Properties

Label 220.3.w
Level $220$
Weight $3$
Character orbit 220.w
Rep. character $\chi_{220}(7,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $544$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.w (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 220 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(220, [\chi])\).

Total New Old
Modular forms 608 608 0
Cusp forms 544 544 0
Eisenstein series 64 64 0

Trace form

\( 544 q - 10 q^{2} - 12 q^{5} - 20 q^{6} - 10 q^{8} - 28 q^{12} - 20 q^{13} - 36 q^{16} - 20 q^{17} - 10 q^{18} - 40 q^{20} + 86 q^{22} - 12 q^{25} + 140 q^{26} - 10 q^{28} - 370 q^{30} - 100 q^{33} - 476 q^{36}+ \cdots + 148 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(220, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
220.3.w.a 220.w 220.w $544$ $5.995$ None 220.3.w.a \(-10\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{20}]$