Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(29,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 7]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.29");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.q (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | 0 | −4.54114 | − | 1.47550i | 0 | 0.670369 | − | 4.95486i | 0 | −1.65772 | − | 5.10192i | 0 | 11.1636 | + | 8.11086i | 0 | ||||||||||
29.2 | 0 | −4.28374 | − | 1.39187i | 0 | 3.70093 | + | 3.36201i | 0 | −1.02805 | − | 3.16403i | 0 | 9.13194 | + | 6.63474i | 0 | ||||||||||
29.3 | 0 | −3.83667 | − | 1.24661i | 0 | −4.92332 | + | 0.872318i | 0 | −0.101776 | − | 0.313235i | 0 | 5.88485 | + | 4.27559i | 0 | ||||||||||
29.4 | 0 | −2.12894 | − | 0.691734i | 0 | 3.38343 | − | 3.68136i | 0 | 3.76322 | + | 11.5820i | 0 | −3.22727 | − | 2.34475i | 0 | ||||||||||
29.5 | 0 | −0.914119 | − | 0.297015i | 0 | 3.63827 | + | 3.42972i | 0 | 1.31985 | + | 4.06207i | 0 | −6.53376 | − | 4.74705i | 0 | ||||||||||
29.6 | 0 | −0.279655 | − | 0.0908655i | 0 | −1.46713 | + | 4.77991i | 0 | −2.89276 | − | 8.90300i | 0 | −7.21120 | − | 5.23925i | 0 | ||||||||||
29.7 | 0 | 0.279655 | + | 0.0908655i | 0 | −4.99933 | − | 0.0817530i | 0 | 2.89276 | + | 8.90300i | 0 | −7.21120 | − | 5.23925i | 0 | ||||||||||
29.8 | 0 | 0.914119 | + | 0.297015i | 0 | −2.13757 | − | 4.52004i | 0 | −1.31985 | − | 4.06207i | 0 | −6.53376 | − | 4.74705i | 0 | ||||||||||
29.9 | 0 | 2.12894 | + | 0.691734i | 0 | 4.54672 | − | 2.08023i | 0 | −3.76322 | − | 11.5820i | 0 | −3.22727 | − | 2.34475i | 0 | ||||||||||
29.10 | 0 | 3.83667 | + | 1.24661i | 0 | −2.35101 | + | 4.41279i | 0 | 0.101776 | + | 0.313235i | 0 | 5.88485 | + | 4.27559i | 0 | ||||||||||
29.11 | 0 | 4.28374 | + | 1.39187i | 0 | −2.05382 | − | 4.55871i | 0 | 1.02805 | + | 3.16403i | 0 | 9.13194 | + | 6.63474i | 0 | ||||||||||
29.12 | 0 | 4.54114 | + | 1.47550i | 0 | 4.91950 | + | 0.893576i | 0 | 1.65772 | + | 5.10192i | 0 | 11.1636 | + | 8.11086i | 0 | ||||||||||
129.1 | 0 | −4.54114 | + | 1.47550i | 0 | 0.670369 | + | 4.95486i | 0 | −1.65772 | + | 5.10192i | 0 | 11.1636 | − | 8.11086i | 0 | ||||||||||
129.2 | 0 | −4.28374 | + | 1.39187i | 0 | 3.70093 | − | 3.36201i | 0 | −1.02805 | + | 3.16403i | 0 | 9.13194 | − | 6.63474i | 0 | ||||||||||
129.3 | 0 | −3.83667 | + | 1.24661i | 0 | −4.92332 | − | 0.872318i | 0 | −0.101776 | + | 0.313235i | 0 | 5.88485 | − | 4.27559i | 0 | ||||||||||
129.4 | 0 | −2.12894 | + | 0.691734i | 0 | 3.38343 | + | 3.68136i | 0 | 3.76322 | − | 11.5820i | 0 | −3.22727 | + | 2.34475i | 0 | ||||||||||
129.5 | 0 | −0.914119 | + | 0.297015i | 0 | 3.63827 | − | 3.42972i | 0 | 1.31985 | − | 4.06207i | 0 | −6.53376 | + | 4.74705i | 0 | ||||||||||
129.6 | 0 | −0.279655 | + | 0.0908655i | 0 | −1.46713 | − | 4.77991i | 0 | −2.89276 | + | 8.90300i | 0 | −7.21120 | + | 5.23925i | 0 | ||||||||||
129.7 | 0 | 0.279655 | − | 0.0908655i | 0 | −4.99933 | + | 0.0817530i | 0 | 2.89276 | − | 8.90300i | 0 | −7.21120 | + | 5.23925i | 0 | ||||||||||
129.8 | 0 | 0.914119 | − | 0.297015i | 0 | −2.13757 | + | 4.52004i | 0 | −1.31985 | + | 4.06207i | 0 | −6.53376 | + | 4.74705i | 0 | ||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
55.h | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.q.a | ✓ | 48 |
5.b | even | 2 | 1 | inner | 220.3.q.a | ✓ | 48 |
11.d | odd | 10 | 1 | inner | 220.3.q.a | ✓ | 48 |
55.h | odd | 10 | 1 | inner | 220.3.q.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.q.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
220.3.q.a | ✓ | 48 | 5.b | even | 2 | 1 | inner |
220.3.q.a | ✓ | 48 | 11.d | odd | 10 | 1 | inner |
220.3.q.a | ✓ | 48 | 55.h | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).