(769\) 13.4574 0.0174999 0.00874994 0.999962i \(-0.497215\pi\)