Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(59,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 5, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.59");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.n (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(272\) |
Relative dimension: | \(68\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59.1 | −1.99980 | − | 0.0280452i | −0.322500 | + | 0.992552i | 3.99843 | + | 0.112170i | 1.92550 | + | 4.61438i | 0.672772 | − | 1.97586i | 0.786438 | + | 2.42041i | −7.99292 | − | 0.336454i | 6.40000 | + | 4.64987i | −3.72120 | − | 9.28185i |
59.2 | −1.99168 | − | 0.182208i | 1.74937 | − | 5.38400i | 3.93360 | + | 0.725801i | 0.976283 | − | 4.90376i | −4.46519 | + | 10.4045i | −1.06057 | − | 3.26411i | −7.70224 | − | 2.16230i | −18.6460 | − | 13.5471i | −2.83795 | + | 9.58885i |
59.3 | −1.98733 | + | 0.224748i | 1.18555 | − | 3.64876i | 3.89898 | − | 0.893297i | −0.255765 | + | 4.99345i | −1.53604 | + | 7.51775i | −3.38642 | − | 10.4223i | −7.54780 | + | 2.65156i | −4.62675 | − | 3.36153i | −0.613977 | − | 9.98113i |
59.4 | −1.98211 | − | 0.266910i | −1.39459 | + | 4.29210i | 3.85752 | + | 1.05809i | 4.36346 | − | 2.44136i | 3.90983 | − | 8.13518i | −2.25420 | − | 6.93772i | −7.36361 | − | 3.12686i | −9.19606 | − | 6.68133i | −9.30048 | + | 3.67439i |
59.5 | −1.96450 | + | 0.375154i | 0.297638 | − | 0.916036i | 3.71852 | − | 1.47398i | 2.59881 | − | 4.27156i | −0.241055 | + | 1.91121i | 3.56529 | + | 10.9728i | −6.75206 | + | 4.29066i | 6.53062 | + | 4.74477i | −3.50287 | + | 9.36643i |
59.6 | −1.95041 | + | 0.442590i | 0.493733 | − | 1.51955i | 3.60823 | − | 1.72647i | −4.95116 | − | 0.697179i | −0.290445 | + | 3.18228i | 1.02359 | + | 3.15030i | −6.27342 | + | 4.96429i | 5.21588 | + | 3.78956i | 9.96537 | − | 0.831544i |
59.7 | −1.94544 | + | 0.463981i | −1.69177 | + | 5.20673i | 3.56944 | − | 1.80529i | −3.49424 | + | 3.57635i | 0.875406 | − | 10.9143i | 0.724872 | + | 2.23093i | −6.10650 | + | 5.16823i | −16.9668 | − | 12.3271i | 5.13846 | − | 8.57883i |
59.8 | −1.86310 | − | 0.727225i | −0.746523 | + | 2.29756i | 2.94229 | + | 2.70979i | −4.97494 | + | 0.499944i | 3.06169 | − | 3.73770i | −2.37053 | − | 7.29575i | −3.51115 | − | 7.18831i | 2.55966 | + | 1.85970i | 9.63239 | + | 2.68646i |
59.9 | −1.81509 | − | 0.839903i | −1.18739 | + | 3.65441i | 2.58913 | + | 3.04900i | −2.20769 | − | 4.48621i | 5.22457 | − | 5.63580i | 3.39360 | + | 10.4444i | −2.13864 | − | 7.70884i | −4.66365 | − | 3.38834i | 0.239176 | + | 9.99714i |
59.10 | −1.81449 | + | 0.841212i | −0.331631 | + | 1.02066i | 2.58473 | − | 3.05274i | −2.69892 | − | 4.20902i | −0.256847 | − | 2.13094i | −2.85876 | − | 8.79837i | −2.12195 | + | 7.71345i | 6.34940 | + | 4.61311i | 8.43783 | + | 5.36684i |
59.11 | −1.80603 | − | 0.859222i | 0.423044 | − | 1.30200i | 2.52348 | + | 3.10356i | 4.95627 | + | 0.659848i | −1.88273 | + | 1.98795i | −0.668808 | − | 2.05838i | −1.89083 | − | 7.77334i | 5.76493 | + | 4.18846i | −8.38421 | − | 5.45024i |
59.12 | −1.80498 | − | 0.861422i | 1.13599 | − | 3.49622i | 2.51590 | + | 3.10970i | −4.99633 | − | 0.191667i | −5.06217 | + | 5.33204i | 1.62081 | + | 4.98833i | −1.86239 | − | 7.78020i | −3.65195 | − | 2.65329i | 8.85316 | + | 4.64990i |
59.13 | −1.71513 | + | 1.02875i | −0.881019 | + | 2.71150i | 1.88336 | − | 3.52888i | 4.41135 | + | 2.35372i | −1.27838 | − | 5.55693i | −0.513208 | − | 1.57949i | 0.400111 | + | 7.98999i | 0.705121 | + | 0.512300i | −9.98743 | + | 0.501225i |
59.14 | −1.63579 | + | 1.15074i | 1.53627 | − | 4.72815i | 1.35160 | − | 3.76473i | 2.03822 | + | 4.56570i | 2.92786 | + | 9.50209i | 3.85918 | + | 11.8773i | 2.12129 | + | 7.71363i | −12.7141 | − | 9.23736i | −8.58803 | − | 5.12306i |
59.15 | −1.52786 | + | 1.29060i | 0.813130 | − | 2.50256i | 0.668688 | − | 3.94371i | 4.64314 | − | 1.85505i | 1.98746 | + | 4.87298i | −1.93951 | − | 5.96920i | 4.06811 | + | 6.88843i | 1.67954 | + | 1.22026i | −4.69991 | + | 8.82671i |
59.16 | −1.37703 | − | 1.45044i | 1.13599 | − | 3.49622i | −0.207574 | + | 3.99461i | −1.36166 | + | 4.81102i | −6.63537 | + | 3.16671i | 1.62081 | + | 4.98833i | 6.07979 | − | 5.19963i | −3.65195 | − | 2.65329i | 8.85316 | − | 4.64990i |
59.17 | −1.37526 | − | 1.45212i | 0.423044 | − | 1.30200i | −0.217310 | + | 3.99409i | 0.904019 | − | 4.91760i | −2.47245 | + | 1.17627i | −0.668808 | − | 2.05838i | 6.09876 | − | 5.17736i | 5.76493 | + | 4.18846i | −8.38421 | + | 5.45024i |
59.18 | −1.36729 | + | 1.45963i | −1.35989 | + | 4.18531i | −0.261032 | − | 3.99147i | −1.91549 | − | 4.61854i | −4.24964 | − | 7.70748i | 0.119211 | + | 0.366892i | 6.18298 | + | 5.07650i | −8.38640 | − | 6.09308i | 9.36038 | + | 3.51899i |
59.19 | −1.35969 | − | 1.46671i | −1.18739 | + | 3.65441i | −0.302489 | + | 3.98855i | 3.58443 | + | 3.48595i | 6.97444 | − | 3.22730i | 3.39360 | + | 10.4444i | 6.26134 | − | 4.97952i | −4.66365 | − | 3.38834i | 0.239176 | − | 9.99714i |
59.20 | −1.34289 | + | 1.48211i | −0.399083 | + | 1.22825i | −0.393305 | − | 3.98062i | −3.44013 | + | 3.62843i | −1.28448 | − | 2.24089i | 2.62793 | + | 8.08795i | 6.42788 | + | 4.76260i | 5.93182 | + | 4.30972i | −0.758029 | − | 9.97123i |
See next 80 embeddings (of 272 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
20.d | odd | 2 | 1 | inner |
44.h | odd | 10 | 1 | inner |
55.j | even | 10 | 1 | inner |
220.n | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.n.a | ✓ | 272 |
4.b | odd | 2 | 1 | inner | 220.3.n.a | ✓ | 272 |
5.b | even | 2 | 1 | inner | 220.3.n.a | ✓ | 272 |
11.c | even | 5 | 1 | inner | 220.3.n.a | ✓ | 272 |
20.d | odd | 2 | 1 | inner | 220.3.n.a | ✓ | 272 |
44.h | odd | 10 | 1 | inner | 220.3.n.a | ✓ | 272 |
55.j | even | 10 | 1 | inner | 220.3.n.a | ✓ | 272 |
220.n | odd | 10 | 1 | inner | 220.3.n.a | ✓ | 272 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.n.a | ✓ | 272 | 1.a | even | 1 | 1 | trivial |
220.3.n.a | ✓ | 272 | 4.b | odd | 2 | 1 | inner |
220.3.n.a | ✓ | 272 | 5.b | even | 2 | 1 | inner |
220.3.n.a | ✓ | 272 | 11.c | even | 5 | 1 | inner |
220.3.n.a | ✓ | 272 | 20.d | odd | 2 | 1 | inner |
220.3.n.a | ✓ | 272 | 44.h | odd | 10 | 1 | inner |
220.3.n.a | ✓ | 272 | 55.j | even | 10 | 1 | inner |
220.3.n.a | ✓ | 272 | 220.n | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).