Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(7,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([10, 5, 14]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.7");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.w (of order \(20\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(544\) |
Relative dimension: | \(68\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −1.99975 | − | 0.0316704i | 4.68739 | − | 2.38834i | 3.99799 | + | 0.126666i | −2.84565 | − | 4.11124i | −9.44924 | + | 4.62763i | −0.358764 | + | 0.704115i | −7.99097 | − | 0.379918i | 10.9773 | − | 15.1090i | 5.56039 | + | 8.31156i |
7.2 | −1.99886 | − | 0.0675795i | −1.94413 | + | 0.990585i | 3.99087 | + | 0.270163i | −3.70748 | + | 3.35479i | 3.95299 | − | 1.84865i | −1.57918 | + | 3.09932i | −7.95892 | − | 0.809719i | −2.49168 | + | 3.42950i | 7.63743 | − | 6.45520i |
7.3 | −1.98295 | + | 0.260620i | −1.14015 | + | 0.580936i | 3.86415 | − | 1.03359i | 1.56915 | − | 4.74740i | 2.10946 | − | 1.44911i | 5.70983 | − | 11.2062i | −7.39304 | + | 3.05663i | −4.32761 | + | 5.95644i | −1.87427 | + | 9.82278i |
7.4 | −1.96643 | + | 0.364900i | 1.14015 | − | 0.580936i | 3.73370 | − | 1.43510i | 1.56915 | − | 4.74740i | −2.03004 | + | 1.55841i | −5.70983 | + | 11.2062i | −6.81838 | + | 4.18445i | −4.32761 | + | 5.95644i | −1.35329 | + | 9.90801i |
7.5 | −1.96237 | − | 0.386136i | 0.676076 | − | 0.344478i | 3.70180 | + | 1.51549i | 3.50937 | + | 3.56150i | −1.45973 | + | 0.414936i | −3.62504 | + | 7.11454i | −6.67911 | − | 4.40334i | −4.95165 | + | 6.81537i | −5.51146 | − | 8.34409i |
7.6 | −1.94429 | − | 0.468777i | 4.04592 | − | 2.06150i | 3.56050 | + | 1.82287i | 2.33189 | + | 4.42293i | −8.83280 | + | 2.11151i | 3.03067 | − | 5.94803i | −6.06810 | − | 5.21327i | 6.82960 | − | 9.40014i | −2.46049 | − | 9.69257i |
7.7 | −1.89633 | − | 0.635566i | −4.39098 | + | 2.23732i | 3.19211 | + | 2.41048i | 4.88411 | − | 1.07027i | 9.74869 | − | 1.45192i | −1.29034 | + | 2.53243i | −4.52126 | − | 6.59986i | 8.98505 | − | 12.3669i | −9.94210 | − | 1.07459i |
7.8 | −1.89209 | + | 0.648077i | −4.68739 | + | 2.38834i | 3.15999 | − | 2.45244i | −2.84565 | − | 4.11124i | 7.32112 | − | 7.55674i | 0.358764 | − | 0.704115i | −4.38962 | + | 6.68814i | 10.9773 | − | 15.1090i | 8.04862 | + | 5.93462i |
7.9 | −1.88014 | + | 0.681953i | 1.94413 | − | 0.990585i | 3.06988 | − | 2.56434i | −3.70748 | + | 3.35479i | −2.97971 | + | 3.18825i | 1.57918 | − | 3.09932i | −4.02306 | + | 6.91484i | −2.49168 | + | 3.42950i | 4.68278 | − | 8.83581i |
7.10 | −1.82522 | − | 0.817668i | −2.40882 | + | 1.22736i | 2.66284 | + | 2.98484i | −4.64336 | − | 1.85452i | 5.40020 | − | 0.270575i | 0.118689 | − | 0.232940i | −2.41965 | − | 7.62531i | −0.994045 | + | 1.36819i | 6.95876 | + | 7.18162i |
7.11 | −1.75740 | − | 0.954750i | 2.01897 | − | 1.02872i | 2.17690 | + | 3.35575i | 4.19108 | − | 2.72669i | −4.53030 | − | 0.119746i | 2.63142 | − | 5.16446i | −0.621782 | − | 7.97580i | −2.27209 | + | 3.12726i | −9.96871 | + | 0.790451i |
7.12 | −1.74700 | + | 0.973643i | −0.676076 | + | 0.344478i | 2.10404 | − | 3.40192i | 3.50937 | + | 3.56150i | 0.845708 | − | 1.26006i | 3.62504 | − | 7.11454i | −0.363505 | + | 7.99174i | −4.95165 | + | 6.81537i | −9.59852 | − | 2.80508i |
7.13 | −1.70427 | + | 1.04665i | −4.04592 | + | 2.06150i | 1.80904 | − | 3.56754i | 2.33189 | + | 4.42293i | 4.73765 | − | 7.74800i | −3.03067 | + | 5.94803i | 0.650882 | + | 7.97348i | 6.82960 | − | 9.40014i | −8.60342 | − | 5.09717i |
7.14 | −1.60711 | + | 1.19046i | 4.39098 | − | 2.23732i | 1.16563 | − | 3.82640i | 4.88411 | − | 1.07027i | −4.39337 | + | 8.82289i | 1.29034 | − | 2.53243i | 2.68187 | + | 7.53708i | 8.98505 | − | 12.3669i | −6.57520 | + | 7.53437i |
7.15 | −1.57651 | − | 1.23070i | −3.31218 | + | 1.68764i | 0.970777 | + | 3.88041i | 0.464993 | + | 4.97833i | 7.29866 | + | 1.41570i | 5.48368 | − | 10.7623i | 3.24516 | − | 7.31224i | 2.83235 | − | 3.89839i | 5.39374 | − | 8.42066i |
7.16 | −1.56459 | − | 1.24582i | 3.70393 | − | 1.88724i | 0.895857 | + | 3.89839i | −4.57559 | + | 2.01593i | −8.14628 | − | 1.66168i | −4.38944 | + | 8.61475i | 3.45505 | − | 7.21544i | 4.86731 | − | 6.69928i | 9.67039 | + | 2.54628i |
7.17 | −1.49892 | − | 1.32409i | 0.172588 | − | 0.0879380i | 0.493549 | + | 3.96943i | −2.34222 | − | 4.41746i | −0.375135 | − | 0.0967104i | −1.03219 | + | 2.02578i | 4.51611 | − | 6.60339i | −5.26801 | + | 7.25080i | −2.33832 | + | 9.72277i |
7.18 | −1.48321 | + | 1.34167i | 2.40882 | − | 1.22736i | 0.399834 | − | 3.97997i | −4.64336 | − | 1.85452i | −1.92608 | + | 5.05228i | −0.118689 | + | 0.232940i | 4.74677 | + | 6.43958i | −0.994045 | + | 1.36819i | 9.37524 | − | 3.47922i |
7.19 | −1.37635 | + | 1.45109i | −2.01897 | + | 1.02872i | −0.211311 | − | 3.99441i | 4.19108 | − | 2.72669i | 1.28605 | − | 4.34558i | −2.63142 | + | 5.16446i | 6.08708 | + | 5.19109i | −2.27209 | + | 3.12726i | −1.81173 | + | 9.83451i |
7.20 | −1.14597 | − | 1.63913i | 1.96587 | − | 1.00166i | −1.37351 | + | 3.75679i | −3.42603 | + | 3.64175i | −3.89468 | − | 2.07445i | 3.39399 | − | 6.66107i | 7.73187 | − | 2.05381i | −2.42874 | + | 3.34288i | 9.89543 | + | 1.44238i |
See next 80 embeddings (of 544 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
11.d | odd | 10 | 1 | inner |
20.e | even | 4 | 1 | inner |
44.g | even | 10 | 1 | inner |
55.l | even | 20 | 1 | inner |
220.w | odd | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.w.a | ✓ | 544 |
4.b | odd | 2 | 1 | inner | 220.3.w.a | ✓ | 544 |
5.c | odd | 4 | 1 | inner | 220.3.w.a | ✓ | 544 |
11.d | odd | 10 | 1 | inner | 220.3.w.a | ✓ | 544 |
20.e | even | 4 | 1 | inner | 220.3.w.a | ✓ | 544 |
44.g | even | 10 | 1 | inner | 220.3.w.a | ✓ | 544 |
55.l | even | 20 | 1 | inner | 220.3.w.a | ✓ | 544 |
220.w | odd | 20 | 1 | inner | 220.3.w.a | ✓ | 544 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.w.a | ✓ | 544 | 1.a | even | 1 | 1 | trivial |
220.3.w.a | ✓ | 544 | 4.b | odd | 2 | 1 | inner |
220.3.w.a | ✓ | 544 | 5.c | odd | 4 | 1 | inner |
220.3.w.a | ✓ | 544 | 11.d | odd | 10 | 1 | inner |
220.3.w.a | ✓ | 544 | 20.e | even | 4 | 1 | inner |
220.3.w.a | ✓ | 544 | 44.g | even | 10 | 1 | inner |
220.3.w.a | ✓ | 544 | 55.l | even | 20 | 1 | inner |
220.3.w.a | ✓ | 544 | 220.w | odd | 20 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).