Properties

Label 220.3.w.a.7.11
Level $220$
Weight $3$
Character 220.7
Analytic conductor $5.995$
Analytic rank $0$
Dimension $544$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(7,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 5, 14]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.w (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(544\)
Relative dimension: \(68\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.11
Character \(\chi\) \(=\) 220.7
Dual form 220.3.w.a.63.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.75740 - 0.954750i) q^{2} +(2.01897 - 1.02872i) q^{3} +(2.17690 + 3.35575i) q^{4} +(4.19108 - 2.72669i) q^{5} +(-4.53030 - 0.119746i) q^{6} +(2.63142 - 5.16446i) q^{7} +(-0.621782 - 7.97580i) q^{8} +(-2.27209 + 3.12726i) q^{9} +(-9.96871 + 0.790451i) q^{10} +(9.84371 + 4.90931i) q^{11} +(7.84722 + 4.53575i) q^{12} +(-2.39288 - 15.1080i) q^{13} +(-9.55523 + 6.56366i) q^{14} +(5.65667 - 9.81653i) q^{15} +(-6.52218 + 14.6103i) q^{16} +(-1.91459 + 12.0882i) q^{17} +(6.97872 - 3.32657i) q^{18} +(24.2978 + 7.89483i) q^{19} +(18.2737 + 8.12849i) q^{20} -13.1339i q^{21} +(-12.6122 - 18.0259i) q^{22} +(-11.4273 - 11.4273i) q^{23} +(-9.46019 - 15.4633i) q^{24} +(10.1303 - 22.8556i) q^{25} +(-10.2192 + 28.8355i) q^{26} +(-4.56045 + 28.7936i) q^{27} +(23.0590 - 2.41212i) q^{28} +(-16.0454 - 49.3826i) q^{29} +(-19.3134 + 11.8509i) q^{30} +(-7.84453 + 10.7971i) q^{31} +(25.4113 - 19.4491i) q^{32} +(24.9244 - 0.214638i) q^{33} +(14.9059 - 19.4159i) q^{34} +(-3.05338 - 28.8197i) q^{35} +(-15.4404 - 0.816824i) q^{36} +(4.00077 - 7.85195i) q^{37} +(-35.1633 - 37.0727i) q^{38} +(-20.3730 - 28.0411i) q^{39} +(-24.3535 - 31.7318i) q^{40} +(-75.7259 - 24.6048i) q^{41} +(-12.5396 + 23.0814i) q^{42} +(54.5989 - 54.5989i) q^{43} +(4.95437 + 43.7202i) q^{44} +(-0.995428 + 19.3019i) q^{45} +(9.17211 + 30.9925i) q^{46} +(22.4582 + 44.0767i) q^{47} +(1.86179 + 36.2072i) q^{48} +(9.05424 + 12.4621i) q^{49} +(-39.6243 + 30.4944i) q^{50} +(8.56986 + 26.3753i) q^{51} +(45.4898 - 40.9187i) q^{52} +(-21.8861 + 3.46642i) q^{53} +(35.5052 - 46.2477i) q^{54} +(54.6420 - 6.26545i) q^{55} +(-42.8269 - 17.7765i) q^{56} +(57.1780 - 9.05611i) q^{57} +(-18.9499 + 102.104i) q^{58} +(15.0901 + 46.4424i) q^{59} +(45.2559 - 2.38726i) q^{60} +(55.4322 + 76.2959i) q^{61} +(24.0945 - 11.4852i) q^{62} +(10.1718 + 19.9633i) q^{63} +(-63.2268 + 9.91841i) q^{64} +(-51.2237 - 56.7944i) q^{65} +(-44.0071 - 23.4194i) q^{66} +(5.11791 - 5.11791i) q^{67} +(-44.7330 + 19.8900i) q^{68} +(-34.8268 - 11.3159i) q^{69} +(-22.1496 + 53.5630i) q^{70} +(-10.7606 - 14.8107i) q^{71} +(26.3552 + 16.1773i) q^{72} +(-46.5762 + 91.4110i) q^{73} +(-14.5276 + 9.97927i) q^{74} +(-3.05911 - 56.5659i) q^{75} +(26.4008 + 98.7237i) q^{76} +(51.2569 - 37.9190i) q^{77} +(9.03133 + 68.7305i) q^{78} +(-47.7369 + 65.7043i) q^{79} +(12.5028 + 79.0170i) q^{80} +(9.66242 + 29.7379i) q^{81} +(109.589 + 115.540i) q^{82} +(-9.70086 + 61.2488i) q^{83} +(44.0740 - 28.5912i) q^{84} +(24.9367 + 55.8832i) q^{85} +(-148.080 + 43.8237i) q^{86} +(-83.1957 - 83.1957i) q^{87} +(33.0350 - 81.5640i) q^{88} -11.2250i q^{89} +(20.1779 - 32.9708i) q^{90} +(-84.3215 - 27.3977i) q^{91} +(13.4711 - 63.2234i) q^{92} +(-4.73074 + 29.8687i) q^{93} +(2.61421 - 98.9023i) q^{94} +(123.361 - 33.1647i) q^{95} +(31.2970 - 65.4081i) q^{96} +(7.98092 + 50.3895i) q^{97} +(-4.01373 - 30.5454i) q^{98} +(-37.7185 + 19.6295i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 544 q - 10 q^{2} - 12 q^{5} - 20 q^{6} - 10 q^{8} - 28 q^{12} - 20 q^{13} - 36 q^{16} - 20 q^{17} - 10 q^{18} - 40 q^{20} + 86 q^{22} - 12 q^{25} + 140 q^{26} - 10 q^{28} - 370 q^{30} - 100 q^{33} - 476 q^{36}+ \cdots + 148 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.75740 0.954750i −0.878700 0.477375i
\(3\) 2.01897 1.02872i 0.672990 0.342905i −0.0838758 0.996476i \(-0.526730\pi\)
0.756865 + 0.653571i \(0.226730\pi\)
\(4\) 2.17690 + 3.35575i 0.544226 + 0.838939i
\(5\) 4.19108 2.72669i 0.838216 0.545338i
\(6\) −4.53030 0.119746i −0.755050 0.0199577i
\(7\) 2.63142 5.16446i 0.375918 0.737780i −0.623098 0.782144i \(-0.714126\pi\)
0.999015 + 0.0443641i \(0.0141262\pi\)
\(8\) −0.621782 7.97580i −0.0777227 0.996975i
\(9\) −2.27209 + 3.12726i −0.252454 + 0.347474i
\(10\) −9.96871 + 0.790451i −0.996871 + 0.0790451i
\(11\) 9.84371 + 4.90931i 0.894883 + 0.446301i
\(12\) 7.84722 + 4.53575i 0.653935 + 0.377979i
\(13\) −2.39288 15.1080i −0.184068 1.16216i −0.890705 0.454582i \(-0.849789\pi\)
0.706637 0.707576i \(-0.250211\pi\)
\(14\) −9.55523 + 6.56366i −0.682516 + 0.468833i
\(15\) 5.65667 9.81653i 0.377111 0.654436i
\(16\) −6.52218 + 14.6103i −0.407636 + 0.913144i
\(17\) −1.91459 + 12.0882i −0.112623 + 0.711072i 0.865167 + 0.501484i \(0.167212\pi\)
−0.977790 + 0.209588i \(0.932788\pi\)
\(18\) 6.97872 3.32657i 0.387707 0.184810i
\(19\) 24.2978 + 7.89483i 1.27883 + 0.415517i 0.868168 0.496270i \(-0.165297\pi\)
0.410663 + 0.911787i \(0.365297\pi\)
\(20\) 18.2737 + 8.12849i 0.913684 + 0.406425i
\(21\) 13.1339i 0.625422i
\(22\) −12.6122 18.0259i −0.573280 0.819359i
\(23\) −11.4273 11.4273i −0.496839 0.496839i 0.413613 0.910453i \(-0.364267\pi\)
−0.910453 + 0.413613i \(0.864267\pi\)
\(24\) −9.46019 15.4633i −0.394175 0.644302i
\(25\) 10.1303 22.8556i 0.405212 0.914223i
\(26\) −10.2192 + 28.8355i −0.393045 + 1.10906i
\(27\) −4.56045 + 28.7936i −0.168906 + 1.06643i
\(28\) 23.0590 2.41212i 0.823536 0.0861471i
\(29\) −16.0454 49.3826i −0.553289 1.70285i −0.700421 0.713730i \(-0.747004\pi\)
0.147132 0.989117i \(-0.452996\pi\)
\(30\) −19.3134 + 11.8509i −0.643779 + 0.395029i
\(31\) −7.84453 + 10.7971i −0.253049 + 0.348292i −0.916576 0.399860i \(-0.869059\pi\)
0.663527 + 0.748152i \(0.269059\pi\)
\(32\) 25.4113 19.4491i 0.794102 0.607784i
\(33\) 24.9244 0.214638i 0.755286 0.00650418i
\(34\) 14.9059 19.4159i 0.438410 0.571055i
\(35\) −3.05338 28.8197i −0.0872394 0.823421i
\(36\) −15.4404 0.816824i −0.428901 0.0226896i
\(37\) 4.00077 7.85195i 0.108129 0.212215i −0.830602 0.556867i \(-0.812003\pi\)
0.938730 + 0.344652i \(0.112003\pi\)
\(38\) −35.1633 37.0727i −0.925351 0.975597i
\(39\) −20.3730 28.0411i −0.522385 0.719002i
\(40\) −24.3535 31.7318i −0.608837 0.793295i
\(41\) −75.7259 24.6048i −1.84697 0.600118i −0.997352 0.0727233i \(-0.976831\pi\)
−0.849621 0.527395i \(-0.823169\pi\)
\(42\) −12.5396 + 23.0814i −0.298561 + 0.549558i
\(43\) 54.5989 54.5989i 1.26974 1.26974i 0.323519 0.946222i \(-0.395134\pi\)
0.946222 0.323519i \(-0.104866\pi\)
\(44\) 4.95437 + 43.7202i 0.112599 + 0.993640i
\(45\) −0.995428 + 19.3019i −0.0221206 + 0.428931i
\(46\) 9.17211 + 30.9925i 0.199394 + 0.673751i
\(47\) 22.4582 + 44.0767i 0.477834 + 0.937802i 0.996561 + 0.0828618i \(0.0264060\pi\)
−0.518727 + 0.854940i \(0.673594\pi\)
\(48\) 1.86179 + 36.2072i 0.0387872 + 0.754317i
\(49\) 9.05424 + 12.4621i 0.184780 + 0.254328i
\(50\) −39.6243 + 30.4944i −0.792487 + 0.609889i
\(51\) 8.56986 + 26.3753i 0.168036 + 0.517163i
\(52\) 45.4898 40.9187i 0.874804 0.786898i
\(53\) −21.8861 + 3.46642i −0.412945 + 0.0654041i −0.359451 0.933164i \(-0.617036\pi\)
−0.0534944 + 0.998568i \(0.517036\pi\)
\(54\) 35.5052 46.2477i 0.657504 0.856439i
\(55\) 54.6420 6.26545i 0.993490 0.113917i
\(56\) −42.8269 17.7765i −0.764765 0.317438i
\(57\) 57.1780 9.05611i 1.00312 0.158879i
\(58\) −18.9499 + 102.104i −0.326722 + 1.76042i
\(59\) 15.0901 + 46.4424i 0.255764 + 0.787159i 0.993678 + 0.112265i \(0.0358107\pi\)
−0.737915 + 0.674894i \(0.764189\pi\)
\(60\) 45.2559 2.38726i 0.754265 0.0397877i
\(61\) 55.4322 + 76.2959i 0.908725 + 1.25075i 0.967600 + 0.252487i \(0.0812486\pi\)
−0.0588751 + 0.998265i \(0.518751\pi\)
\(62\) 24.0945 11.4852i 0.388620 0.185245i
\(63\) 10.1718 + 19.9633i 0.161457 + 0.316877i
\(64\) −63.2268 + 9.91841i −0.987918 + 0.154975i
\(65\) −51.2237 56.7944i −0.788057 0.873760i
\(66\) −44.0071 23.4194i −0.666774 0.354839i
\(67\) 5.11791 5.11791i 0.0763867 0.0763867i −0.667881 0.744268i \(-0.732799\pi\)
0.744268 + 0.667881i \(0.232799\pi\)
\(68\) −44.7330 + 19.8900i −0.657838 + 0.292500i
\(69\) −34.8268 11.3159i −0.504736 0.163999i
\(70\) −22.1496 + 53.5630i −0.316423 + 0.765186i
\(71\) −10.7606 14.8107i −0.151558 0.208602i 0.726486 0.687181i \(-0.241152\pi\)
−0.878044 + 0.478579i \(0.841152\pi\)
\(72\) 26.3552 + 16.1773i 0.366044 + 0.224684i
\(73\) −46.5762 + 91.4110i −0.638030 + 1.25220i 0.314932 + 0.949114i \(0.398018\pi\)
−0.952962 + 0.303090i \(0.901982\pi\)
\(74\) −14.5276 + 9.97927i −0.196319 + 0.134855i
\(75\) −3.05911 56.5659i −0.0407882 0.754212i
\(76\) 26.4008 + 98.7237i 0.347380 + 1.29900i
\(77\) 51.2569 37.9190i 0.665674 0.492454i
\(78\) 9.03133 + 68.7305i 0.115786 + 0.881161i
\(79\) −47.7369 + 65.7043i −0.604265 + 0.831700i −0.996090 0.0883400i \(-0.971844\pi\)
0.391825 + 0.920040i \(0.371844\pi\)
\(80\) 12.5028 + 79.0170i 0.156285 + 0.987712i
\(81\) 9.66242 + 29.7379i 0.119289 + 0.367134i
\(82\) 109.589 + 115.540i 1.33645 + 1.40902i
\(83\) −9.70086 + 61.2488i −0.116878 + 0.737937i 0.857744 + 0.514078i \(0.171866\pi\)
−0.974621 + 0.223860i \(0.928134\pi\)
\(84\) 44.0740 28.5912i 0.524691 0.340371i
\(85\) 24.9367 + 55.8832i 0.293373 + 0.657449i
\(86\) −148.080 + 43.8237i −1.72186 + 0.509578i
\(87\) −83.1957 83.1957i −0.956273 0.956273i
\(88\) 33.0350 81.5640i 0.375398 0.926864i
\(89\) 11.2250i 0.126124i −0.998010 0.0630619i \(-0.979913\pi\)
0.998010 0.0630619i \(-0.0200865\pi\)
\(90\) 20.1779 32.9708i 0.224198 0.366342i
\(91\) −84.3215 27.3977i −0.926610 0.301074i
\(92\) 13.4711 63.2234i 0.146425 0.687210i
\(93\) −4.73074 + 29.8687i −0.0508682 + 0.321169i
\(94\) 2.61421 98.9023i 0.0278108 1.05215i
\(95\) 123.361 33.1647i 1.29853 0.349102i
\(96\) 31.2970 65.4081i 0.326010 0.681334i
\(97\) 7.98092 + 50.3895i 0.0822775 + 0.519480i 0.994062 + 0.108812i \(0.0347045\pi\)
−0.911785 + 0.410668i \(0.865295\pi\)
\(98\) −4.01373 30.5454i −0.0409564 0.311688i
\(99\) −37.7185 + 19.6295i −0.380995 + 0.198278i
\(100\) 98.7504 15.7595i 0.987504 0.157595i
\(101\) −46.9062 + 64.5609i −0.464418 + 0.639216i −0.975418 0.220364i \(-0.929275\pi\)
0.511000 + 0.859581i \(0.329275\pi\)
\(102\) 10.1212 54.5340i 0.0992272 0.534647i
\(103\) 17.4529 34.2533i 0.169446 0.332556i −0.790631 0.612293i \(-0.790247\pi\)
0.960077 + 0.279737i \(0.0902473\pi\)
\(104\) −119.011 + 28.4790i −1.14434 + 0.273837i
\(105\) −35.8120 55.0451i −0.341067 0.524239i
\(106\) 41.7722 + 14.8039i 0.394077 + 0.139659i
\(107\) 2.13636 1.08853i 0.0199660 0.0101732i −0.443979 0.896037i \(-0.646434\pi\)
0.463945 + 0.885864i \(0.346434\pi\)
\(108\) −106.552 + 47.3771i −0.986591 + 0.438677i
\(109\) 35.3156 0.323997 0.161998 0.986791i \(-0.448206\pi\)
0.161998 + 0.986791i \(0.448206\pi\)
\(110\) −102.010 41.1585i −0.927361 0.374168i
\(111\) 19.9685i 0.179896i
\(112\) 58.2917 + 72.1294i 0.520462 + 0.644013i
\(113\) 70.3792 + 138.127i 0.622825 + 1.22236i 0.959756 + 0.280834i \(0.0906110\pi\)
−0.336931 + 0.941529i \(0.609389\pi\)
\(114\) −109.131 38.6755i −0.957289 0.339259i
\(115\) −79.0515 16.7340i −0.687404 0.145513i
\(116\) 130.787 161.345i 1.12747 1.39091i
\(117\) 52.6837 + 26.8437i 0.450288 + 0.229433i
\(118\) 17.8217 96.0251i 0.151031 0.813772i
\(119\) 57.3910 + 41.6970i 0.482278 + 0.350395i
\(120\) −81.8119 39.0127i −0.681766 0.325106i
\(121\) 72.7973 + 96.6517i 0.601631 + 0.798774i
\(122\) −24.5730 187.006i −0.201418 1.53284i
\(123\) −178.200 + 28.2240i −1.44878 + 0.229464i
\(124\) −53.3091 2.82013i −0.429912 0.0227430i
\(125\) −19.8632 123.412i −0.158905 0.987294i
\(126\) 1.18403 44.7949i 0.00939709 0.355515i
\(127\) −158.623 25.1234i −1.24900 0.197822i −0.503305 0.864109i \(-0.667883\pi\)
−0.745696 + 0.666286i \(0.767883\pi\)
\(128\) 120.584 + 42.9352i 0.942065 + 0.335431i
\(129\) 54.0667 166.400i 0.419121 1.28992i
\(130\) 35.7961 + 148.716i 0.275355 + 1.14397i
\(131\) −64.7703 −0.494430 −0.247215 0.968961i \(-0.579515\pi\)
−0.247215 + 0.968961i \(0.579515\pi\)
\(132\) 54.9784 + 83.1730i 0.416503 + 0.630099i
\(133\) 104.710 104.710i 0.787295 0.787295i
\(134\) −13.8805 + 4.10789i −0.103586 + 0.0306559i
\(135\) 59.3980 + 133.111i 0.439985 + 0.986008i
\(136\) 97.6037 + 7.75412i 0.717674 + 0.0570156i
\(137\) −148.793 23.5665i −1.08608 0.172018i −0.412371 0.911016i \(-0.635299\pi\)
−0.673708 + 0.738998i \(0.735299\pi\)
\(138\) 50.4007 + 53.1375i 0.365223 + 0.385054i
\(139\) 157.194 51.0755i 1.13089 0.367449i 0.316978 0.948433i \(-0.397332\pi\)
0.813915 + 0.580984i \(0.197332\pi\)
\(140\) 90.0650 72.9842i 0.643322 0.521316i
\(141\) 90.6847 + 65.8863i 0.643154 + 0.467279i
\(142\) 4.77016 + 36.3021i 0.0335927 + 0.255648i
\(143\) 50.6153 160.467i 0.353953 1.12214i
\(144\) −30.8713 53.5925i −0.214384 0.372170i
\(145\) −201.898 163.216i −1.39240 1.12562i
\(146\) 169.128 116.177i 1.15841 0.795732i
\(147\) 31.1002 + 15.8463i 0.211566 + 0.107798i
\(148\) 35.0585 3.66734i 0.236882 0.0247793i
\(149\) 38.4172 27.9117i 0.257834 0.187327i −0.451358 0.892343i \(-0.649060\pi\)
0.709191 + 0.705016i \(0.249060\pi\)
\(150\) −48.6302 + 102.330i −0.324201 + 0.682197i
\(151\) −1.37473 + 4.23100i −0.00910420 + 0.0280198i −0.955505 0.294974i \(-0.904689\pi\)
0.946401 + 0.322993i \(0.104689\pi\)
\(152\) 47.8597 198.703i 0.314866 1.30726i
\(153\) −33.4529 33.4529i −0.218647 0.218647i
\(154\) −126.282 + 17.7012i −0.820013 + 0.114943i
\(155\) −3.43678 + 66.6410i −0.0221727 + 0.429942i
\(156\) 49.7488 129.410i 0.318903 0.829549i
\(157\) −16.4961 + 8.40517i −0.105071 + 0.0535361i −0.505736 0.862688i \(-0.668779\pi\)
0.400665 + 0.916224i \(0.368779\pi\)
\(158\) 146.624 69.8918i 0.928000 0.442353i
\(159\) −40.6214 + 29.5132i −0.255480 + 0.185617i
\(160\) 53.4690 150.801i 0.334181 0.942509i
\(161\) −89.0859 + 28.9458i −0.553328 + 0.179787i
\(162\) 11.4115 61.4865i 0.0704414 0.379546i
\(163\) 22.6295 + 142.877i 0.138831 + 0.876546i 0.954540 + 0.298083i \(0.0963473\pi\)
−0.815709 + 0.578463i \(0.803653\pi\)
\(164\) −82.2802 307.680i −0.501709 1.87610i
\(165\) 103.875 68.8608i 0.629546 0.417338i
\(166\) 75.5256 98.3767i 0.454973 0.592631i
\(167\) −5.85235 36.9503i −0.0350440 0.221259i 0.963951 0.266080i \(-0.0857284\pi\)
−0.998995 + 0.0448205i \(0.985728\pi\)
\(168\) −104.753 + 8.16640i −0.623530 + 0.0486095i
\(169\) −61.7986 + 20.0796i −0.365672 + 0.118814i
\(170\) 9.53081 122.017i 0.0560636 0.717749i
\(171\) −79.8960 + 58.0478i −0.467228 + 0.339461i
\(172\) 302.077 + 64.3639i 1.75626 + 0.374209i
\(173\) −126.447 + 64.4278i −0.730906 + 0.372415i −0.779499 0.626404i \(-0.784526\pi\)
0.0485932 + 0.998819i \(0.484526\pi\)
\(174\) 66.7770 + 225.639i 0.383776 + 1.29678i
\(175\) −91.3795 112.460i −0.522169 0.642630i
\(176\) −135.929 + 111.800i −0.772324 + 0.635229i
\(177\) 78.2424 + 78.2424i 0.442047 + 0.442047i
\(178\) −10.7171 + 19.7268i −0.0602083 + 0.110825i
\(179\) −51.3148 + 157.931i −0.286675 + 0.882294i 0.699217 + 0.714909i \(0.253532\pi\)
−0.985892 + 0.167384i \(0.946468\pi\)
\(180\) −66.9394 + 38.6780i −0.371885 + 0.214878i
\(181\) 34.5119 25.0744i 0.190674 0.138533i −0.488353 0.872646i \(-0.662402\pi\)
0.679027 + 0.734114i \(0.262402\pi\)
\(182\) 122.029 + 128.655i 0.670487 + 0.706894i
\(183\) 190.403 + 97.0150i 1.04045 + 0.530137i
\(184\) −84.0366 + 98.2472i −0.456721 + 0.533952i
\(185\) −4.64230 43.8170i −0.0250935 0.236849i
\(186\) 36.8310 47.9746i 0.198016 0.257928i
\(187\) −78.1915 + 109.594i −0.418136 + 0.586062i
\(188\) −99.0212 + 171.315i −0.526708 + 0.911249i
\(189\) 136.703 + 99.3203i 0.723295 + 0.525504i
\(190\) −248.458 59.4951i −1.30767 0.313132i
\(191\) −226.751 + 73.6758i −1.18718 + 0.385737i −0.835029 0.550207i \(-0.814549\pi\)
−0.352149 + 0.935944i \(0.614549\pi\)
\(192\) −117.450 + 85.0673i −0.611717 + 0.443059i
\(193\) −46.1134 7.30364i −0.238929 0.0378427i 0.0358212 0.999358i \(-0.488595\pi\)
−0.274751 + 0.961516i \(0.588595\pi\)
\(194\) 34.0838 96.1743i 0.175690 0.495744i
\(195\) −161.844 61.9714i −0.829971 0.317802i
\(196\) −22.1095 + 57.5126i −0.112804 + 0.293431i
\(197\) −94.3879 + 94.3879i −0.479126 + 0.479126i −0.904852 0.425726i \(-0.860019\pi\)
0.425726 + 0.904852i \(0.360019\pi\)
\(198\) 85.0277 + 1.51491i 0.429433 + 0.00765108i
\(199\) 335.923 1.68806 0.844028 0.536299i \(-0.180178\pi\)
0.844028 + 0.536299i \(0.180178\pi\)
\(200\) −188.590 66.5861i −0.942951 0.332931i
\(201\) 5.06802 15.5978i 0.0252141 0.0776009i
\(202\) 144.072 68.6755i 0.713230 0.339978i
\(203\) −297.256 47.0808i −1.46432 0.231925i
\(204\) −69.8533 + 86.1748i −0.342418 + 0.422426i
\(205\) −384.463 + 103.360i −1.87543 + 0.504197i
\(206\) −63.3751 + 43.5335i −0.307646 + 0.211328i
\(207\) 61.7000 9.77232i 0.298068 0.0472093i
\(208\) 236.340 + 63.5767i 1.13625 + 0.305657i
\(209\) 200.422 + 197.000i 0.958958 + 0.942583i
\(210\) 10.3817 + 130.928i 0.0494365 + 0.623465i
\(211\) −90.9735 66.0961i −0.431154 0.313252i 0.350956 0.936392i \(-0.385857\pi\)
−0.782110 + 0.623140i \(0.785857\pi\)
\(212\) −59.2764 65.8983i −0.279606 0.310841i
\(213\) −36.9614 18.8328i −0.173528 0.0884167i
\(214\) −4.79371 0.126709i −0.0224005 0.000592097i
\(215\) 79.9539 377.702i 0.371879 1.75676i
\(216\) 232.487 + 18.4700i 1.07633 + 0.0855090i
\(217\) 35.1187 + 68.9244i 0.161837 + 0.317624i
\(218\) −62.0637 33.7176i −0.284696 0.154668i
\(219\) 232.470i 1.06150i
\(220\) 139.976 + 169.726i 0.636253 + 0.771481i
\(221\) 187.211 0.847108
\(222\) −19.0649 + 35.0926i −0.0858780 + 0.158075i
\(223\) 206.304 105.117i 0.925131 0.471378i 0.0745471 0.997217i \(-0.476249\pi\)
0.850584 + 0.525840i \(0.176249\pi\)
\(224\) −33.5763 182.414i −0.149894 0.814349i
\(225\) 48.4584 + 83.6100i 0.215371 + 0.371600i
\(226\) 8.19240 309.939i 0.0362496 1.37141i
\(227\) −40.9502 + 80.3693i −0.180397 + 0.354050i −0.963443 0.267915i \(-0.913665\pi\)
0.783045 + 0.621965i \(0.213665\pi\)
\(228\) 154.861 + 172.161i 0.679216 + 0.755093i
\(229\) 66.4852 91.5091i 0.290329 0.399603i −0.638792 0.769379i \(-0.720566\pi\)
0.929121 + 0.369776i \(0.120566\pi\)
\(230\) 122.948 + 104.883i 0.534557 + 0.456012i
\(231\) 64.4782 129.286i 0.279127 0.559680i
\(232\) −383.889 + 158.680i −1.65469 + 0.683965i
\(233\) −16.1589 102.023i −0.0693514 0.437868i −0.997794 0.0663909i \(-0.978852\pi\)
0.928442 0.371477i \(-0.121148\pi\)
\(234\) −66.9572 97.4748i −0.286142 0.416559i
\(235\) 214.308 + 123.492i 0.911947 + 0.525499i
\(236\) −123.000 + 151.739i −0.521185 + 0.642963i
\(237\) −28.7884 + 181.763i −0.121470 + 0.766931i
\(238\) −61.0487 128.072i −0.256507 0.538119i
\(239\) 91.4706 + 29.7206i 0.382722 + 0.124354i 0.494058 0.869429i \(-0.335513\pi\)
−0.111336 + 0.993783i \(0.535513\pi\)
\(240\) 106.529 + 146.671i 0.443870 + 0.611129i
\(241\) 144.550i 0.599791i 0.953972 + 0.299895i \(0.0969518\pi\)
−0.953972 + 0.299895i \(0.903048\pi\)
\(242\) −35.6557 239.359i −0.147338 0.989086i
\(243\) −135.425 135.425i −0.557306 0.557306i
\(244\) −135.360 + 352.106i −0.554753 + 1.44306i
\(245\) 71.9273 + 27.5415i 0.293581 + 0.112414i
\(246\) 340.115 + 120.535i 1.38258 + 0.489980i
\(247\) 61.1338 385.984i 0.247505 1.56269i
\(248\) 90.9928 + 55.8530i 0.366906 + 0.225214i
\(249\) 43.4219 + 133.639i 0.174385 + 0.536702i
\(250\) −82.9199 + 235.848i −0.331680 + 0.943392i
\(251\) −58.6480 + 80.7220i −0.233657 + 0.321602i −0.909704 0.415257i \(-0.863692\pi\)
0.676047 + 0.736859i \(0.263692\pi\)
\(252\) −44.8488 + 77.5921i −0.177971 + 0.307905i
\(253\) −56.3869 168.587i −0.222873 0.666353i
\(254\) 254.778 + 195.597i 1.00306 + 0.770069i
\(255\) 107.834 + 87.1737i 0.422880 + 0.341858i
\(256\) −170.922 190.582i −0.667666 0.744461i
\(257\) 159.712 313.452i 0.621447 1.21966i −0.338893 0.940825i \(-0.610052\pi\)
0.960340 0.278833i \(-0.0899475\pi\)
\(258\) −253.887 + 240.811i −0.984059 + 0.933377i
\(259\) −30.0233 41.3236i −0.115920 0.159551i
\(260\) 79.0789 295.530i 0.304150 1.13665i
\(261\) 190.889 + 62.0235i 0.731375 + 0.237638i
\(262\) 113.827 + 61.8395i 0.434455 + 0.236028i
\(263\) 145.248 145.248i 0.552275 0.552275i −0.374822 0.927097i \(-0.622296\pi\)
0.927097 + 0.374822i \(0.122296\pi\)
\(264\) −17.2095 198.659i −0.0651874 0.752496i
\(265\) −82.2745 + 74.2047i −0.310470 + 0.280018i
\(266\) −283.990 + 84.0456i −1.06763 + 0.315961i
\(267\) −11.5473 22.6629i −0.0432485 0.0848799i
\(268\) 28.3157 + 6.03325i 0.105655 + 0.0225121i
\(269\) −87.2157 120.042i −0.324222 0.446253i 0.615528 0.788115i \(-0.288943\pi\)
−0.939750 + 0.341861i \(0.888943\pi\)
\(270\) 22.7019 290.640i 0.0840813 1.07644i
\(271\) 117.527 + 361.712i 0.433680 + 1.33473i 0.894433 + 0.447202i \(0.147579\pi\)
−0.460753 + 0.887528i \(0.652421\pi\)
\(272\) −164.125 106.814i −0.603402 0.392699i
\(273\) −198.427 + 31.4278i −0.726839 + 0.115120i
\(274\) 238.988 + 183.476i 0.872220 + 0.669619i
\(275\) 211.925 175.251i 0.770636 0.637276i
\(276\) −37.8412 141.504i −0.137106 0.512695i
\(277\) −18.6000 + 2.94595i −0.0671480 + 0.0106352i −0.189918 0.981800i \(-0.560822\pi\)
0.122770 + 0.992435i \(0.460822\pi\)
\(278\) −325.017 60.3212i −1.16913 0.216983i
\(279\) −15.9418 49.0638i −0.0571390 0.175856i
\(280\) −227.962 + 42.2727i −0.814150 + 0.150974i
\(281\) −225.323 310.130i −0.801860 1.10366i −0.992529 0.122011i \(-0.961066\pi\)
0.190669 0.981654i \(-0.438934\pi\)
\(282\) −96.4643 202.370i −0.342072 0.717624i
\(283\) −201.552 395.568i −0.712197 1.39777i −0.908779 0.417278i \(-0.862984\pi\)
0.196582 0.980487i \(-0.437016\pi\)
\(284\) 26.2763 68.3515i 0.0925222 0.240674i
\(285\) 214.944 193.862i 0.754191 0.680216i
\(286\) −242.157 + 233.679i −0.846702 + 0.817059i
\(287\) −326.337 + 326.337i −1.13706 + 1.13706i
\(288\) 3.08576 + 123.658i 0.0107145 + 0.429367i
\(289\) 132.396 + 43.0180i 0.458117 + 0.148851i
\(290\) 198.986 + 479.597i 0.686159 + 1.65378i
\(291\) 67.9498 + 93.5248i 0.233504 + 0.321391i
\(292\) −408.145 + 42.6945i −1.39776 + 0.146214i
\(293\) −92.7576 + 182.047i −0.316579 + 0.621321i −0.993384 0.114842i \(-0.963364\pi\)
0.676805 + 0.736162i \(0.263364\pi\)
\(294\) −39.5261 57.5412i −0.134443 0.195718i
\(295\) 189.878 + 153.498i 0.643653 + 0.520332i
\(296\) −65.1132 27.0271i −0.219977 0.0913078i
\(297\) −186.248 + 261.047i −0.627099 + 0.878946i
\(298\) −94.1631 + 12.3732i −0.315984 + 0.0415209i
\(299\) −145.300 + 199.988i −0.485953 + 0.668857i
\(300\) 183.162 133.404i 0.610539 0.444680i
\(301\) −138.301 425.646i −0.459471 1.41411i
\(302\) 6.45550 6.12302i 0.0213758 0.0202749i
\(303\) −28.2874 + 178.600i −0.0933577 + 0.589437i
\(304\) −273.820 + 303.507i −0.900725 + 0.998378i
\(305\) 440.356 + 168.616i 1.44379 + 0.552838i
\(306\) 26.8510 + 90.7294i 0.0877483 + 0.296501i
\(307\) −197.102 197.102i −0.642027 0.642027i 0.309026 0.951054i \(-0.399997\pi\)
−0.951054 + 0.309026i \(0.899997\pi\)
\(308\) 238.828 + 89.4596i 0.775416 + 0.290453i
\(309\) 87.1104i 0.281911i
\(310\) 69.6653 113.834i 0.224727 0.367205i
\(311\) 444.086 + 144.292i 1.42793 + 0.463962i 0.918112 0.396322i \(-0.129713\pi\)
0.509816 + 0.860283i \(0.329713\pi\)
\(312\) −210.982 + 179.927i −0.676226 + 0.576688i
\(313\) 83.8361 529.321i 0.267847 1.69112i −0.376524 0.926407i \(-0.622881\pi\)
0.644371 0.764713i \(-0.277119\pi\)
\(314\) 37.0150 + 0.978393i 0.117882 + 0.00311590i
\(315\) 97.0645 + 55.9323i 0.308141 + 0.177563i
\(316\) −324.406 17.1616i −1.02660 0.0543088i
\(317\) −1.93423 12.2122i −0.00610166 0.0385244i 0.984450 0.175667i \(-0.0562082\pi\)
−0.990551 + 0.137143i \(0.956208\pi\)
\(318\) 99.5657 13.0831i 0.313100 0.0411419i
\(319\) 84.4884 564.879i 0.264854 1.77078i
\(320\) −237.944 + 213.969i −0.743575 + 0.668652i
\(321\) 3.19345 4.39541i 0.00994845 0.0136929i
\(322\) 184.195 + 34.1855i 0.572035 + 0.106166i
\(323\) −141.955 + 278.602i −0.439488 + 0.862544i
\(324\) −78.7588 + 97.1612i −0.243083 + 0.299880i
\(325\) −369.544 98.3585i −1.13706 0.302642i
\(326\) 96.6428 272.698i 0.296450 0.836496i
\(327\) 71.3012 36.3298i 0.218046 0.111100i
\(328\) −149.158 + 619.273i −0.454751 + 1.88803i
\(329\) 286.729 0.871517
\(330\) −248.295 + 21.8412i −0.752408 + 0.0661854i
\(331\) 236.741i 0.715229i −0.933869 0.357614i \(-0.883590\pi\)
0.933869 0.357614i \(-0.116410\pi\)
\(332\) −226.654 + 100.779i −0.682692 + 0.303551i
\(333\) 15.4650 + 30.3518i 0.0464415 + 0.0911465i
\(334\) −24.9934 + 70.5239i −0.0748305 + 0.211150i
\(335\) 7.49461 35.4045i 0.0223720 0.105685i
\(336\) 191.890 + 85.6614i 0.571101 + 0.254945i
\(337\) −131.068 66.7824i −0.388925 0.198167i 0.248583 0.968610i \(-0.420035\pi\)
−0.637509 + 0.770443i \(0.720035\pi\)
\(338\) 127.776 + 23.7144i 0.378035 + 0.0701609i
\(339\) 284.187 + 206.474i 0.838310 + 0.609068i
\(340\) −133.246 + 205.334i −0.391899 + 0.603923i
\(341\) −130.225 + 67.7720i −0.381893 + 0.198745i
\(342\) 195.830 25.7325i 0.572603 0.0752412i
\(343\) 368.703 58.3968i 1.07494 0.170253i
\(344\) −469.418 401.521i −1.36459 1.16721i
\(345\) −176.817 + 47.5360i −0.512513 + 0.137786i
\(346\) 283.730 + 7.49963i 0.820028 + 0.0216752i
\(347\) 203.667 + 32.2577i 0.586937 + 0.0929616i 0.442838 0.896602i \(-0.353972\pi\)
0.144099 + 0.989563i \(0.453972\pi\)
\(348\) 98.0753 460.294i 0.281826 1.32268i
\(349\) 54.6641 168.239i 0.156631 0.482059i −0.841692 0.539958i \(-0.818440\pi\)
0.998322 + 0.0578988i \(0.0184401\pi\)
\(350\) 53.2188 + 284.882i 0.152054 + 0.813949i
\(351\) 445.927 1.27045
\(352\) 345.623 66.6995i 0.981883 0.189487i
\(353\) 183.025 183.025i 0.518484 0.518484i −0.398628 0.917113i \(-0.630514\pi\)
0.917113 + 0.398628i \(0.130514\pi\)
\(354\) −62.8012 212.205i −0.177404 0.599449i
\(355\) −85.4829 32.7320i −0.240797 0.0922029i
\(356\) 37.6684 24.4358i 0.105810 0.0686398i
\(357\) 158.765 + 25.1459i 0.444720 + 0.0704367i
\(358\) 240.965 228.554i 0.673086 0.638420i
\(359\) −113.014 + 36.7204i −0.314802 + 0.102285i −0.462156 0.886798i \(-0.652924\pi\)
0.147355 + 0.989084i \(0.452924\pi\)
\(360\) 154.567 4.06223i 0.429353 0.0112840i
\(361\) 235.999 + 171.464i 0.653738 + 0.474968i
\(362\) −84.5910 + 11.1154i −0.233677 + 0.0307056i
\(363\) 246.403 + 120.249i 0.678795 + 0.331264i
\(364\) −91.6198 342.605i −0.251703 0.941222i
\(365\) 54.0449 + 510.110i 0.148068 + 1.39756i
\(366\) −241.988 352.281i −0.661171 0.962517i
\(367\) −373.233 190.172i −1.01698 0.518179i −0.135692 0.990751i \(-0.543326\pi\)
−0.881292 + 0.472572i \(0.843326\pi\)
\(368\) 241.487 92.4255i 0.656216 0.251156i
\(369\) 249.002 180.910i 0.674802 0.490272i
\(370\) −33.6759 + 81.4362i −0.0910160 + 0.220098i
\(371\) −39.6894 + 122.151i −0.106980 + 0.329249i
\(372\) −110.530 + 49.1461i −0.297125 + 0.132113i
\(373\) −417.840 417.840i −1.12022 1.12022i −0.991709 0.128507i \(-0.958982\pi\)
−0.128507 0.991709i \(-0.541018\pi\)
\(374\) 242.048 117.947i 0.647188 0.315365i
\(375\) −167.059 228.731i −0.445490 0.609949i
\(376\) 337.583 206.528i 0.897826 0.549277i
\(377\) −707.679 + 360.581i −1.87713 + 0.956447i
\(378\) −145.415 305.062i −0.384696 0.807044i
\(379\) −346.843 + 251.996i −0.915153 + 0.664897i −0.942313 0.334734i \(-0.891354\pi\)
0.0271600 + 0.999631i \(0.491354\pi\)
\(380\) 379.837 + 341.772i 0.999572 + 0.899400i
\(381\) −346.100 + 112.455i −0.908399 + 0.295157i
\(382\) 468.834 + 87.0126i 1.22731 + 0.227782i
\(383\) −29.4309 185.820i −0.0768431 0.485168i −0.995856 0.0909415i \(-0.971012\pi\)
0.919013 0.394227i \(-0.128988\pi\)
\(384\) 287.624 37.3622i 0.749021 0.0972975i
\(385\) 111.428 298.683i 0.289425 0.775800i
\(386\) 74.0665 + 56.8622i 0.191882 + 0.147311i
\(387\) 46.6915 + 294.798i 0.120650 + 0.761753i
\(388\) −151.721 + 136.475i −0.391034 + 0.351740i
\(389\) −655.963 + 213.135i −1.68628 + 0.547906i −0.986113 0.166074i \(-0.946891\pi\)
−0.700167 + 0.713980i \(0.746891\pi\)
\(390\) 225.258 + 263.429i 0.577585 + 0.675460i
\(391\) 160.014 116.257i 0.409244 0.297333i
\(392\) 93.7654 79.9635i 0.239197 0.203988i
\(393\) −130.769 + 66.6302i −0.332746 + 0.169543i
\(394\) 255.994 75.7604i 0.649731 0.192285i
\(395\) −20.9141 + 405.536i −0.0529471 + 1.02667i
\(396\) −147.981 83.8425i −0.373690 0.211724i
\(397\) 67.5852 + 67.5852i 0.170240 + 0.170240i 0.787085 0.616845i \(-0.211589\pi\)
−0.616845 + 0.787085i \(0.711589\pi\)
\(398\) −590.351 320.723i −1.48329 0.805836i
\(399\) 103.690 319.124i 0.259874 0.799809i
\(400\) 267.855 + 297.075i 0.669638 + 0.742688i
\(401\) 604.138 438.932i 1.50658 1.09459i 0.538913 0.842362i \(-0.318835\pi\)
0.967667 0.252232i \(-0.0811647\pi\)
\(402\) −23.7985 + 22.5728i −0.0592003 + 0.0561513i
\(403\) 181.894 + 92.6794i 0.451349 + 0.229974i
\(404\) −318.761 16.8629i −0.789012 0.0417400i
\(405\) 121.582 + 98.2874i 0.300202 + 0.242685i
\(406\) 477.448 + 366.545i 1.17598 + 0.902821i
\(407\) 77.9300 57.6513i 0.191474 0.141649i
\(408\) 205.036 84.7511i 0.502538 0.207723i
\(409\) −123.716 89.8852i −0.302485 0.219768i 0.426180 0.904638i \(-0.359859\pi\)
−0.728665 + 0.684870i \(0.759859\pi\)
\(410\) 774.338 + 185.421i 1.88863 + 0.452246i
\(411\) −324.651 + 105.486i −0.789906 + 0.256656i
\(412\) 152.939 15.9984i 0.371211 0.0388310i
\(413\) 279.558 + 44.2777i 0.676896 + 0.107210i
\(414\) −117.762 41.7342i −0.284449 0.100807i
\(415\) 126.350 + 283.150i 0.304457 + 0.682289i
\(416\) −354.644 337.375i −0.852510 0.810998i
\(417\) 264.828 264.828i 0.635079 0.635079i
\(418\) −164.136 537.561i −0.392671 1.28603i
\(419\) −148.419 −0.354222 −0.177111 0.984191i \(-0.556675\pi\)
−0.177111 + 0.984191i \(0.556675\pi\)
\(420\) 106.759 240.004i 0.254187 0.571438i
\(421\) −225.265 + 693.295i −0.535071 + 1.64678i 0.208423 + 0.978039i \(0.433167\pi\)
−0.743495 + 0.668742i \(0.766833\pi\)
\(422\) 96.7715 + 203.014i 0.229316 + 0.481076i
\(423\) −188.866 29.9135i −0.446493 0.0707175i
\(424\) 41.2558 + 172.404i 0.0973015 + 0.406613i
\(425\) 256.888 + 166.216i 0.604442 + 0.391097i
\(426\) 46.9753 + 68.3856i 0.110271 + 0.160529i
\(427\) 539.893 85.5106i 1.26439 0.200259i
\(428\) 8.30348 + 4.79947i 0.0194007 + 0.0112137i
\(429\) −62.8839 376.046i −0.146583 0.876564i
\(430\) −501.122 + 587.438i −1.16540 + 1.36613i
\(431\) −389.660 283.105i −0.904084 0.656855i 0.0354281 0.999372i \(-0.488721\pi\)
−0.939512 + 0.342517i \(0.888721\pi\)
\(432\) −390.939 254.426i −0.904951 0.588950i
\(433\) −51.4435 26.2118i −0.118807 0.0605353i 0.393577 0.919292i \(-0.371238\pi\)
−0.512384 + 0.858756i \(0.671238\pi\)
\(434\) 4.08795 154.657i 0.00941923 0.356353i
\(435\) −575.529 121.831i −1.32306 0.280071i
\(436\) 76.8788 + 118.511i 0.176327 + 0.271813i
\(437\) −187.442 367.875i −0.428928 0.841819i
\(438\) 221.950 408.542i 0.506736 0.932744i
\(439\) 396.815i 0.903906i 0.892042 + 0.451953i \(0.149273\pi\)
−0.892042 + 0.451953i \(0.850727\pi\)
\(440\) −83.9474 431.918i −0.190789 0.981631i
\(441\) −59.5443 −0.135021
\(442\) −329.004 178.740i −0.744353 0.404388i
\(443\) 404.354 206.029i 0.912763 0.465076i 0.0664669 0.997789i \(-0.478827\pi\)
0.846296 + 0.532713i \(0.178827\pi\)
\(444\) 67.0093 43.4695i 0.150922 0.0979042i
\(445\) −30.6071 47.0449i −0.0687801 0.105719i
\(446\) −462.919 12.2360i −1.03794 0.0274350i
\(447\) 48.8499 95.8733i 0.109284 0.214482i
\(448\) −115.153 + 352.632i −0.257038 + 0.787124i
\(449\) −22.3783 + 30.8011i −0.0498403 + 0.0685992i −0.833210 0.552957i \(-0.813499\pi\)
0.783369 + 0.621556i \(0.213499\pi\)
\(450\) −5.33407 193.202i −0.0118535 0.429338i
\(451\) −624.631 613.965i −1.38499 1.36134i
\(452\) −310.312 + 536.865i −0.686530 + 1.18775i
\(453\) 1.57695 + 9.95646i 0.00348112 + 0.0219789i
\(454\) 148.698 102.144i 0.327529 0.224986i
\(455\) −428.104 + 115.093i −0.940887 + 0.252951i
\(456\) −107.782 450.410i −0.236364 0.987740i
\(457\) −14.7197 + 92.9365i −0.0322094 + 0.203362i −0.998545 0.0539222i \(-0.982828\pi\)
0.966336 + 0.257284i \(0.0828277\pi\)
\(458\) −204.209 + 97.3412i −0.445872 + 0.212535i
\(459\) −339.332 110.256i −0.739285 0.240208i
\(460\) −115.932 301.706i −0.252027 0.655882i
\(461\) 566.953i 1.22983i −0.788592 0.614916i \(-0.789190\pi\)
0.788592 0.614916i \(-0.210810\pi\)
\(462\) −236.750 + 165.646i −0.512445 + 0.358542i
\(463\) −122.032 122.032i −0.263569 0.263569i 0.562933 0.826502i \(-0.309673\pi\)
−0.826502 + 0.562933i \(0.809673\pi\)
\(464\) 826.145 + 87.6541i 1.78049 + 0.188910i
\(465\) 61.6159 + 138.081i 0.132507 + 0.296949i
\(466\) −69.0090 + 194.723i −0.148088 + 0.417861i
\(467\) −0.555465 + 3.50707i −0.00118943 + 0.00750979i −0.988276 0.152678i \(-0.951210\pi\)
0.987086 + 0.160188i \(0.0512101\pi\)
\(468\) 24.6065 + 235.230i 0.0525780 + 0.502627i
\(469\) −12.9638 39.8986i −0.0276415 0.0850717i
\(470\) −258.720 421.635i −0.550467 0.897097i
\(471\) −24.6585 + 33.9396i −0.0523536 + 0.0720585i
\(472\) 361.033 149.232i 0.764900 0.316170i
\(473\) 805.498 269.413i 1.70296 0.569583i
\(474\) 224.131 291.944i 0.472849 0.615915i
\(475\) 426.585 475.363i 0.898074 1.00076i
\(476\) −14.9902 + 283.361i −0.0314921 + 0.595295i
\(477\) 38.8868 76.3196i 0.0815236 0.159999i
\(478\) −132.375 139.563i −0.276934 0.291972i
\(479\) 274.282 + 377.516i 0.572613 + 0.788134i 0.992861 0.119275i \(-0.0380570\pi\)
−0.420248 + 0.907409i \(0.638057\pi\)
\(480\) −47.1796 359.468i −0.0982909 0.748891i
\(481\) −128.201 41.6550i −0.266530 0.0866008i
\(482\) 138.009 254.031i 0.286325 0.527036i
\(483\) −150.085 + 150.085i −0.310734 + 0.310734i
\(484\) −165.867 + 454.691i −0.342699 + 0.939445i
\(485\) 170.845 + 189.425i 0.352259 + 0.390567i
\(486\) 108.699 + 367.294i 0.223661 + 0.755749i
\(487\) −59.4939 116.763i −0.122164 0.239761i 0.821823 0.569743i \(-0.192957\pi\)
−0.943987 + 0.329982i \(0.892957\pi\)
\(488\) 574.054 489.556i 1.17634 1.00319i
\(489\) 192.668 + 265.185i 0.394004 + 0.542301i
\(490\) −100.110 117.074i −0.204306 0.238927i
\(491\) 260.437 + 801.543i 0.530422 + 1.63247i 0.753338 + 0.657633i \(0.228442\pi\)
−0.222916 + 0.974838i \(0.571558\pi\)
\(492\) −482.636 536.553i −0.980968 1.09055i
\(493\) 627.668 99.4128i 1.27316 0.201649i
\(494\) −475.954 + 619.960i −0.963470 + 1.25498i
\(495\) −104.558 + 185.115i −0.211228 + 0.373971i
\(496\) −106.585 185.031i −0.214889 0.373047i
\(497\) −104.805 + 16.5995i −0.210875 + 0.0333994i
\(498\) 51.2821 276.314i 0.102976 0.554847i
\(499\) −67.0271 206.288i −0.134323 0.413404i 0.861161 0.508332i \(-0.169738\pi\)
−0.995484 + 0.0949285i \(0.969738\pi\)
\(500\) 370.899 335.311i 0.741799 0.670623i
\(501\) −49.8271 68.5811i −0.0994552 0.136888i
\(502\) 180.137 85.8666i 0.358839 0.171049i
\(503\) −2.37690 4.66493i −0.00472545 0.00927421i 0.888632 0.458621i \(-0.151657\pi\)
−0.893357 + 0.449347i \(0.851657\pi\)
\(504\) 152.898 93.5410i 0.303370 0.185597i
\(505\) −20.5501 + 398.479i −0.0406933 + 0.789066i
\(506\) −61.8644 + 350.110i −0.122262 + 0.691918i
\(507\) −104.113 + 104.113i −0.205352 + 0.205352i
\(508\) −260.999 586.992i −0.513778 1.15550i
\(509\) 324.222 + 105.346i 0.636978 + 0.206967i 0.609664 0.792660i \(-0.291304\pi\)
0.0273144 + 0.999627i \(0.491304\pi\)
\(510\) −106.279 256.154i −0.208390 0.502262i
\(511\) 349.526 + 481.082i 0.684005 + 0.941452i
\(512\) 118.421 + 498.117i 0.231290 + 0.972885i
\(513\) −338.129 + 663.616i −0.659122 + 1.29360i
\(514\) −579.946 + 398.376i −1.12830 + 0.775050i
\(515\) −20.2516 191.147i −0.0393234 0.371159i
\(516\) 676.096 180.803i 1.31026 0.350392i
\(517\) 4.68582 + 544.132i 0.00906349 + 1.05248i
\(518\) 13.3093 + 101.287i 0.0256936 + 0.195534i
\(519\) −189.014 + 260.155i −0.364189 + 0.501263i
\(520\) −421.131 + 443.864i −0.809867 + 0.853584i
\(521\) −73.1392 225.099i −0.140382 0.432052i 0.856006 0.516966i \(-0.172939\pi\)
−0.996388 + 0.0849136i \(0.972939\pi\)
\(522\) −276.251 291.251i −0.529216 0.557953i
\(523\) −153.156 + 966.991i −0.292842 + 1.84893i 0.201275 + 0.979535i \(0.435492\pi\)
−0.494117 + 0.869396i \(0.664508\pi\)
\(524\) −140.999 217.353i −0.269081 0.414796i
\(525\) −300.182 133.050i −0.571775 0.253429i
\(526\) −393.935 + 116.584i −0.748927 + 0.221642i
\(527\) −115.498 115.498i −0.219162 0.219162i
\(528\) −159.426 + 365.554i −0.301943 + 0.692336i
\(529\) 267.834i 0.506302i
\(530\) 215.436 51.8556i 0.406483 0.0978407i
\(531\) −179.524 58.3307i −0.338086 0.109851i
\(532\) 579.326 + 123.438i 1.08896 + 0.232026i
\(533\) −190.528 + 1202.95i −0.357463 + 2.25694i
\(534\) −1.34415 + 50.8527i −0.00251714 + 0.0952297i
\(535\) 5.98557 10.3873i 0.0111880 0.0194155i
\(536\) −44.0017 37.6372i −0.0820926 0.0702187i
\(537\) 58.8628 + 371.645i 0.109614 + 0.692077i
\(538\) 38.6626 + 294.231i 0.0718635 + 0.546898i
\(539\) 27.9470 + 167.123i 0.0518498 + 0.310062i
\(540\) −317.385 + 489.095i −0.587749 + 0.905732i
\(541\) 173.455 238.741i 0.320620 0.441295i −0.618036 0.786149i \(-0.712072\pi\)
0.938656 + 0.344854i \(0.112072\pi\)
\(542\) 138.802 747.881i 0.256092 1.37985i
\(543\) 43.8841 86.1274i 0.0808178 0.158614i
\(544\) 186.453 + 344.414i 0.342744 + 0.633114i
\(545\) 148.011 96.2949i 0.271579 0.176688i
\(546\) 378.721 + 134.217i 0.693628 + 0.245819i
\(547\) 600.518 305.979i 1.09784 0.559377i 0.191314 0.981529i \(-0.438725\pi\)
0.906525 + 0.422152i \(0.138725\pi\)
\(548\) −244.824 550.614i −0.446760 1.00477i
\(549\) −364.544 −0.664015
\(550\) −539.757 + 105.650i −0.981377 + 0.192091i
\(551\) 1326.56i 2.40756i
\(552\) −68.5988 + 284.808i −0.124273 + 0.515956i
\(553\) 213.711 + 419.431i 0.386457 + 0.758465i
\(554\) 35.5003 + 12.5811i 0.0640799 + 0.0227097i
\(555\) −54.4479 83.6895i −0.0981043 0.150792i
\(556\) 513.593 + 416.319i 0.923729 + 0.748774i
\(557\) 134.416 + 68.4883i 0.241321 + 0.122959i 0.570469 0.821319i \(-0.306761\pi\)
−0.329148 + 0.944278i \(0.606761\pi\)
\(558\) −18.8276 + 101.445i −0.0337412 + 0.181801i
\(559\) −955.530 694.233i −1.70936 1.24192i
\(560\) 440.980 + 143.357i 0.787464 + 0.255994i
\(561\) −45.1254 + 301.703i −0.0804374 + 0.537795i
\(562\) 99.8851 + 760.149i 0.177731 + 1.35258i
\(563\) −761.878 + 120.670i −1.35325 + 0.214333i −0.790584 0.612353i \(-0.790223\pi\)
−0.562663 + 0.826686i \(0.690223\pi\)
\(564\) −23.6864 + 447.744i −0.0419971 + 0.793872i
\(565\) 671.595 + 386.999i 1.18866 + 0.684954i
\(566\) −23.4614 + 887.602i −0.0414512 + 1.56820i
\(567\) 179.006 + 28.3517i 0.315707 + 0.0500031i
\(568\) −111.437 + 95.0336i −0.196191 + 0.167313i
\(569\) −228.564 + 703.449i −0.401695 + 1.23629i 0.521929 + 0.852989i \(0.325213\pi\)
−0.923624 + 0.383300i \(0.874787\pi\)
\(570\) −562.833 + 135.474i −0.987426 + 0.237674i
\(571\) −856.728 −1.50040 −0.750200 0.661211i \(-0.770043\pi\)
−0.750200 + 0.661211i \(0.770043\pi\)
\(572\) 648.671 179.468i 1.13404 0.313755i
\(573\) −382.011 + 382.011i −0.666687 + 0.666687i
\(574\) 885.076 261.934i 1.54194 0.456332i
\(575\) −376.939 + 145.415i −0.655547 + 0.252896i
\(576\) 112.639 220.262i 0.195555 0.382400i
\(577\) −819.702 129.828i −1.42063 0.225005i −0.601617 0.798784i \(-0.705477\pi\)
−0.819010 + 0.573779i \(0.805477\pi\)
\(578\) −191.601 202.005i −0.331489 0.349489i
\(579\) −100.615 + 32.6917i −0.173773 + 0.0564624i
\(580\) 108.198 1032.83i 0.186548 1.78073i
\(581\) 290.790 + 211.271i 0.500499 + 0.363634i
\(582\) −30.1220 229.235i −0.0517560 0.393875i
\(583\) −232.458 73.3232i −0.398727 0.125769i
\(584\) 758.036 + 314.645i 1.29801 + 0.538775i
\(585\) 293.996 31.1481i 0.502557 0.0532447i
\(586\) 336.821 231.369i 0.574781 0.394827i
\(587\) −239.702 122.134i −0.408351 0.208065i 0.237735 0.971330i \(-0.423595\pi\)
−0.646086 + 0.763265i \(0.723595\pi\)
\(588\) 14.5257 + 138.860i 0.0247036 + 0.236157i
\(589\) −275.846 + 200.414i −0.468329 + 0.340261i
\(590\) −187.139 451.043i −0.317184 0.764480i
\(591\) −93.4679 + 287.665i −0.158152 + 0.486742i
\(592\) 88.6257 + 109.664i 0.149706 + 0.185244i
\(593\) −210.325 210.325i −0.354680 0.354680i 0.507167 0.861848i \(-0.330693\pi\)
−0.861848 + 0.507167i \(0.830693\pi\)
\(594\) 576.547 280.943i 0.970619 0.472968i
\(595\) 354.225 + 18.2679i 0.595337 + 0.0307024i
\(596\) 177.296 + 68.1576i 0.297476 + 0.114358i
\(597\) 678.218 345.570i 1.13604 0.578843i
\(598\) 446.289 212.734i 0.746303 0.355743i
\(599\) 869.672 631.853i 1.45187 1.05485i 0.466483 0.884530i \(-0.345521\pi\)
0.985389 0.170317i \(-0.0544792\pi\)
\(600\) −449.256 + 59.5705i −0.748760 + 0.0992842i
\(601\) −513.641 + 166.892i −0.854644 + 0.277691i −0.703390 0.710804i \(-0.748331\pi\)
−0.151254 + 0.988495i \(0.548331\pi\)
\(602\) −163.336 + 880.073i −0.271322 + 1.46192i
\(603\) 4.37670 + 27.6334i 0.00725821 + 0.0458265i
\(604\) −17.1908 + 4.59720i −0.0284617 + 0.00761126i
\(605\) 568.639 + 206.579i 0.939899 + 0.341453i
\(606\) 220.230 286.863i 0.363416 0.473372i
\(607\) 142.206 + 897.855i 0.234277 + 1.47917i 0.771771 + 0.635900i \(0.219371\pi\)
−0.537494 + 0.843267i \(0.680629\pi\)
\(608\) 770.985 271.952i 1.26807 0.447290i
\(609\) −648.584 + 210.738i −1.06500 + 0.346039i
\(610\) −612.896 716.755i −1.00475 1.17501i
\(611\) 612.173 444.769i 1.00192 0.727937i
\(612\) 39.4360 185.084i 0.0644379 0.302424i
\(613\) −251.624 + 128.209i −0.410480 + 0.209150i −0.647022 0.762471i \(-0.723986\pi\)
0.236542 + 0.971621i \(0.423986\pi\)
\(614\) 158.204 + 534.571i 0.257661 + 0.870637i
\(615\) −669.890 + 604.184i −1.08925 + 0.982414i
\(616\) −334.305 385.237i −0.542702 0.625385i
\(617\) −201.200 201.200i −0.326094 0.326094i 0.525005 0.851099i \(-0.324063\pi\)
−0.851099 + 0.525005i \(0.824063\pi\)
\(618\) −83.1687 + 153.088i −0.134577 + 0.247715i
\(619\) 92.1660 283.658i 0.148895 0.458252i −0.848596 0.529041i \(-0.822552\pi\)
0.997491 + 0.0707893i \(0.0225518\pi\)
\(620\) −231.112 + 133.538i −0.372762 + 0.215384i
\(621\) 381.147 276.919i 0.613763 0.445925i
\(622\) −642.673 677.570i −1.03324 1.08934i
\(623\) −57.9711 29.5377i −0.0930515 0.0474121i
\(624\) 542.565 114.767i 0.869496 0.183922i
\(625\) −419.754 463.068i −0.671606 0.740908i
\(626\) −652.703 + 850.185i −1.04266 + 1.35812i
\(627\) 607.303 + 191.559i 0.968586 + 0.305517i
\(628\) −64.1161 37.0596i −0.102096 0.0590120i
\(629\) 87.2563 + 63.3954i 0.138722 + 0.100788i
\(630\) −117.180 190.968i −0.185999 0.303123i
\(631\) 181.799 59.0701i 0.288113 0.0936135i −0.161395 0.986890i \(-0.551599\pi\)
0.449508 + 0.893276i \(0.351599\pi\)
\(632\) 553.726 + 339.887i 0.876149 + 0.537795i
\(633\) −251.667 39.8601i −0.397578 0.0629701i
\(634\) −8.26042 + 23.3085i −0.0130291 + 0.0367641i
\(635\) −733.306 + 327.222i −1.15481 + 0.515310i
\(636\) −187.468 72.0681i −0.294761 0.113315i
\(637\) 166.612 166.612i 0.261557 0.261557i
\(638\) −687.799 + 912.053i −1.07805 + 1.42955i
\(639\) 70.7661 0.110745
\(640\) 622.449 148.851i 0.972577 0.232580i
\(641\) −168.963 + 520.014i −0.263593 + 0.811255i 0.728422 + 0.685129i \(0.240254\pi\)
−0.992014 + 0.126126i \(0.959746\pi\)
\(642\) −9.80869 + 4.67554i −0.0152783 + 0.00728277i
\(643\) −87.4537 13.8513i −0.136009 0.0215417i 0.0880588 0.996115i \(-0.471934\pi\)
−0.224068 + 0.974574i \(0.571934\pi\)
\(644\) −291.066 235.938i −0.451966 0.366364i
\(645\) −227.124 844.819i −0.352130 1.30980i
\(646\) 515.466 354.083i 0.797935 0.548117i
\(647\) −512.994 + 81.2502i −0.792881 + 0.125580i −0.539720 0.841844i \(-0.681470\pi\)
−0.253160 + 0.967424i \(0.581470\pi\)
\(648\) 231.175 95.5560i 0.356752 0.147463i
\(649\) −79.4581 + 531.247i −0.122432 + 0.818563i
\(650\) 555.528 + 525.677i 0.854658 + 0.808734i
\(651\) 141.807 + 103.029i 0.217830 + 0.158263i
\(652\) −430.198 + 386.969i −0.659813 + 0.593510i
\(653\) 404.694 + 206.202i 0.619747 + 0.315777i 0.735524 0.677499i \(-0.236936\pi\)
−0.115778 + 0.993275i \(0.536936\pi\)
\(654\) −159.990 4.22892i −0.244634 0.00646623i
\(655\) −271.457 + 176.609i −0.414439 + 0.269631i
\(656\) 853.382 945.902i 1.30089 1.44192i
\(657\) −180.041 353.350i −0.274035 0.537823i
\(658\) −503.897 273.755i −0.765802 0.416041i
\(659\) 513.775i 0.779628i −0.920894 0.389814i \(-0.872539\pi\)
0.920894 0.389814i \(-0.127461\pi\)
\(660\) 457.206 + 198.676i 0.692736 + 0.301024i
\(661\) 98.3245 0.148751 0.0743756 0.997230i \(-0.476304\pi\)
0.0743756 + 0.997230i \(0.476304\pi\)
\(662\) −226.028 + 416.048i −0.341432 + 0.628471i
\(663\) 377.973 192.587i 0.570095 0.290478i
\(664\) 494.540 + 39.2887i 0.744789 + 0.0591698i
\(665\) 153.337 724.362i 0.230581 1.08927i
\(666\) 1.80018 68.1054i 0.00270298 0.102260i
\(667\) −380.954 + 747.665i −0.571146 + 1.12094i
\(668\) 111.256 100.076i 0.166551 0.149815i
\(669\) 308.386 424.457i 0.460965 0.634464i
\(670\) −46.9735 + 55.0644i −0.0701097 + 0.0821857i
\(671\) 171.099 + 1023.17i 0.254990 + 1.52484i
\(672\) −255.442 333.748i −0.380122 0.496649i
\(673\) −63.4796 400.795i −0.0943234 0.595534i −0.988896 0.148611i \(-0.952520\pi\)
0.894572 0.446923i \(-0.147480\pi\)
\(674\) 166.578 + 242.500i 0.247148 + 0.359793i
\(675\) 611.895 + 395.920i 0.906511 + 0.586547i
\(676\) −201.912 163.670i −0.298686 0.242115i
\(677\) 107.145 676.485i 0.158264 0.999239i −0.772871 0.634564i \(-0.781180\pi\)
0.931135 0.364676i \(-0.118820\pi\)
\(678\) −302.299 634.185i −0.445869 0.935375i
\(679\) 281.236 + 91.3791i 0.414191 + 0.134579i
\(680\) 430.208 233.637i 0.632659 0.343584i
\(681\) 204.389i 0.300131i
\(682\) 293.563 + 5.23033i 0.430445 + 0.00766910i
\(683\) 522.218 + 522.218i 0.764595 + 0.764595i 0.977149 0.212555i \(-0.0681783\pi\)
−0.212555 + 0.977149i \(0.568178\pi\)
\(684\) −368.720 141.747i −0.539065 0.207232i
\(685\) −687.861 + 306.943i −1.00418 + 0.448092i
\(686\) −703.713 249.393i −1.02582 0.363546i
\(687\) 40.0948 253.148i 0.0583621 0.368484i
\(688\) 441.603 + 1153.81i 0.641864 + 1.67705i
\(689\) 104.742 + 322.361i 0.152020 + 0.467868i
\(690\) 356.123 + 85.2762i 0.516120 + 0.123589i
\(691\) 687.245 945.912i 0.994566 1.36890i 0.0659660 0.997822i \(-0.478987\pi\)
0.928600 0.371081i \(-0.121013\pi\)
\(692\) −491.466 284.071i −0.710211 0.410507i
\(693\) 2.12231 + 246.449i 0.00306249 + 0.355626i
\(694\) −327.126 251.141i −0.471363 0.361874i
\(695\) 519.546 642.681i 0.747549 0.924721i
\(696\) −611.823 + 715.282i −0.879056 + 1.02770i
\(697\) 442.412 868.283i 0.634738 1.24574i
\(698\) −256.693 + 243.472i −0.367754 + 0.348814i
\(699\) −137.577 189.359i −0.196820 0.270899i
\(700\) 178.464 551.462i 0.254949 0.787803i
\(701\) 241.466 + 78.4571i 0.344459 + 0.111922i 0.476137 0.879371i \(-0.342036\pi\)
−0.131678 + 0.991293i \(0.542036\pi\)
\(702\) −783.672 425.749i −1.11634 0.606480i
\(703\) 159.200 159.200i 0.226457 0.226457i
\(704\) −671.079 212.766i −0.953237 0.302224i
\(705\) 559.719 + 28.8655i 0.793927 + 0.0409440i
\(706\) −496.391 + 146.905i −0.703103 + 0.208080i
\(707\) 209.992 + 412.132i 0.297018 + 0.582931i
\(708\) −92.2361 + 432.888i −0.130277 + 0.611424i
\(709\) −104.083 143.258i −0.146803 0.202057i 0.729283 0.684213i \(-0.239854\pi\)
−0.876086 + 0.482156i \(0.839854\pi\)
\(710\) 118.977 + 139.138i 0.167573 + 0.195969i
\(711\) −97.0119 298.572i −0.136444 0.419932i
\(712\) −89.5284 + 6.97951i −0.125742 + 0.00980268i
\(713\) 213.023 33.7395i 0.298770 0.0473205i
\(714\) −255.006 195.772i −0.357151 0.274191i
\(715\) −225.410 810.541i −0.315259 1.13362i
\(716\) −641.684 + 171.600i −0.896206 + 0.239665i
\(717\) 215.250 34.0923i 0.300210 0.0475486i
\(718\) 233.669 + 43.3675i 0.325444 + 0.0604005i
\(719\) 165.942 + 510.715i 0.230795 + 0.710314i 0.997651 + 0.0684951i \(0.0218197\pi\)
−0.766857 + 0.641818i \(0.778180\pi\)
\(720\) −275.514 140.434i −0.382659 0.195047i
\(721\) −130.974 180.270i −0.181656 0.250027i
\(722\) −251.040 526.650i −0.347701 0.729432i
\(723\) 148.700 + 291.841i 0.205671 + 0.403653i
\(724\) 159.273 + 61.2290i 0.219990 + 0.0845705i
\(725\) −1291.21 133.535i −1.78098 0.184186i
\(726\) −318.220 446.578i −0.438320 0.615122i
\(727\) −311.604 + 311.604i −0.428616 + 0.428616i −0.888157 0.459541i \(-0.848014\pi\)
0.459541 + 0.888157i \(0.348014\pi\)
\(728\) −166.089 + 689.567i −0.228145 + 0.947208i
\(729\) −680.375 221.067i −0.933299 0.303247i
\(730\) 392.049 948.066i 0.537053 1.29872i
\(731\) 555.469 + 764.537i 0.759875 + 1.04588i
\(732\) 88.9298 + 850.137i 0.121489 + 1.16139i
\(733\) 281.430 552.338i 0.383943 0.753531i −0.615457 0.788171i \(-0.711028\pi\)
0.999400 + 0.0346400i \(0.0110285\pi\)
\(734\) 474.353 + 690.552i 0.646257 + 0.940807i
\(735\) 173.551 18.3873i 0.236124 0.0250168i
\(736\) −512.633 68.1315i −0.696512 0.0925700i
\(737\) 75.5047 25.2538i 0.102449 0.0342657i
\(738\) −610.320 + 80.1973i −0.826992 + 0.108668i
\(739\) 570.920 785.804i 0.772558 1.06333i −0.223506 0.974702i \(-0.571750\pi\)
0.996064 0.0886324i \(-0.0282496\pi\)
\(740\) 136.933 110.964i 0.185045 0.149951i
\(741\) −273.640 842.178i −0.369285 1.13654i
\(742\) 186.374 176.775i 0.251178 0.238242i
\(743\) −53.6467 + 338.712i −0.0722028 + 0.455870i 0.924926 + 0.380147i \(0.124127\pi\)
−0.997129 + 0.0757234i \(0.975873\pi\)
\(744\) 241.168 + 19.1596i 0.324151 + 0.0257522i
\(745\) 84.9029 221.732i 0.113964 0.297627i
\(746\) 335.379 + 1133.25i 0.449570 + 1.51910i
\(747\) −169.500 169.500i −0.226908 0.226908i
\(748\) −537.985 23.8165i −0.719231 0.0318403i
\(749\) 13.8975i 0.0185548i
\(750\) 75.2079 + 561.471i 0.100277 + 0.748628i
\(751\) −183.845 59.7347i −0.244800 0.0795402i 0.184047 0.982917i \(-0.441080\pi\)
−0.428847 + 0.903377i \(0.641080\pi\)
\(752\) −790.450 + 40.6452i −1.05113 + 0.0540494i
\(753\) −35.3684 + 223.307i −0.0469700 + 0.296557i
\(754\) 1587.94 + 41.9729i 2.10602 + 0.0556670i
\(755\) 5.77500 + 21.4809i 0.00764901 + 0.0284515i
\(756\) −35.7060 + 674.952i −0.0472302 + 0.892793i
\(757\) −23.9273 151.071i −0.0316080 0.199565i 0.966831 0.255417i \(-0.0822126\pi\)
−0.998439 + 0.0558515i \(0.982213\pi\)
\(758\) 850.135 111.709i 1.12155 0.147374i
\(759\) −287.272 282.366i −0.378487 0.372024i
\(760\) −341.219 963.280i −0.448972 1.26747i
\(761\) 388.289 534.434i 0.510236 0.702279i −0.473723 0.880674i \(-0.657090\pi\)
0.983959 + 0.178395i \(0.0570904\pi\)
\(762\) 715.602 + 132.811i 0.939110 + 0.174293i
\(763\) 92.9304 182.386i 0.121796 0.239038i
\(764\) −740.853 600.535i −0.969703 0.786041i
\(765\) −231.420 48.9881i −0.302510 0.0640367i
\(766\) −125.689 + 354.658i −0.164085 + 0.463000i
\(767\) 665.545 339.112i 0.867725 0.442128i
\(768\) −541.142 208.949i −0.704612 0.272069i
\(769\) 13.4574 0.0174999 0.00874994 0.999962i \(-0.497215\pi\)