Properties

Label 220.3.w.a.7.15
Level $220$
Weight $3$
Character 220.7
Analytic conductor $5.995$
Analytic rank $0$
Dimension $544$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(7,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 5, 14]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(544\)
Relative dimension: \(68\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.15
Character \(\chi\) \(=\) 220.7
Dual form 220.3.w.a.63.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57651 - 1.23070i) q^{2} +(-3.31218 + 1.68764i) q^{3} +(0.970777 + 3.88041i) q^{4} +(0.464993 + 4.97833i) q^{5} +(7.29866 + 1.41570i) q^{6} +(5.48368 - 10.7623i) q^{7} +(3.24516 - 7.31224i) q^{8} +(2.83235 - 3.89839i) q^{9} +(5.39374 - 8.42066i) q^{10} +(5.61283 + 9.46024i) q^{11} +(-9.76413 - 11.2143i) q^{12} +(0.930957 + 5.87783i) q^{13} +(-21.8902 + 10.2182i) q^{14} +(-9.94178 - 15.7044i) q^{15} +(-14.1152 + 7.53403i) q^{16} +(-2.47078 + 15.5999i) q^{17} +(-9.26297 + 2.66010i) q^{18} +(-17.8686 - 5.80587i) q^{19} +(-18.8666 + 6.63721i) q^{20} +44.9012i q^{21} +(2.79399 - 21.8219i) q^{22} +(-0.129068 - 0.129068i) q^{23} +(1.59187 + 29.6962i) q^{24} +(-24.5676 + 4.62978i) q^{25} +(5.76615 - 10.4122i) q^{26} +(2.43153 - 15.3521i) q^{27} +(47.0857 + 10.8311i) q^{28} +(9.02940 + 27.7896i) q^{29} +(-3.65401 + 36.9935i) q^{30} +(-24.5635 + 33.8088i) q^{31} +(31.5248 + 5.49402i) q^{32} +(-34.5562 - 21.8616i) q^{33} +(23.0939 - 21.5526i) q^{34} +(56.1283 + 22.2952i) q^{35} +(17.8770 + 7.20621i) q^{36} +(-5.76994 + 11.3241i) q^{37} +(21.0248 + 31.1438i) q^{38} +(-13.0032 - 17.8973i) q^{39} +(37.9117 + 12.7554i) q^{40} +(-24.3151 - 7.90045i) q^{41} +(55.2598 - 70.7873i) q^{42} +(-44.4485 + 44.4485i) q^{43} +(-31.2608 + 30.9639i) q^{44} +(20.7245 + 12.2876i) q^{45} +(0.0446339 + 0.362322i) q^{46} +(-24.9005 - 48.8700i) q^{47} +(34.0373 - 48.7754i) q^{48} +(-56.9554 - 78.3923i) q^{49} +(44.4289 + 22.9363i) q^{50} +(-18.1433 - 55.8394i) q^{51} +(-21.9046 + 9.31855i) q^{52} +(10.9664 - 1.73691i) q^{53} +(-22.7270 + 21.2102i) q^{54} +(-44.4863 + 32.3415i) q^{55} +(-60.9013 - 75.0235i) q^{56} +(68.9823 - 10.9257i) q^{57} +(19.9656 - 54.9231i) q^{58} +(8.53987 + 26.2830i) q^{59} +(51.2883 - 53.8236i) q^{60} +(26.8435 + 36.9469i) q^{61} +(80.3329 - 23.0697i) q^{62} +(-26.4241 - 51.8602i) q^{63} +(-42.9378 - 47.4589i) q^{64} +(-28.8289 + 7.36776i) q^{65} +(27.5733 + 76.9932i) q^{66} +(-79.0469 + 79.0469i) q^{67} +(-62.9325 + 5.55636i) q^{68} +(0.645319 + 0.209677i) q^{69} +(-61.0483 - 104.225i) q^{70} +(56.4177 + 77.6523i) q^{71} +(-19.3146 - 33.3618i) q^{72} +(10.9558 - 21.5021i) q^{73} +(23.0329 - 10.7516i) q^{74} +(73.5588 - 56.7959i) q^{75} +(5.18271 - 74.9738i) q^{76} +(132.593 - 8.53013i) q^{77} +(-1.52652 + 44.2183i) q^{78} +(27.9655 - 38.4912i) q^{79} +(-44.0703 - 66.7668i) q^{80} +(31.2566 + 96.1979i) q^{81} +(28.6100 + 42.3796i) q^{82} +(4.01934 - 25.3771i) q^{83} +(-174.235 + 43.5891i) q^{84} +(-78.8103 - 5.04652i) q^{85} +(124.776 - 15.3710i) q^{86} +(-76.8059 - 76.8059i) q^{87} +(87.3901 - 10.3423i) q^{88} +59.2376i q^{89} +(-17.5501 - 44.8772i) q^{90} +(68.3641 + 22.2129i) q^{91} +(0.375542 - 0.626135i) q^{92} +(24.3017 - 153.435i) q^{93} +(-20.8882 + 107.689i) q^{94} +(20.5947 - 91.6556i) q^{95} +(-113.688 + 35.0054i) q^{96} +(-28.7204 - 181.333i) q^{97} +(-6.68631 + 193.681i) q^{98} +(52.7772 + 4.91370i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 544 q - 10 q^{2} - 12 q^{5} - 20 q^{6} - 10 q^{8} - 28 q^{12} - 20 q^{13} - 36 q^{16} - 20 q^{17} - 10 q^{18} - 40 q^{20} + 86 q^{22} - 12 q^{25} + 140 q^{26} - 10 q^{28} - 370 q^{30} - 100 q^{33} - 476 q^{36}+ \cdots + 148 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.57651 1.23070i −0.788256 0.615348i
\(3\) −3.31218 + 1.68764i −1.10406 + 0.562547i −0.908391 0.418123i \(-0.862688\pi\)
−0.195670 + 0.980670i \(0.562688\pi\)
\(4\) 0.970777 + 3.88041i 0.242694 + 0.970103i
\(5\) 0.464993 + 4.97833i 0.0929986 + 0.995666i
\(6\) 7.29866 + 1.41570i 1.21644 + 0.235950i
\(7\) 5.48368 10.7623i 0.783382 1.53747i −0.0587928 0.998270i \(-0.518725\pi\)
0.842175 0.539204i \(-0.181275\pi\)
\(8\) 3.24516 7.31224i 0.405646 0.914030i
\(9\) 2.83235 3.89839i 0.314705 0.433155i
\(10\) 5.39374 8.42066i 0.539374 0.842066i
\(11\) 5.61283 + 9.46024i 0.510257 + 0.860022i
\(12\) −9.76413 11.2143i −0.813678 0.934525i
\(13\) 0.930957 + 5.87783i 0.0716120 + 0.452141i 0.997274 + 0.0737888i \(0.0235091\pi\)
−0.925662 + 0.378352i \(0.876491\pi\)
\(14\) −21.8902 + 10.2182i −1.56359 + 0.729870i
\(15\) −9.94178 15.7044i −0.662785 1.04696i
\(16\) −14.1152 + 7.53403i −0.882199 + 0.470877i
\(17\) −2.47078 + 15.5999i −0.145340 + 0.917640i 0.801980 + 0.597351i \(0.203780\pi\)
−0.947320 + 0.320289i \(0.896220\pi\)
\(18\) −9.26297 + 2.66010i −0.514609 + 0.147784i
\(19\) −17.8686 5.80587i −0.940454 0.305572i −0.201623 0.979463i \(-0.564622\pi\)
−0.738831 + 0.673891i \(0.764622\pi\)
\(20\) −18.8666 + 6.63721i −0.943328 + 0.331861i
\(21\) 44.9012i 2.13815i
\(22\) 2.79399 21.8219i 0.127000 0.991903i
\(23\) −0.129068 0.129068i −0.00561167 0.00561167i 0.704295 0.709907i \(-0.251263\pi\)
−0.709907 + 0.704295i \(0.751263\pi\)
\(24\) 1.59187 + 29.6962i 0.0663278 + 1.23734i
\(25\) −24.5676 + 4.62978i −0.982703 + 0.185191i
\(26\) 5.76615 10.4122i 0.221775 0.400469i
\(27\) 2.43153 15.3521i 0.0900566 0.568595i
\(28\) 47.0857 + 10.8311i 1.68163 + 0.386825i
\(29\) 9.02940 + 27.7896i 0.311359 + 0.958263i 0.977227 + 0.212194i \(0.0680610\pi\)
−0.665869 + 0.746069i \(0.731939\pi\)
\(30\) −3.65401 + 36.9935i −0.121800 + 1.23312i
\(31\) −24.5635 + 33.8088i −0.792371 + 1.09060i 0.201438 + 0.979501i \(0.435439\pi\)
−0.993809 + 0.111104i \(0.964561\pi\)
\(32\) 31.5248 + 5.49402i 0.985151 + 0.171688i
\(33\) −34.5562 21.8616i −1.04716 0.662473i
\(34\) 23.0939 21.5526i 0.679233 0.633900i
\(35\) 56.1283 + 22.2952i 1.60366 + 0.637004i
\(36\) 17.8770 + 7.20621i 0.496582 + 0.200172i
\(37\) −5.76994 + 11.3241i −0.155944 + 0.306058i −0.955739 0.294216i \(-0.904942\pi\)
0.799795 + 0.600274i \(0.204942\pi\)
\(38\) 21.0248 + 31.1438i 0.553285 + 0.819575i
\(39\) −13.0032 17.8973i −0.333414 0.458906i
\(40\) 37.9117 + 12.7554i 0.947794 + 0.318884i
\(41\) −24.3151 7.90045i −0.593051 0.192694i −0.00291203 0.999996i \(-0.500927\pi\)
−0.590139 + 0.807302i \(0.700927\pi\)
\(42\) 55.2598 70.7873i 1.31571 1.68541i
\(43\) −44.4485 + 44.4485i −1.03369 + 1.03369i −0.0342742 + 0.999412i \(0.510912\pi\)
−0.999412 + 0.0342742i \(0.989088\pi\)
\(44\) −31.2608 + 30.9639i −0.710473 + 0.703724i
\(45\) 20.7245 + 12.2876i 0.460545 + 0.273059i
\(46\) 0.0446339 + 0.362322i 0.000970302 + 0.00787656i
\(47\) −24.9005 48.8700i −0.529799 1.03979i −0.988503 0.151199i \(-0.951686\pi\)
0.458705 0.888589i \(-0.348314\pi\)
\(48\) 34.0373 48.7754i 0.709111 1.01615i
\(49\) −56.9554 78.3923i −1.16235 1.59984i
\(50\) 44.4289 + 22.9363i 0.888578 + 0.458726i
\(51\) −18.1433 55.8394i −0.355752 1.09489i
\(52\) −21.9046 + 9.31855i −0.421243 + 0.179203i
\(53\) 10.9664 1.73691i 0.206913 0.0327718i −0.0521174 0.998641i \(-0.516597\pi\)
0.259030 + 0.965869i \(0.416597\pi\)
\(54\) −22.7270 + 21.2102i −0.420871 + 0.392782i
\(55\) −44.4863 + 32.3415i −0.808842 + 0.588026i
\(56\) −60.9013 75.0235i −1.08752 1.33970i
\(57\) 68.9823 10.9257i 1.21022 0.191679i
\(58\) 19.9656 54.9231i 0.344235 0.946950i
\(59\) 8.53987 + 26.2830i 0.144743 + 0.445475i 0.996978 0.0776854i \(-0.0247530\pi\)
−0.852234 + 0.523160i \(0.824753\pi\)
\(60\) 51.2883 53.8236i 0.854805 0.897061i
\(61\) 26.8435 + 36.9469i 0.440058 + 0.605688i 0.970225 0.242206i \(-0.0778708\pi\)
−0.530167 + 0.847893i \(0.677871\pi\)
\(62\) 80.3329 23.0697i 1.29569 0.372092i
\(63\) −26.4241 51.8602i −0.419430 0.823177i
\(64\) −42.9378 47.4589i −0.670903 0.741545i
\(65\) −28.8289 + 7.36776i −0.443521 + 0.113350i
\(66\) 27.5733 + 76.9932i 0.417777 + 1.16656i
\(67\) −79.0469 + 79.0469i −1.17980 + 1.17980i −0.200010 + 0.979794i \(0.564098\pi\)
−0.979794 + 0.200010i \(0.935902\pi\)
\(68\) −62.9325 + 5.55636i −0.925478 + 0.0817112i
\(69\) 0.645319 + 0.209677i 0.00935245 + 0.00303879i
\(70\) −61.0483 104.225i −0.872119 1.48893i
\(71\) 56.4177 + 77.6523i 0.794616 + 1.09369i 0.993518 + 0.113675i \(0.0362624\pi\)
−0.198902 + 0.980019i \(0.563738\pi\)
\(72\) −19.3146 33.3618i −0.268258 0.463358i
\(73\) 10.9558 21.5021i 0.150080 0.294549i −0.803711 0.595020i \(-0.797144\pi\)
0.953791 + 0.300471i \(0.0971440\pi\)
\(74\) 23.0329 10.7516i 0.311256 0.145292i
\(75\) 73.5588 56.7959i 0.980784 0.757279i
\(76\) 5.18271 74.9738i 0.0681936 0.986497i
\(77\) 132.593 8.53013i 1.72199 0.110781i
\(78\) −1.52652 + 44.2183i −0.0195707 + 0.566901i
\(79\) 27.9655 38.4912i 0.353994 0.487231i −0.594469 0.804118i \(-0.702638\pi\)
0.948463 + 0.316888i \(0.102638\pi\)
\(80\) −44.0703 66.7668i −0.550879 0.834585i
\(81\) 31.2566 + 96.1979i 0.385884 + 1.18763i
\(82\) 28.6100 + 42.3796i 0.348902 + 0.516824i
\(83\) 4.01934 25.3771i 0.0484258 0.305749i −0.951573 0.307424i \(-0.900533\pi\)
0.999999 + 0.00167499i \(0.000533166\pi\)
\(84\) −174.235 + 43.5891i −2.07423 + 0.518918i
\(85\) −78.8103 5.04652i −0.927179 0.0593708i
\(86\) 124.776 15.3710i 1.45089 0.178733i
\(87\) −76.8059 76.8059i −0.882827 0.882827i
\(88\) 87.3901 10.3423i 0.993070 0.117526i
\(89\) 59.2376i 0.665591i 0.942999 + 0.332795i \(0.107992\pi\)
−0.942999 + 0.332795i \(0.892008\pi\)
\(90\) −17.5501 44.8772i −0.195001 0.498635i
\(91\) 68.3641 + 22.2129i 0.751254 + 0.244097i
\(92\) 0.375542 0.626135i 0.00408198 0.00680581i
\(93\) 24.3017 153.435i 0.261309 1.64984i
\(94\) −20.8882 + 107.689i −0.222215 + 1.14563i
\(95\) 20.5947 91.6556i 0.216787 0.964796i
\(96\) −113.688 + 35.0054i −1.18425 + 0.364640i
\(97\) −28.7204 181.333i −0.296087 1.86942i −0.467180 0.884162i \(-0.654730\pi\)
0.171093 0.985255i \(-0.445270\pi\)
\(98\) −6.68631 + 193.681i −0.0682277 + 1.97634i
\(99\) 52.7772 + 4.91370i 0.533103 + 0.0496333i
\(100\) −41.8151 90.8378i −0.418151 0.908378i
\(101\) 59.2466 81.5459i 0.586600 0.807386i −0.407800 0.913071i \(-0.633704\pi\)
0.994400 + 0.105686i \(0.0337038\pi\)
\(102\) −40.1182 + 110.360i −0.393315 + 1.08196i
\(103\) −35.9777 + 70.6103i −0.349298 + 0.685537i −0.997086 0.0762842i \(-0.975694\pi\)
0.647788 + 0.761821i \(0.275694\pi\)
\(104\) 46.0012 + 12.2671i 0.442319 + 0.117953i
\(105\) −223.533 + 20.8788i −2.12889 + 0.198845i
\(106\) −19.4262 10.7580i −0.183266 0.101491i
\(107\) −55.9891 + 28.5279i −0.523262 + 0.266615i −0.695609 0.718421i \(-0.744865\pi\)
0.172346 + 0.985036i \(0.444865\pi\)
\(108\) 61.9328 5.46809i 0.573452 0.0506305i
\(109\) 149.379 1.37045 0.685224 0.728332i \(-0.259704\pi\)
0.685224 + 0.728332i \(0.259704\pi\)
\(110\) 109.936 + 3.76241i 0.999415 + 0.0342038i
\(111\) 47.2452i 0.425632i
\(112\) 3.68050 + 193.226i 0.0328616 + 1.72523i
\(113\) 89.2953 + 175.252i 0.790224 + 1.55090i 0.833938 + 0.551858i \(0.186081\pi\)
−0.0437141 + 0.999044i \(0.513919\pi\)
\(114\) −122.198 67.6717i −1.07191 0.593612i
\(115\) 0.582529 0.702561i 0.00506547 0.00610922i
\(116\) −99.0697 + 62.0153i −0.854049 + 0.534615i
\(117\) 25.5509 + 13.0188i 0.218384 + 0.111272i
\(118\) 18.8832 51.9454i 0.160027 0.440216i
\(119\) 154.342 + 112.136i 1.29699 + 0.942319i
\(120\) −147.097 + 21.7333i −1.22581 + 0.181111i
\(121\) −57.9924 + 106.197i −0.479276 + 0.877664i
\(122\) 3.15131 91.2835i 0.0258304 0.748225i
\(123\) 93.8691 14.8674i 0.763163 0.120873i
\(124\) −155.038 62.4957i −1.25030 0.503998i
\(125\) −34.4723 120.153i −0.275778 0.961221i
\(126\) −22.1662 + 114.278i −0.175922 + 0.906970i
\(127\) −53.8942 8.53601i −0.424364 0.0672127i −0.0593999 0.998234i \(-0.518919\pi\)
−0.364964 + 0.931022i \(0.618919\pi\)
\(128\) 9.28453 + 127.663i 0.0725354 + 0.997366i
\(129\) 72.2085 222.235i 0.559755 1.72275i
\(130\) 54.5165 + 23.8642i 0.419358 + 0.183571i
\(131\) 48.0065 0.366461 0.183231 0.983070i \(-0.441344\pi\)
0.183231 + 0.983070i \(0.441344\pi\)
\(132\) 51.2857 155.315i 0.388528 1.17663i
\(133\) −160.470 + 160.470i −1.20654 + 1.20654i
\(134\) 221.901 27.3357i 1.65598 0.203998i
\(135\) 77.5583 + 4.96635i 0.574506 + 0.0367878i
\(136\) 106.052 + 68.6911i 0.779794 + 0.505082i
\(137\) −56.9257 9.01615i −0.415516 0.0658113i −0.0548237 0.998496i \(-0.517460\pi\)
−0.360693 + 0.932685i \(0.617460\pi\)
\(138\) −0.759304 1.12475i −0.00550220 0.00815035i
\(139\) 155.921 50.6618i 1.12173 0.364474i 0.311305 0.950310i \(-0.399234\pi\)
0.810429 + 0.585836i \(0.199234\pi\)
\(140\) −32.0264 + 239.444i −0.228760 + 1.71032i
\(141\) 164.950 + 119.843i 1.16986 + 0.849953i
\(142\) 6.62320 191.853i 0.0466422 1.35108i
\(143\) −50.3804 + 41.7983i −0.352310 + 0.292296i
\(144\) −10.6085 + 76.3655i −0.0736703 + 0.530316i
\(145\) −134.147 + 57.8733i −0.925154 + 0.399126i
\(146\) −43.7345 + 20.4149i −0.299551 + 0.139828i
\(147\) 320.945 + 163.529i 2.18330 + 1.11245i
\(148\) −49.5437 11.3965i −0.334754 0.0770035i
\(149\) −111.889 + 81.2921i −0.750933 + 0.545585i −0.896116 0.443820i \(-0.853623\pi\)
0.145183 + 0.989405i \(0.453623\pi\)
\(150\) −185.865 0.989161i −1.23910 0.00659441i
\(151\) −7.39602 + 22.7626i −0.0489803 + 0.150746i −0.972555 0.232672i \(-0.925253\pi\)
0.923575 + 0.383418i \(0.125253\pi\)
\(152\) −100.441 + 111.819i −0.660793 + 0.735649i
\(153\) 53.8164 + 53.8164i 0.351741 + 0.351741i
\(154\) −219.532 149.734i −1.42554 0.972298i
\(155\) −179.733 106.564i −1.15957 0.687512i
\(156\) 56.8258 67.8319i 0.364268 0.434820i
\(157\) 79.3251 40.4182i 0.505255 0.257441i −0.182732 0.983163i \(-0.558494\pi\)
0.687988 + 0.725722i \(0.258494\pi\)
\(158\) −91.4589 + 26.2648i −0.578854 + 0.166233i
\(159\) −33.3914 + 24.2603i −0.210009 + 0.152580i
\(160\) −12.6922 + 159.496i −0.0793263 + 0.996849i
\(161\) −2.09684 + 0.681306i −0.0130239 + 0.00423171i
\(162\) 69.1139 190.124i 0.426629 1.17361i
\(163\) −39.5659 249.809i −0.242736 1.53257i −0.744532 0.667587i \(-0.767327\pi\)
0.501796 0.864986i \(-0.332673\pi\)
\(164\) 7.05248 102.022i 0.0430029 0.622086i
\(165\) 92.7659 182.198i 0.562218 1.10423i
\(166\) −37.5681 + 35.0607i −0.226314 + 0.211209i
\(167\) 27.0235 + 170.619i 0.161817 + 1.02167i 0.926234 + 0.376950i \(0.123027\pi\)
−0.764416 + 0.644723i \(0.776973\pi\)
\(168\) 328.329 + 145.712i 1.95434 + 0.867333i
\(169\) 127.046 41.2799i 0.751754 0.244260i
\(170\) 118.035 + 104.947i 0.694321 + 0.617337i
\(171\) −73.2437 + 53.2147i −0.428326 + 0.311197i
\(172\) −215.628 129.329i −1.25365 0.751913i
\(173\) −66.6089 + 33.9389i −0.385023 + 0.196179i −0.635779 0.771871i \(-0.719321\pi\)
0.250756 + 0.968050i \(0.419321\pi\)
\(174\) 26.5607 + 215.610i 0.152648 + 1.23914i
\(175\) −84.8934 + 289.792i −0.485105 + 1.65596i
\(176\) −150.500 91.2459i −0.855112 0.518443i
\(177\) −72.6419 72.6419i −0.410406 0.410406i
\(178\) 72.9034 93.3887i 0.409570 0.524656i
\(179\) −27.6616 + 85.1335i −0.154534 + 0.475606i −0.998113 0.0613979i \(-0.980444\pi\)
0.843579 + 0.537004i \(0.180444\pi\)
\(180\) −27.5622 + 92.3482i −0.153124 + 0.513046i
\(181\) −47.2861 + 34.3553i −0.261249 + 0.189809i −0.710698 0.703498i \(-0.751621\pi\)
0.449448 + 0.893306i \(0.351621\pi\)
\(182\) −80.4396 119.154i −0.441976 0.654694i
\(183\) −151.264 77.0728i −0.826578 0.421163i
\(184\) −1.36263 + 0.524931i −0.00740558 + 0.00285289i
\(185\) −59.0583 23.4590i −0.319234 0.126806i
\(186\) −227.144 + 211.984i −1.22120 + 1.13970i
\(187\) −161.447 + 64.1852i −0.863351 + 0.343237i
\(188\) 165.463 144.066i 0.880123 0.766310i
\(189\) −151.890 110.355i −0.803651 0.583887i
\(190\) −145.268 + 119.150i −0.764568 + 0.627106i
\(191\) −146.681 + 47.6595i −0.767963 + 0.249526i −0.666693 0.745333i \(-0.732291\pi\)
−0.101270 + 0.994859i \(0.532291\pi\)
\(192\) 222.311 + 84.7288i 1.15787 + 0.441296i
\(193\) 262.236 + 41.5341i 1.35873 + 0.215202i 0.792918 0.609329i \(-0.208561\pi\)
0.565817 + 0.824531i \(0.308561\pi\)
\(194\) −177.888 + 321.220i −0.916950 + 1.65578i
\(195\) 83.0524 73.0562i 0.425910 0.374647i
\(196\) 248.904 297.112i 1.26992 1.51588i
\(197\) −159.635 + 159.635i −0.810331 + 0.810331i −0.984683 0.174353i \(-0.944217\pi\)
0.174353 + 0.984683i \(0.444217\pi\)
\(198\) −77.1566 72.6992i −0.389680 0.367168i
\(199\) 55.8178 0.280492 0.140246 0.990117i \(-0.455211\pi\)
0.140246 + 0.990117i \(0.455211\pi\)
\(200\) −45.8717 + 194.668i −0.229359 + 0.973342i
\(201\) 128.415 395.220i 0.638880 1.96627i
\(202\) −193.761 + 55.6436i −0.959214 + 0.275463i
\(203\) 348.595 + 55.2121i 1.71722 + 0.271981i
\(204\) 199.067 124.611i 0.975818 0.610839i
\(205\) 28.0247 124.722i 0.136706 0.608401i
\(206\) 143.619 67.0403i 0.697180 0.325438i
\(207\) −0.868726 + 0.137593i −0.00419674 + 0.000664699i
\(208\) −57.4243 75.9528i −0.276079 0.365158i
\(209\) −45.3686 201.629i −0.217074 0.964731i
\(210\) 378.098 + 242.186i 1.80047 + 1.15327i
\(211\) −89.4763 65.0083i −0.424058 0.308096i 0.355210 0.934786i \(-0.384409\pi\)
−0.779269 + 0.626690i \(0.784409\pi\)
\(212\) 17.3858 + 40.8680i 0.0820086 + 0.192773i
\(213\) −317.915 161.986i −1.49256 0.760497i
\(214\) 123.377 + 23.9310i 0.576526 + 0.111827i
\(215\) −241.948 200.611i −1.12534 0.933076i
\(216\) −104.367 67.5999i −0.483182 0.312962i
\(217\) 229.162 + 449.756i 1.05605 + 2.07261i
\(218\) −235.497 183.840i −1.08026 0.843302i
\(219\) 89.7083i 0.409627i
\(220\) −168.684 141.229i −0.766747 0.641949i
\(221\) −93.9936 −0.425310
\(222\) −58.1445 + 74.4826i −0.261912 + 0.335507i
\(223\) 122.864 62.6025i 0.550961 0.280729i −0.156266 0.987715i \(-0.549946\pi\)
0.707227 + 0.706986i \(0.249946\pi\)
\(224\) 232.000 309.153i 1.03572 1.38015i
\(225\) −51.5352 + 108.887i −0.229045 + 0.483943i
\(226\) 74.9067 386.182i 0.331446 1.70877i
\(227\) 111.128 218.101i 0.489551 0.960798i −0.505630 0.862750i \(-0.668740\pi\)
0.995182 0.0980483i \(-0.0312600\pi\)
\(228\) 109.363 + 257.073i 0.479661 + 1.12751i
\(229\) 110.738 152.418i 0.483572 0.665580i −0.495614 0.868543i \(-0.665057\pi\)
0.979186 + 0.202963i \(0.0650570\pi\)
\(230\) −1.78300 + 0.390679i −0.00775218 + 0.00169861i
\(231\) −424.777 + 252.023i −1.83886 + 1.09101i
\(232\) 232.506 + 24.1568i 1.00218 + 0.104124i
\(233\) 35.6065 + 224.810i 0.152817 + 0.964851i 0.938264 + 0.345921i \(0.112434\pi\)
−0.785446 + 0.618930i \(0.787566\pi\)
\(234\) −24.2591 51.9697i −0.103671 0.222093i
\(235\) 231.713 146.687i 0.986012 0.624201i
\(236\) −93.6986 + 58.6531i −0.397028 + 0.248530i
\(237\) −27.6675 + 174.686i −0.116740 + 0.737070i
\(238\) −105.317 366.732i −0.442507 1.54089i
\(239\) 12.7622 + 4.14669i 0.0533983 + 0.0173502i 0.335594 0.942007i \(-0.391063\pi\)
−0.282196 + 0.959357i \(0.591063\pi\)
\(240\) 258.647 + 146.769i 1.07770 + 0.611537i
\(241\) 359.741i 1.49270i −0.665554 0.746350i \(-0.731805\pi\)
0.665554 0.746350i \(-0.268195\pi\)
\(242\) 222.122 96.0505i 0.917861 0.396903i
\(243\) −166.957 166.957i −0.687067 0.687067i
\(244\) −117.310 + 140.031i −0.480780 + 0.573898i
\(245\) 363.779 319.994i 1.48481 1.30610i
\(246\) −166.283 92.0856i −0.675947 0.374332i
\(247\) 17.4910 110.434i 0.0708137 0.447100i
\(248\) 167.505 + 289.329i 0.675424 + 1.16665i
\(249\) 29.5147 + 90.8369i 0.118533 + 0.364807i
\(250\) −93.5253 + 231.847i −0.374101 + 0.927388i
\(251\) 97.6596 134.417i 0.389082 0.535525i −0.568880 0.822421i \(-0.692623\pi\)
0.957962 + 0.286895i \(0.0926231\pi\)
\(252\) 175.587 152.881i 0.696774 0.606670i
\(253\) 0.496580 1.94546i 0.00196277 0.00768955i
\(254\) 74.4596 + 79.7845i 0.293148 + 0.314112i
\(255\) 269.551 116.288i 1.05706 0.456033i
\(256\) 142.477 212.688i 0.556550 0.830814i
\(257\) −112.801 + 221.385i −0.438916 + 0.861422i 0.560530 + 0.828134i \(0.310598\pi\)
−0.999446 + 0.0332872i \(0.989402\pi\)
\(258\) −387.341 + 261.489i −1.50132 + 1.01352i
\(259\) 90.2336 + 124.196i 0.348392 + 0.479521i
\(260\) −56.5763 104.715i −0.217601 0.402752i
\(261\) 133.909 + 43.5098i 0.513063 + 0.166704i
\(262\) −75.6827 59.0813i −0.288865 0.225501i
\(263\) 226.093 226.093i 0.859669 0.859669i −0.131630 0.991299i \(-0.542021\pi\)
0.991299 + 0.131630i \(0.0420210\pi\)
\(264\) −271.998 + 181.739i −1.03030 + 0.688404i
\(265\) 13.7462 + 53.7867i 0.0518724 + 0.202969i
\(266\) 450.473 55.4932i 1.69351 0.208621i
\(267\) −99.9718 196.206i −0.374426 0.734853i
\(268\) −383.471 229.998i −1.43086 0.858200i
\(269\) 249.996 + 344.090i 0.929354 + 1.27915i 0.960111 + 0.279620i \(0.0902084\pi\)
−0.0307564 + 0.999527i \(0.509792\pi\)
\(270\) −116.159 103.280i −0.430220 0.382519i
\(271\) −143.115 440.463i −0.528099 1.62532i −0.758104 0.652133i \(-0.773874\pi\)
0.230005 0.973190i \(-0.426126\pi\)
\(272\) −82.6544 238.810i −0.303876 0.877978i
\(273\) −263.922 + 41.8011i −0.966746 + 0.153118i
\(274\) 78.6480 + 84.2723i 0.287036 + 0.307563i
\(275\) −181.692 206.429i −0.660699 0.750651i
\(276\) −0.187172 + 2.70765i −0.000678158 + 0.00981033i
\(277\) −295.462 + 46.7965i −1.06665 + 0.168941i −0.664993 0.746850i \(-0.731565\pi\)
−0.401656 + 0.915791i \(0.631565\pi\)
\(278\) −308.161 112.022i −1.10849 0.402958i
\(279\) 62.2274 + 191.516i 0.223037 + 0.686439i
\(280\) 345.173 338.072i 1.23276 1.20740i
\(281\) 1.43885 + 1.98041i 0.00512046 + 0.00704771i 0.811570 0.584256i \(-0.198614\pi\)
−0.806449 + 0.591304i \(0.798614\pi\)
\(282\) −112.555 391.938i −0.399132 1.38985i
\(283\) 243.363 + 477.627i 0.859941 + 1.68773i 0.715952 + 0.698150i \(0.245993\pi\)
0.143989 + 0.989579i \(0.454007\pi\)
\(284\) −246.554 + 294.307i −0.868148 + 1.03629i
\(285\) 86.4682 + 338.336i 0.303397 + 1.18715i
\(286\) 130.866 3.89259i 0.457574 0.0136105i
\(287\) −218.363 + 218.363i −0.760847 + 0.760847i
\(288\) 110.707 107.335i 0.384400 0.372692i
\(289\) 37.6039 + 12.2182i 0.130117 + 0.0422776i
\(290\) 282.709 + 73.8566i 0.974860 + 0.254678i
\(291\) 401.153 + 552.140i 1.37853 + 1.89739i
\(292\) 94.0725 + 21.6395i 0.322166 + 0.0741079i
\(293\) 13.7530 26.9919i 0.0469387 0.0921224i −0.866346 0.499445i \(-0.833537\pi\)
0.913285 + 0.407322i \(0.133537\pi\)
\(294\) −304.718 652.791i −1.03646 2.22038i
\(295\) −126.875 + 54.7357i −0.430083 + 0.185545i
\(296\) 64.0805 + 78.9399i 0.216488 + 0.266689i
\(297\) 158.882 63.1656i 0.534956 0.212679i
\(298\) 276.440 + 9.54335i 0.927652 + 0.0320247i
\(299\) 0.638485 0.878799i 0.00213540 0.00293913i
\(300\) 291.801 + 230.302i 0.972669 + 0.767675i
\(301\) 234.628 + 722.111i 0.779495 + 2.39904i
\(302\) 39.6738 26.7833i 0.131370 0.0886863i
\(303\) −58.6152 + 370.082i −0.193450 + 1.22139i
\(304\) 295.960 52.6718i 0.973554 0.173262i
\(305\) −171.452 + 150.816i −0.562138 + 0.494479i
\(306\) −18.6106 151.074i −0.0608188 0.493705i
\(307\) −53.1474 53.1474i −0.173119 0.173119i 0.615229 0.788348i \(-0.289063\pi\)
−0.788348 + 0.615229i \(0.789063\pi\)
\(308\) 161.819 + 506.235i 0.525385 + 1.64362i
\(309\) 294.592i 0.953371i
\(310\) 152.203 + 389.197i 0.490977 + 1.25547i
\(311\) −205.532 66.7814i −0.660875 0.214731i −0.0406718 0.999173i \(-0.512950\pi\)
−0.620203 + 0.784441i \(0.712950\pi\)
\(312\) −173.067 + 37.0025i −0.554702 + 0.118598i
\(313\) 27.5293 173.813i 0.0879530 0.555313i −0.903882 0.427783i \(-0.859295\pi\)
0.991835 0.127531i \(-0.0407051\pi\)
\(314\) −174.799 33.9054i −0.556686 0.107979i
\(315\) 245.890 155.662i 0.780604 0.494166i
\(316\) 176.510 + 71.1513i 0.558576 + 0.225162i
\(317\) −0.798535 5.04175i −0.00251904 0.0159046i 0.986397 0.164382i \(-0.0525629\pi\)
−0.988916 + 0.148477i \(0.952563\pi\)
\(318\) 82.4990 + 2.84805i 0.259431 + 0.00895614i
\(319\) −212.216 + 241.399i −0.665255 + 0.756736i
\(320\) 216.300 235.827i 0.675938 0.736958i
\(321\) 137.301 188.979i 0.427730 0.588719i
\(322\) 4.14418 + 1.50649i 0.0128701 + 0.00467854i
\(323\) 134.720 264.403i 0.417090 0.818586i
\(324\) −342.944 + 214.675i −1.05847 + 0.662577i
\(325\) −50.0844 140.094i −0.154106 0.431058i
\(326\) −245.063 + 442.521i −0.751727 + 1.35743i
\(327\) −494.770 + 252.098i −1.51306 + 0.770941i
\(328\) −136.676 + 152.160i −0.416696 + 0.463901i
\(329\) −662.502 −2.01368
\(330\) −370.476 + 173.070i −1.12266 + 0.524455i
\(331\) 116.596i 0.352255i 0.984367 + 0.176128i \(0.0563571\pi\)
−0.984367 + 0.176128i \(0.943643\pi\)
\(332\) 102.376 9.03882i 0.308360 0.0272254i
\(333\) 27.8035 + 54.5674i 0.0834940 + 0.163866i
\(334\) 167.378 302.241i 0.501131 0.904913i
\(335\) −430.278 356.765i −1.28441 1.06497i
\(336\) −338.287 633.789i −1.00681 1.88628i
\(337\) 540.321 + 275.307i 1.60333 + 0.816936i 0.999808 + 0.0195870i \(0.00623512\pi\)
0.603519 + 0.797349i \(0.293765\pi\)
\(338\) −251.093 91.2772i −0.742879 0.270051i
\(339\) −591.525 429.768i −1.74491 1.26775i
\(340\) −56.9246 310.715i −0.167425 0.913868i
\(341\) −457.710 42.6140i −1.34226 0.124968i
\(342\) 180.961 + 6.24717i 0.529125 + 0.0182666i
\(343\) −571.432 + 90.5059i −1.66598 + 0.263866i
\(344\) 180.776 + 469.261i 0.525511 + 1.36413i
\(345\) −0.743772 + 3.31011i −0.00215586 + 0.00959452i
\(346\) 146.778 + 28.4702i 0.424215 + 0.0822838i
\(347\) 299.264 + 47.3987i 0.862431 + 0.136596i 0.571953 0.820286i \(-0.306186\pi\)
0.290478 + 0.956882i \(0.406186\pi\)
\(348\) 223.477 372.600i 0.642176 1.07069i
\(349\) 53.2811 163.982i 0.152668 0.469863i −0.845249 0.534372i \(-0.820548\pi\)
0.997917 + 0.0645088i \(0.0205481\pi\)
\(350\) 490.481 352.383i 1.40138 1.00681i
\(351\) 92.5004 0.263534
\(352\) 124.969 + 329.070i 0.355025 + 0.934857i
\(353\) 297.793 297.793i 0.843606 0.843606i −0.145720 0.989326i \(-0.546550\pi\)
0.989326 + 0.145720i \(0.0465499\pi\)
\(354\) 25.1207 + 203.921i 0.0709625 + 0.576047i
\(355\) −360.345 + 316.974i −1.01506 + 0.892884i
\(356\) −229.866 + 57.5065i −0.645692 + 0.161535i
\(357\) −700.454 110.941i −1.96206 0.310759i
\(358\) 148.382 100.171i 0.414476 0.279807i
\(359\) 368.041 119.584i 1.02518 0.333102i 0.252299 0.967649i \(-0.418813\pi\)
0.772884 + 0.634547i \(0.218813\pi\)
\(360\) 157.105 111.667i 0.436402 0.310187i
\(361\) −6.47571 4.70488i −0.0179382 0.0130329i
\(362\) 116.828 + 4.03317i 0.322729 + 0.0111414i
\(363\) 12.8582 449.615i 0.0354220 1.23861i
\(364\) −19.8287 + 286.845i −0.0544745 + 0.788035i
\(365\) 112.139 + 44.5435i 0.307230 + 0.122037i
\(366\) 143.616 + 307.666i 0.392393 + 0.840617i
\(367\) −327.698 166.971i −0.892911 0.454961i −0.0535687 0.998564i \(-0.517060\pi\)
−0.839342 + 0.543603i \(0.817060\pi\)
\(368\) 2.79423 + 0.849419i 0.00759301 + 0.00230820i
\(369\) −99.6678 + 72.4129i −0.270103 + 0.196241i
\(370\) 64.2352 + 109.666i 0.173609 + 0.296395i
\(371\) 41.4430 127.548i 0.111706 0.343796i
\(372\) 618.983 54.6505i 1.66393 0.146910i
\(373\) −279.881 279.881i −0.750350 0.750350i 0.224194 0.974545i \(-0.428025\pi\)
−0.974545 + 0.224194i \(0.928025\pi\)
\(374\) 333.515 + 97.5029i 0.891751 + 0.260703i
\(375\) 316.953 + 339.791i 0.845208 + 0.906108i
\(376\) −438.156 + 23.4874i −1.16531 + 0.0624665i
\(377\) −154.937 + 78.9442i −0.410973 + 0.209401i
\(378\) 103.644 + 360.906i 0.274189 + 0.954777i
\(379\) −275.031 + 199.822i −0.725677 + 0.527235i −0.888193 0.459471i \(-0.848039\pi\)
0.162516 + 0.986706i \(0.448039\pi\)
\(380\) 375.654 9.06103i 0.988564 0.0238448i
\(381\) 192.913 62.6813i 0.506334 0.164518i
\(382\) 289.899 + 105.384i 0.758897 + 0.275874i
\(383\) −9.91794 62.6194i −0.0258954 0.163497i 0.971352 0.237646i \(-0.0763759\pi\)
−0.997247 + 0.0741491i \(0.976376\pi\)
\(384\) −246.201 407.174i −0.641149 1.06035i
\(385\) 104.121 + 656.126i 0.270443 + 1.70422i
\(386\) −362.302 388.211i −0.938606 1.00573i
\(387\) 47.3841 + 299.172i 0.122440 + 0.773053i
\(388\) 675.767 287.481i 1.74167 0.740931i
\(389\) 155.583 50.5519i 0.399956 0.129954i −0.102130 0.994771i \(-0.532566\pi\)
0.502086 + 0.864817i \(0.332566\pi\)
\(390\) −220.843 + 12.9617i −0.566264 + 0.0332351i
\(391\) 2.33235 1.69455i 0.00596509 0.00433389i
\(392\) −758.053 + 162.075i −1.93381 + 0.413458i
\(393\) −159.006 + 81.0177i −0.404596 + 0.206152i
\(394\) 448.129 55.2044i 1.13738 0.140113i
\(395\) 204.626 + 121.323i 0.518040 + 0.307148i
\(396\) 32.1677 + 209.567i 0.0812317 + 0.529211i
\(397\) −64.1963 64.1963i −0.161703 0.161703i 0.621617 0.783321i \(-0.286476\pi\)
−0.783321 + 0.621617i \(0.786476\pi\)
\(398\) −87.9974 68.6948i −0.221099 0.172600i
\(399\) 260.691 802.323i 0.653360 2.01083i
\(400\) 311.895 250.443i 0.779737 0.626107i
\(401\) 225.848 164.088i 0.563212 0.409197i −0.269421 0.963022i \(-0.586832\pi\)
0.832633 + 0.553825i \(0.186832\pi\)
\(402\) −688.844 + 465.030i −1.71354 + 1.15679i
\(403\) −221.590 112.906i −0.549850 0.280163i
\(404\) 373.947 + 150.738i 0.925611 + 0.373115i
\(405\) −464.371 + 200.337i −1.14659 + 0.494659i
\(406\) −481.615 516.057i −1.18624 1.27108i
\(407\) −139.515 + 8.97543i −0.342788 + 0.0220526i
\(408\) −467.190 48.5397i −1.14507 0.118970i
\(409\) −21.8694 15.8890i −0.0534703 0.0388485i 0.560729 0.827999i \(-0.310521\pi\)
−0.614199 + 0.789151i \(0.710521\pi\)
\(410\) −197.676 + 162.136i −0.482137 + 0.395454i
\(411\) 203.764 66.2071i 0.495777 0.161088i
\(412\) −308.923 71.0616i −0.749814 0.172480i
\(413\) 329.696 + 52.2187i 0.798295 + 0.126438i
\(414\) 1.53889 + 0.852221i 0.00371713 + 0.00205850i
\(415\) 128.205 + 8.20943i 0.308927 + 0.0197818i
\(416\) −2.94463 + 190.412i −0.00707845 + 0.457722i
\(417\) −430.940 + 430.940i −1.03343 + 1.03343i
\(418\) −176.620 + 373.705i −0.422535 + 0.894031i
\(419\) 388.971 0.928333 0.464166 0.885748i \(-0.346354\pi\)
0.464166 + 0.885748i \(0.346354\pi\)
\(420\) −298.019 847.132i −0.709569 2.01698i
\(421\) −209.353 + 644.323i −0.497276 + 1.53046i 0.316104 + 0.948724i \(0.397625\pi\)
−0.813380 + 0.581733i \(0.802375\pi\)
\(422\) 61.0549 + 212.604i 0.144680 + 0.503802i
\(423\) −261.042 41.3449i −0.617120 0.0977422i
\(424\) 22.8871 85.8255i 0.0539789 0.202419i
\(425\) −11.5230 394.690i −0.0271129 0.928683i
\(426\) 301.841 + 646.629i 0.708548 + 1.51791i
\(427\) 544.836 86.2935i 1.27596 0.202093i
\(428\) −165.053 189.566i −0.385637 0.442912i
\(429\) 96.3285 223.468i 0.224542 0.520903i
\(430\) 134.542 + 614.030i 0.312888 + 1.42798i
\(431\) 572.582 + 416.005i 1.32850 + 0.965208i 0.999784 + 0.0207780i \(0.00661432\pi\)
0.328711 + 0.944430i \(0.393386\pi\)
\(432\) 81.3413 + 235.016i 0.188290 + 0.544019i
\(433\) 144.774 + 73.7661i 0.334351 + 0.170360i 0.613103 0.790003i \(-0.289921\pi\)
−0.278752 + 0.960363i \(0.589921\pi\)
\(434\) 192.236 991.075i 0.442941 2.28358i
\(435\) 346.651 418.080i 0.796899 0.961102i
\(436\) 145.013 + 579.651i 0.332600 + 1.32948i
\(437\) 1.55692 + 3.05563i 0.00356274 + 0.00699228i
\(438\) 110.404 141.426i 0.252063 0.322891i
\(439\) 526.297i 1.19885i 0.800430 + 0.599427i \(0.204605\pi\)
−0.800430 + 0.599427i \(0.795395\pi\)
\(440\) 92.1232 + 430.248i 0.209371 + 0.977836i
\(441\) −466.922 −1.05878
\(442\) 148.182 + 115.677i 0.335253 + 0.261714i
\(443\) −344.694 + 175.631i −0.778091 + 0.396457i −0.797473 0.603355i \(-0.793830\pi\)
0.0193816 + 0.999812i \(0.493830\pi\)
\(444\) 183.331 45.8645i 0.412907 0.103299i
\(445\) −294.904 + 27.5451i −0.662706 + 0.0618990i
\(446\) −270.742 52.5150i −0.607044 0.117747i
\(447\) 233.405 458.083i 0.522159 1.02479i
\(448\) −746.225 + 201.861i −1.66568 + 0.450584i
\(449\) 508.848 700.370i 1.13329 1.55984i 0.351633 0.936138i \(-0.385626\pi\)
0.781659 0.623706i \(-0.214374\pi\)
\(450\) 215.253 108.238i 0.478340 0.240528i
\(451\) −61.7362 274.370i −0.136887 0.608360i
\(452\) −593.364 + 516.633i −1.31275 + 1.14299i
\(453\) −13.9182 87.8758i −0.0307244 0.193986i
\(454\) −443.611 + 207.074i −0.977117 + 0.456111i
\(455\) −78.7941 + 350.668i −0.173174 + 0.770699i
\(456\) 143.967 539.871i 0.315718 1.18393i
\(457\) 66.5232 420.011i 0.145565 0.919062i −0.801494 0.598003i \(-0.795961\pi\)
0.947059 0.321059i \(-0.104039\pi\)
\(458\) −362.160 + 104.004i −0.790742 + 0.227082i
\(459\) 233.482 + 75.8631i 0.508676 + 0.165279i
\(460\) 3.29173 + 1.57842i 0.00715594 + 0.00343135i
\(461\) 241.927i 0.524787i −0.964961 0.262394i \(-0.915488\pi\)
0.964961 0.262394i \(-0.0845119\pi\)
\(462\) 979.829 + 125.454i 2.12084 + 0.271545i
\(463\) 256.350 + 256.350i 0.553671 + 0.553671i 0.927498 0.373827i \(-0.121955\pi\)
−0.373827 + 0.927498i \(0.621955\pi\)
\(464\) −336.819 324.228i −0.725904 0.698767i
\(465\) 775.151 + 49.6358i 1.66699 + 0.106744i
\(466\) 220.539 398.237i 0.473260 0.854585i
\(467\) −60.3982 + 381.339i −0.129332 + 0.816573i 0.834684 + 0.550729i \(0.185650\pi\)
−0.964016 + 0.265843i \(0.914350\pi\)
\(468\) −25.7142 + 111.786i −0.0549449 + 0.238860i
\(469\) 417.260 + 1284.20i 0.889681 + 2.73816i
\(470\) −545.825 53.9136i −1.16133 0.114710i
\(471\) −194.528 + 267.745i −0.413010 + 0.568460i
\(472\) 219.901 + 22.8471i 0.465892 + 0.0484049i
\(473\) −669.976 171.012i −1.41644 0.361548i
\(474\) 258.603 241.344i 0.545576 0.509164i
\(475\) 465.868 + 59.9083i 0.980775 + 0.126123i
\(476\) −285.302 + 707.769i −0.599374 + 1.48691i
\(477\) 24.2895 47.6708i 0.0509214 0.0999389i
\(478\) −15.0164 22.2437i −0.0314151 0.0465349i
\(479\) 116.193 + 159.926i 0.242574 + 0.333875i 0.912893 0.408198i \(-0.133843\pi\)
−0.670319 + 0.742073i \(0.733843\pi\)
\(480\) −227.133 549.699i −0.473193 1.14521i
\(481\) −71.9329 23.3724i −0.149549 0.0485913i
\(482\) −442.731 + 567.135i −0.918530 + 1.17663i
\(483\) 5.79533 5.79533i 0.0119986 0.0119986i
\(484\) −468.387 121.940i −0.967742 0.251943i
\(485\) 889.383 227.298i 1.83378 0.468657i
\(486\) 57.7365 + 468.684i 0.118799 + 0.964369i
\(487\) −201.108 394.697i −0.412953 0.810467i −1.00000 0.000913301i \(-0.999709\pi\)
0.587046 0.809553i \(-0.300291\pi\)
\(488\) 357.277 76.3875i 0.732124 0.156532i
\(489\) 552.638 + 760.641i 1.13014 + 1.55550i
\(490\) −967.318 + 56.7737i −1.97412 + 0.115865i
\(491\) 192.146 + 591.366i 0.391337 + 1.20441i 0.931778 + 0.363029i \(0.118257\pi\)
−0.540441 + 0.841382i \(0.681743\pi\)
\(492\) 148.818 + 349.818i 0.302475 + 0.711012i
\(493\) −455.825 + 72.1955i −0.924593 + 0.146441i
\(494\) −163.485 + 152.574i −0.330941 + 0.308854i
\(495\) 0.0790169 + 265.027i 0.000159630 + 0.535409i
\(496\) 92.0023 662.279i 0.185488 1.33524i
\(497\) 1145.10 181.365i 2.30402 0.364920i
\(498\) 65.2623 179.529i 0.131049 0.360500i
\(499\) 100.394 + 308.981i 0.201190 + 0.619200i 0.999848 + 0.0174150i \(0.00554366\pi\)
−0.798658 + 0.601785i \(0.794456\pi\)
\(500\) 432.777 250.408i 0.865554 0.500816i
\(501\) −377.451 519.517i −0.753395 1.03696i
\(502\) −319.388 + 91.7205i −0.636230 + 0.182710i
\(503\) −44.2849 86.9140i −0.0880415 0.172791i 0.842787 0.538247i \(-0.180913\pi\)
−0.930829 + 0.365456i \(0.880913\pi\)
\(504\) −464.965 + 24.9245i −0.922549 + 0.0494534i
\(505\) 433.512 + 257.031i 0.858440 + 0.508972i
\(506\) −3.17713 + 2.45590i −0.00627891 + 0.00485355i
\(507\) −351.135 + 351.135i −0.692574 + 0.692574i
\(508\) −19.1960 217.418i −0.0377875 0.427989i
\(509\) −507.945 165.041i −0.997926 0.324246i −0.235890 0.971780i \(-0.575800\pi\)
−0.762037 + 0.647534i \(0.775800\pi\)
\(510\) −568.065 148.405i −1.11385 0.290990i
\(511\) −171.334 235.821i −0.335291 0.461489i
\(512\) −486.371 + 159.960i −0.949944 + 0.312422i
\(513\) −132.580 + 260.203i −0.258441 + 0.507218i
\(514\) 450.291 210.192i 0.876052 0.408934i
\(515\) −368.251 146.276i −0.715050 0.284031i
\(516\) 932.461 + 64.4582i 1.80709 + 0.124919i
\(517\) 322.560 509.864i 0.623907 0.986198i
\(518\) 10.5930 306.846i 0.0204499 0.592367i
\(519\) 163.344 224.824i 0.314729 0.433187i
\(520\) −39.6796 + 234.713i −0.0763070 + 0.451372i
\(521\) −69.4558 213.763i −0.133313 0.410294i 0.862011 0.506889i \(-0.169205\pi\)
−0.995324 + 0.0965954i \(0.969205\pi\)
\(522\) −157.562 233.395i −0.301844 0.447117i
\(523\) −95.1567 + 600.796i −0.181944 + 1.14875i 0.712534 + 0.701637i \(0.247547\pi\)
−0.894478 + 0.447112i \(0.852453\pi\)
\(524\) 46.6035 + 186.285i 0.0889381 + 0.355505i
\(525\) −207.883 1103.11i −0.395967 2.10117i
\(526\) −634.690 + 78.1865i −1.20663 + 0.148644i
\(527\) −466.721 466.721i −0.885619 0.885619i
\(528\) 652.473 + 48.2334i 1.23574 + 0.0913511i
\(529\) 528.967i 0.999937i
\(530\) 44.5240 101.713i 0.0840076 0.191911i
\(531\) 126.649 + 41.1509i 0.238511 + 0.0774970i
\(532\) −778.472 466.910i −1.46329 0.877650i
\(533\) 23.8012 150.275i 0.0446551 0.281941i
\(534\) −83.8628 + 432.355i −0.157046 + 0.809654i
\(535\) −168.056 265.467i −0.314123 0.496200i
\(536\) 321.490 + 834.530i 0.599795 + 1.55696i
\(537\) −52.0547 328.661i −0.0969362 0.612031i
\(538\) 29.3485 850.132i 0.0545511 1.58017i
\(539\) 421.930 978.814i 0.782801 1.81598i
\(540\) 56.0203 + 305.779i 0.103741 + 0.566258i
\(541\) 107.381 147.797i 0.198486 0.273192i −0.698159 0.715943i \(-0.745997\pi\)
0.896645 + 0.442750i \(0.145997\pi\)
\(542\) −316.453 + 870.525i −0.583861 + 1.60613i
\(543\) 98.6406 193.593i 0.181659 0.356525i
\(544\) −163.597 + 478.209i −0.300730 + 0.879061i
\(545\) 69.4601 + 743.657i 0.127450 + 1.36451i
\(546\) 467.520 + 258.907i 0.856264 + 0.474189i
\(547\) 780.949 397.913i 1.42769 0.727446i 0.442162 0.896935i \(-0.354212\pi\)
0.985532 + 0.169489i \(0.0542116\pi\)
\(548\) −20.2758 229.648i −0.0369997 0.419066i
\(549\) 220.064 0.400845
\(550\) 32.3888 + 549.046i 0.0588886 + 0.998265i
\(551\) 548.986i 0.996344i
\(552\) 3.62737 4.03829i 0.00657133 0.00731575i
\(553\) −260.901 512.047i −0.471792 0.925944i
\(554\) 523.391 + 289.848i 0.944749 + 0.523192i
\(555\) 235.202 21.9687i 0.423788 0.0395832i
\(556\) 347.953 + 555.857i 0.625815 + 0.999742i
\(557\) −137.014 69.8124i −0.245986 0.125336i 0.326651 0.945145i \(-0.394080\pi\)
−0.572638 + 0.819809i \(0.694080\pi\)
\(558\) 137.596 378.511i 0.246588 0.678335i
\(559\) −302.640 219.881i −0.541396 0.393347i
\(560\) −960.233 + 108.172i −1.71470 + 0.193164i
\(561\) 426.419 485.057i 0.760105 0.864630i
\(562\) 0.168915 4.89292i 0.000300560 0.00870626i
\(563\) −616.382 + 97.6254i −1.09482 + 0.173402i −0.677619 0.735413i \(-0.736988\pi\)
−0.417199 + 0.908815i \(0.636988\pi\)
\(564\) −304.912 + 756.416i −0.540623 + 1.34116i
\(565\) −830.940 + 526.033i −1.47069 + 0.931031i
\(566\) 204.149 1052.49i 0.360687 1.85952i
\(567\) 1206.71 + 191.125i 2.12824 + 0.337080i
\(568\) 750.898 160.546i 1.32200 0.282651i
\(569\) −61.7366 + 190.006i −0.108500 + 0.333929i −0.990536 0.137253i \(-0.956173\pi\)
0.882036 + 0.471182i \(0.156173\pi\)
\(570\) 280.071 639.807i 0.491353 1.12247i
\(571\) 602.534 1.05523 0.527613 0.849485i \(-0.323087\pi\)
0.527613 + 0.849485i \(0.323087\pi\)
\(572\) −211.103 154.920i −0.369061 0.270839i
\(573\) 405.402 405.402i 0.707508 0.707508i
\(574\) 612.991 75.5134i 1.06793 0.131557i
\(575\) 3.76845 + 2.57334i 0.00655383 + 0.00447537i
\(576\) −306.628 + 32.9684i −0.532341 + 0.0572369i
\(577\) 431.747 + 68.3820i 0.748261 + 0.118513i 0.518908 0.854830i \(-0.326339\pi\)
0.229354 + 0.973343i \(0.426339\pi\)
\(578\) −44.2460 65.5411i −0.0765502 0.113393i
\(579\) −938.667 + 304.991i −1.62119 + 0.526755i
\(580\) −354.799 464.365i −0.611723 0.800629i
\(581\) −251.076 182.417i −0.432145 0.313971i
\(582\) 47.0936 1364.15i 0.0809169 2.34390i
\(583\) 77.9840 + 93.9958i 0.133763 + 0.161228i
\(584\) −121.675 149.890i −0.208347 0.256660i
\(585\) −52.9310 + 133.254i −0.0904804 + 0.227785i
\(586\) −54.9006 + 25.6272i −0.0936871 + 0.0437324i
\(587\) 903.490 + 460.351i 1.53917 + 0.784244i 0.998379 0.0569155i \(-0.0181265\pi\)
0.540787 + 0.841160i \(0.318127\pi\)
\(588\) −322.996 + 1404.15i −0.549313 + 2.38801i
\(589\) 635.205 461.503i 1.07845 0.783537i
\(590\) 267.382 + 69.8525i 0.453190 + 0.118394i
\(591\) 259.334 798.147i 0.438805 1.35050i
\(592\) −3.87263 203.313i −0.00654160 0.343435i
\(593\) 155.131 + 155.131i 0.261604 + 0.261604i 0.825706 0.564101i \(-0.190777\pi\)
−0.564101 + 0.825706i \(0.690777\pi\)
\(594\) −328.217 95.9540i −0.552554 0.161539i
\(595\) −486.482 + 820.508i −0.817617 + 1.37900i
\(596\) −424.066 355.259i −0.711521 0.596072i
\(597\) −184.879 + 94.2005i −0.309680 + 0.157790i
\(598\) −2.08811 + 0.599656i −0.00349183 + 0.00100277i
\(599\) −813.931 + 591.355i −1.35882 + 0.987237i −0.360296 + 0.932838i \(0.617324\pi\)
−0.998519 + 0.0543995i \(0.982676\pi\)
\(600\) −176.595 722.192i −0.294325 1.20365i
\(601\) 78.3368 25.4532i 0.130344 0.0423514i −0.243119 0.969997i \(-0.578170\pi\)
0.373463 + 0.927645i \(0.378170\pi\)
\(602\) 518.805 1427.17i 0.861802 2.37072i
\(603\) 84.2675 + 532.044i 0.139747 + 0.882329i
\(604\) −95.5082 6.60219i −0.158126 0.0109308i
\(605\) −555.652 239.324i −0.918433 0.395577i
\(606\) 547.866 511.301i 0.904069 0.843731i
\(607\) −128.828 813.390i −0.212238 1.34002i −0.831803 0.555071i \(-0.812691\pi\)
0.619565 0.784945i \(-0.287309\pi\)
\(608\) −531.408 281.200i −0.874026 0.462499i
\(609\) −1247.79 + 405.431i −2.04891 + 0.665733i
\(610\) 455.905 26.7579i 0.747385 0.0438654i
\(611\) 264.068 191.857i 0.432191 0.314005i
\(612\) −156.586 + 261.073i −0.255859 + 0.426590i
\(613\) 481.593 245.384i 0.785633 0.400300i −0.0146724 0.999892i \(-0.504671\pi\)
0.800306 + 0.599592i \(0.204671\pi\)
\(614\) 18.3792 + 149.196i 0.0299336 + 0.242990i
\(615\) 117.663 + 460.398i 0.191322 + 0.748615i
\(616\) 367.912 997.235i 0.597260 1.61889i
\(617\) −796.010 796.010i −1.29013 1.29013i −0.934704 0.355426i \(-0.884336\pi\)
−0.355426 0.934704i \(-0.615664\pi\)
\(618\) −362.553 + 464.427i −0.586655 + 0.751500i
\(619\) 173.080 532.686i 0.279613 0.860560i −0.708349 0.705862i \(-0.750560\pi\)
0.987962 0.154697i \(-0.0494403\pi\)
\(620\) 239.033 800.888i 0.385537 1.29176i
\(621\) −2.29530 + 1.66763i −0.00369613 + 0.00268540i
\(622\) 241.836 + 358.229i 0.388804 + 0.575931i
\(623\) 637.534 + 324.840i 1.02333 + 0.521412i
\(624\) 318.381 + 154.658i 0.510226 + 0.247849i
\(625\) 582.130 227.485i 0.931409 0.363976i
\(626\) −257.311 + 240.138i −0.411040 + 0.383607i
\(627\) 490.546 + 591.265i 0.782370 + 0.943007i
\(628\) 233.846 + 268.577i 0.372366 + 0.427670i
\(629\) −162.399 117.990i −0.258186 0.187583i
\(630\) −579.222 57.2123i −0.919400 0.0908131i
\(631\) −160.423 + 52.1246i −0.254236 + 0.0826064i −0.433362 0.901220i \(-0.642673\pi\)
0.179126 + 0.983826i \(0.442673\pi\)
\(632\) −190.704 329.401i −0.301748 0.521204i
\(633\) 406.073 + 64.3156i 0.641505 + 0.101604i
\(634\) −4.94596 + 8.93113i −0.00780120 + 0.0140870i
\(635\) 17.4346 272.273i 0.0274561 0.428776i
\(636\) −126.555 106.021i −0.198987 0.166700i
\(637\) 407.754 407.754i 0.640116 0.640116i
\(638\) 631.650 119.394i 0.990046 0.187138i
\(639\) 462.514 0.723809
\(640\) −631.231 + 105.584i −0.986298 + 0.164975i
\(641\) 29.5245 90.8670i 0.0460600 0.141758i −0.925382 0.379037i \(-0.876255\pi\)
0.971442 + 0.237279i \(0.0762554\pi\)
\(642\) −449.032 + 128.951i −0.699427 + 0.200859i
\(643\) 207.812 + 32.9143i 0.323192 + 0.0511886i 0.315923 0.948785i \(-0.397686\pi\)
0.00726947 + 0.999974i \(0.497686\pi\)
\(644\) −4.67931 7.47522i −0.00726602 0.0116075i
\(645\) 1139.93 + 256.140i 1.76734 + 0.397116i
\(646\) −537.788 + 251.035i −0.832489 + 0.388599i
\(647\) −398.129 + 63.0575i −0.615347 + 0.0974613i −0.456324 0.889814i \(-0.650834\pi\)
−0.159022 + 0.987275i \(0.550834\pi\)
\(648\) 804.855 + 83.6222i 1.24206 + 0.129047i
\(649\) −200.711 + 228.311i −0.309262 + 0.351789i
\(650\) −93.4542 + 282.498i −0.143776 + 0.434612i
\(651\) −1518.05 1102.93i −2.33188 1.69421i
\(652\) 930.953 396.041i 1.42784 0.607425i
\(653\) 113.590 + 57.8772i 0.173952 + 0.0886327i 0.538798 0.842435i \(-0.318879\pi\)
−0.364847 + 0.931068i \(0.618879\pi\)
\(654\) 1090.27 + 211.476i 1.66707 + 0.323358i
\(655\) 22.3227 + 238.992i 0.0340804 + 0.364873i
\(656\) 402.734 71.6741i 0.613924 0.109259i
\(657\) −52.7927 103.612i −0.0803542 0.157704i
\(658\) 1044.44 + 815.338i 1.58730 + 1.23912i
\(659\) 118.415i 0.179688i −0.995956 0.0898442i \(-0.971363\pi\)
0.995956 0.0898442i \(-0.0286369\pi\)
\(660\) 797.057 + 183.097i 1.20766 + 0.277419i
\(661\) −755.354 −1.14274 −0.571372 0.820691i \(-0.693589\pi\)
−0.571372 + 0.820691i \(0.693589\pi\)
\(662\) 143.495 183.816i 0.216759 0.277667i
\(663\) 311.324 158.627i 0.469568 0.239257i
\(664\) −172.520 111.743i −0.259820 0.168288i
\(665\) −873.492 724.257i −1.31352 1.08911i
\(666\) 23.3234 120.244i 0.0350201 0.180546i
\(667\) 2.42135 4.75217i 0.00363021 0.00712469i
\(668\) −635.840 + 270.495i −0.951856 + 0.404933i
\(669\) −301.298 + 414.702i −0.450371 + 0.619883i
\(670\) 239.268 + 1091.99i 0.357117 + 1.62983i
\(671\) −198.859 + 461.323i −0.296362 + 0.687516i
\(672\) −246.688 + 1415.50i −0.367096 + 2.10641i
\(673\) 170.117 + 1074.08i 0.252775 + 1.59596i 0.708418 + 0.705793i \(0.249409\pi\)
−0.455643 + 0.890162i \(0.650591\pi\)
\(674\) −513.003 1099.00i −0.761132 1.63056i
\(675\) 11.3399 + 388.420i 0.0167999 + 0.575437i
\(676\) 283.517 + 452.919i 0.419403 + 0.669998i
\(677\) −117.878 + 744.252i −0.174118 + 1.09934i 0.733546 + 0.679640i \(0.237864\pi\)
−0.907664 + 0.419698i \(0.862136\pi\)
\(678\) 403.632 + 1405.52i 0.595327 + 2.07304i
\(679\) −2109.06 685.276i −3.10613 1.00924i
\(680\) −292.654 + 559.903i −0.430373 + 0.823387i
\(681\) 909.935i 1.33618i
\(682\) 669.140 + 630.483i 0.981143 + 0.924461i
\(683\) −80.3888 80.3888i −0.117700 0.117700i 0.645804 0.763503i \(-0.276522\pi\)
−0.763503 + 0.645804i \(0.776522\pi\)
\(684\) −277.598 232.556i −0.405845 0.339994i
\(685\) 18.4153 287.588i 0.0268837 0.419836i
\(686\) 1012.25 + 560.575i 1.47559 + 0.817165i
\(687\) −109.558 + 691.721i −0.159473 + 1.00687i
\(688\) 292.523 962.276i 0.425179 1.39866i
\(689\) 20.4185 + 62.8416i 0.0296349 + 0.0912069i
\(690\) 5.24630 4.30307i 0.00760334 0.00623633i
\(691\) −499.950 + 688.122i −0.723516 + 0.995835i 0.275884 + 0.961191i \(0.411030\pi\)
−0.999400 + 0.0346436i \(0.988970\pi\)
\(692\) −196.359 225.523i −0.283756 0.325900i
\(693\) 342.296 541.060i 0.493934 0.780751i
\(694\) −413.459 443.027i −0.595762 0.638367i
\(695\) 324.714 + 752.669i 0.467214 + 1.08298i
\(696\) −810.872 + 312.376i −1.16505 + 0.448816i
\(697\) 183.323 359.792i 0.263017 0.516201i
\(698\) −285.811 + 192.947i −0.409471 + 0.276429i
\(699\) −497.334 684.522i −0.711494 0.979287i
\(700\) −1206.93 48.0978i −1.72418 0.0687112i
\(701\) 30.6036 + 9.94371i 0.0436570 + 0.0141850i 0.330764 0.943713i \(-0.392694\pi\)
−0.287107 + 0.957898i \(0.592694\pi\)
\(702\) −145.828 113.840i −0.207732 0.162165i
\(703\) 168.847 168.847i 0.240181 0.240181i
\(704\) 207.970 672.580i 0.295412 0.955370i
\(705\) −519.919 + 876.903i −0.737474 + 1.24383i
\(706\) −835.966 + 102.981i −1.18409 + 0.145866i
\(707\) −552.734 1084.80i −0.781803 1.53437i
\(708\) 211.361 352.399i 0.298533 0.497739i
\(709\) 467.485 + 643.437i 0.659358 + 0.907528i 0.999460 0.0328605i \(-0.0104617\pi\)
−0.340102 + 0.940388i \(0.610462\pi\)
\(710\) 958.187 56.2377i 1.34956 0.0792081i
\(711\) −70.8459 218.041i −0.0996426 0.306668i
\(712\) 433.160 + 192.236i 0.608370 + 0.269994i
\(713\) 7.53401 1.19327i 0.0105666 0.00167359i
\(714\) 967.739 + 1036.95i 1.35538 + 1.45230i
\(715\) −231.512 231.374i −0.323793 0.323600i
\(716\) −357.206 24.6926i −0.498892 0.0344869i
\(717\) −49.2688 + 7.80342i −0.0687152 + 0.0108834i
\(718\) −727.391 264.421i −1.01308 0.368274i
\(719\) 225.753 + 694.796i 0.313982 + 0.966337i 0.976171 + 0.217001i \(0.0696274\pi\)
−0.662190 + 0.749336i \(0.730373\pi\)
\(720\) −385.106 17.3033i −0.534869 0.0240324i
\(721\) 562.640 + 774.408i 0.780361 + 1.07407i
\(722\) 4.41876 + 15.3869i 0.00612016 + 0.0213115i
\(723\) 607.113 + 1191.53i 0.839714 + 1.64803i
\(724\) −179.217 150.138i −0.247537 0.207373i
\(725\) −350.490 640.919i −0.483435 0.884027i
\(726\) −573.611 + 692.999i −0.790097 + 0.954544i
\(727\) −371.698 + 371.698i −0.511277 + 0.511277i −0.914917 0.403641i \(-0.867745\pi\)
0.403641 + 0.914917i \(0.367745\pi\)
\(728\) 384.279 427.811i 0.527855 0.587652i
\(729\) −31.0243 10.0804i −0.0425574 0.0138277i
\(730\) −121.969 208.232i −0.167080 0.285249i
\(731\) −583.569 803.214i −0.798316 1.09879i
\(732\) 152.231 661.786i 0.207965 0.904079i
\(733\) 13.0615 25.6346i 0.0178192 0.0349721i −0.881925 0.471389i \(-0.843753\pi\)
0.899745 + 0.436417i \(0.143753\pi\)
\(734\) 311.130 + 666.528i 0.423883 + 0.908076i
\(735\) −664.867 + 1673.81i −0.904581 + 2.27729i
\(736\) −3.35976 4.77796i −0.00456489 0.00649180i
\(737\) −1191.48 304.126i −1.61666 0.412654i
\(738\) 246.246 + 8.50097i 0.333666 + 0.0115189i
\(739\) −296.352 + 407.893i −0.401017 + 0.551953i −0.960999 0.276552i \(-0.910808\pi\)
0.559982 + 0.828505i \(0.310808\pi\)
\(740\) 33.6982 251.944i 0.0455381 0.340465i
\(741\) 128.439 + 395.295i 0.173332 + 0.533461i
\(742\) −222.309 + 150.078i −0.299607 + 0.202261i
\(743\) −45.6112 + 287.978i −0.0613879 + 0.387588i 0.937796 + 0.347188i \(0.112863\pi\)
−0.999184 + 0.0404004i \(0.987137\pi\)
\(744\) −1043.09 675.622i −1.40200 0.908094i
\(745\) −456.727 519.220i −0.613056 0.696940i
\(746\) 96.7872 + 785.683i 0.129742 + 1.05319i
\(747\) −87.5459 87.5459i −0.117197 0.117197i
\(748\) −405.794 564.170i −0.542505 0.754238i
\(749\) 759.010i 1.01336i
\(750\) −81.5014 925.756i −0.108669 1.23434i
\(751\) 37.9272 + 12.3233i 0.0505023 + 0.0164092i 0.334159 0.942517i \(-0.391548\pi\)
−0.283657 + 0.958926i \(0.591548\pi\)
\(752\) 719.664 + 502.209i 0.957000 + 0.667830i
\(753\) −96.6189 + 610.027i −0.128312 + 0.810129i
\(754\) 341.416 + 66.2235i 0.452806 + 0.0878296i
\(755\) −116.759 26.2354i −0.154648 0.0347489i
\(756\) 280.770 696.526i 0.371389 0.921330i
\(757\) 20.5321 + 129.634i 0.0271229 + 0.171247i 0.997531 0.0702218i \(-0.0223707\pi\)
−0.970408 + 0.241469i \(0.922371\pi\)
\(758\) 679.510 + 23.4583i 0.896452 + 0.0309476i
\(759\) 1.63847 + 7.28175i 0.00215872 + 0.00959388i
\(760\) −603.375 448.031i −0.793914 0.589515i
\(761\) −177.360 + 244.115i −0.233061 + 0.320781i −0.909489 0.415727i \(-0.863527\pi\)
0.676428 + 0.736509i \(0.263527\pi\)
\(762\) −381.271 138.600i −0.500356 0.181889i
\(763\) 819.145 1607.66i 1.07358 2.10703i
\(764\) −327.333 522.916i −0.428446 0.684445i
\(765\) −242.891 + 292.940i −0.317505 + 0.382928i
\(766\) −61.4297 + 110.926i −0.0801954 + 0.144812i
\(767\) −146.537 + 74.6642i −0.191052 + 0.0973458i
\(768\) −112.968 + 944.912i −0.147094 + 1.23035i
\(769\) −1022.88 −1.33014 −0.665070 0.746781i \(-0.731598\pi\)
−0.665070 + 0.746781i \(0.731598\pi\)