Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(31,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 0, 6]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.31");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.s (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 | −1.99616 | − | 0.123819i | 1.59683 | + | 2.19784i | 3.96934 | + | 0.494327i | 0.690983 | + | 2.12663i | −2.91539 | − | 4.58497i | 7.19852 | − | 9.90792i | −7.86224 | − | 1.47824i | 0.500496 | − | 1.54037i | −1.11600 | − | 4.33065i |
31.2 | −1.94953 | − | 0.446488i | 2.97721 | + | 4.09778i | 3.60130 | + | 1.74088i | 0.690983 | + | 2.12663i | −3.97454 | − | 9.31801i | −5.14097 | + | 7.07593i | −6.24354 | − | 5.00182i | −5.14685 | + | 15.8404i | −0.397576 | − | 4.45443i |
31.3 | −1.94089 | + | 0.482647i | −1.83428 | − | 2.52467i | 3.53410 | − | 1.87353i | 0.690983 | + | 2.12663i | 4.77866 | + | 4.01480i | −2.53678 | + | 3.49158i | −5.95505 | + | 5.34204i | −0.228228 | + | 0.702415i | −2.36753 | − | 3.79405i |
31.4 | −1.82595 | − | 0.816028i | −1.81835 | − | 2.50274i | 2.66820 | + | 2.98006i | 0.690983 | + | 2.12663i | 1.27791 | + | 6.05370i | −0.390935 | + | 0.538076i | −2.44019 | − | 7.61876i | −0.176165 | + | 0.542179i | 0.473686 | − | 4.44698i |
31.5 | −1.50655 | + | 1.31541i | −2.29101 | − | 3.15331i | 0.539403 | − | 3.96346i | 0.690983 | + | 2.12663i | 7.59942 | + | 1.73701i | 5.93140 | − | 8.16388i | 4.40093 | + | 6.68070i | −1.91346 | + | 5.88902i | −3.83838 | − | 2.29495i |
31.6 | −1.49291 | − | 1.33087i | 0.367286 | + | 0.505525i | 0.457554 | + | 3.97374i | 0.690983 | + | 2.12663i | 0.124466 | − | 1.24351i | −0.904411 | + | 1.24481i | 4.60546 | − | 6.54138i | 2.66050 | − | 8.18816i | 1.79870 | − | 4.09447i |
31.7 | −1.38558 | + | 1.44228i | 2.61105 | + | 3.59381i | −0.160338 | − | 3.99679i | 0.690983 | + | 2.12663i | −8.80109 | − | 1.21364i | −0.802115 | + | 1.10402i | 5.98664 | + | 5.30661i | −3.31669 | + | 10.2077i | −4.02460 | − | 1.95002i |
31.8 | −0.874978 | + | 1.79845i | 0.667552 | + | 0.918806i | −2.46883 | − | 3.14721i | 0.690983 | + | 2.12663i | −2.23652 | + | 0.396621i | 4.67079 | − | 6.42880i | 7.82025 | − | 1.68632i | 2.38257 | − | 7.33281i | −4.42922 | − | 0.618056i |
31.9 | −0.707726 | − | 1.87059i | −3.23278 | − | 4.44954i | −2.99825 | + | 2.64774i | 0.690983 | + | 2.12663i | −6.03537 | + | 9.19628i | 1.08319 | − | 1.49088i | 7.07478 | + | 3.73464i | −6.56639 | + | 20.2093i | 3.48903 | − | 2.79762i |
31.10 | −0.594717 | − | 1.90953i | 0.0826374 | + | 0.113741i | −3.29262 | + | 2.27126i | 0.690983 | + | 2.12663i | 0.168045 | − | 0.225442i | −1.63068 | + | 2.24443i | 6.29523 | + | 4.93661i | 2.77504 | − | 8.54071i | 3.64992 | − | 2.58420i |
31.11 | −0.349228 | + | 1.96927i | −0.667552 | − | 0.918806i | −3.75608 | − | 1.37545i | 0.690983 | + | 2.12663i | 2.04251 | − | 0.993719i | −4.67079 | + | 6.42880i | 4.02037 | − | 6.91640i | 2.38257 | − | 7.33281i | −4.42922 | + | 0.618056i |
31.12 | −0.117720 | − | 1.99653i | 2.91538 | + | 4.01268i | −3.97228 | + | 0.470065i | 0.690983 | + | 2.12663i | 7.66825 | − | 6.29303i | 7.54604 | − | 10.3862i | 1.40612 | + | 7.87546i | −4.82100 | + | 14.8375i | 4.16454 | − | 1.62992i |
31.13 | 0.273207 | + | 1.98125i | −2.61105 | − | 3.59381i | −3.85072 | + | 1.08258i | 0.690983 | + | 2.12663i | 6.40688 | − | 6.15501i | 0.802115 | − | 1.10402i | −3.19691 | − | 7.33347i | −3.31669 | + | 10.2077i | −4.02460 | + | 1.95002i |
31.14 | 0.284167 | − | 1.97971i | 1.08637 | + | 1.49525i | −3.83850 | − | 1.12514i | 0.690983 | + | 2.12663i | 3.26888 | − | 1.72579i | −6.46077 | + | 8.89248i | −3.31822 | + | 7.27938i | 1.72556 | − | 5.31072i | 4.40646 | − | 0.763628i |
31.15 | 0.445649 | + | 1.94972i | 2.29101 | + | 3.15331i | −3.60279 | + | 1.73778i | 0.690983 | + | 2.12663i | −5.12707 | + | 5.87209i | −5.93140 | + | 8.16388i | −4.99376 | − | 6.24999i | −1.91346 | + | 5.88902i | −3.83838 | + | 2.29495i |
31.16 | 0.933748 | − | 1.76865i | −1.08637 | − | 1.49525i | −2.25623 | − | 3.30294i | 0.690983 | + | 2.12663i | −3.65897 | + | 0.525208i | 6.46077 | − | 8.89248i | −7.94849 | + | 0.906360i | 1.72556 | − | 5.31072i | 4.40646 | + | 0.763628i |
31.17 | 1.26877 | − | 1.54603i | −2.91538 | − | 4.01268i | −0.780445 | − | 3.92312i | 0.690983 | + | 2.12663i | −9.90270 | − | 0.583887i | −7.54604 | + | 10.3862i | −7.05549 | − | 3.77095i | −4.82100 | + | 14.8375i | 4.16454 | + | 1.62992i |
31.18 | 1.28652 | + | 1.53130i | 1.83428 | + | 2.52467i | −0.689733 | + | 3.94008i | 0.690983 | + | 2.12663i | −1.50618 | + | 6.05687i | 2.53678 | − | 3.49158i | −6.92079 | + | 4.01281i | −0.228228 | + | 0.702415i | −2.36753 | + | 3.79405i |
31.19 | 1.60353 | − | 1.19528i | −0.0826374 | − | 0.113741i | 1.14262 | − | 3.83333i | 0.690983 | + | 2.12663i | −0.268463 | − | 0.0836120i | 1.63068 | − | 2.24443i | −2.74966 | − | 7.51261i | 2.77504 | − | 8.54071i | 3.64992 | + | 2.58420i |
31.20 | 1.67207 | − | 1.09735i | 3.23278 | + | 4.44954i | 1.59164 | − | 3.66970i | 0.690983 | + | 2.12663i | 10.2881 | + | 3.89245i | −1.08319 | + | 1.49088i | −1.36562 | − | 7.88258i | −6.56639 | + | 20.2093i | 3.48903 | + | 2.79762i |
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
44.h | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.s.a | ✓ | 96 |
4.b | odd | 2 | 1 | inner | 220.3.s.a | ✓ | 96 |
11.c | even | 5 | 1 | inner | 220.3.s.a | ✓ | 96 |
44.h | odd | 10 | 1 | inner | 220.3.s.a | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.s.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
220.3.s.a | ✓ | 96 | 4.b | odd | 2 | 1 | inner |
220.3.s.a | ✓ | 96 | 11.c | even | 5 | 1 | inner |
220.3.s.a | ✓ | 96 | 44.h | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{96} - 140 T_{3}^{94} + 11350 T_{3}^{92} - 698554 T_{3}^{90} + 36300215 T_{3}^{88} + \cdots + 34\!\cdots\!00 \) acting on \(S_{3}^{\mathrm{new}}(220, [\chi])\).