Properties

Label 220.3.n.a
Level $220$
Weight $3$
Character orbit 220.n
Analytic conductor $5.995$
Analytic rank $0$
Dimension $272$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(59,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.59");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.n (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(272\)
Relative dimension: \(68\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 272 q - 6 q^{4} - 6 q^{5} + 10 q^{6} - 192 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 272 q - 6 q^{4} - 6 q^{5} + 10 q^{6} - 192 q^{9} - 24 q^{10} + 14 q^{14} + 102 q^{16} + 14 q^{20} + 40 q^{21} + 14 q^{24} - 22 q^{25} - 96 q^{26} - 12 q^{29} + 136 q^{30} - 176 q^{34} + 172 q^{36} - 114 q^{40} - 36 q^{41} + 6 q^{44} + 24 q^{45} - 138 q^{46} - 232 q^{49} + 246 q^{50} + 912 q^{54} - 280 q^{56} + 124 q^{60} - 12 q^{61} - 66 q^{64} - 116 q^{65} - 10 q^{66} - 360 q^{69} - 242 q^{70} - 884 q^{74} + 52 q^{76} - 86 q^{80} - 264 q^{81} - 268 q^{84} - 10 q^{85} - 310 q^{86} + 80 q^{89} + 98 q^{90} - 1204 q^{94} - 714 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
59.1 −1.99980 0.0280452i −0.322500 + 0.992552i 3.99843 + 0.112170i 1.92550 + 4.61438i 0.672772 1.97586i 0.786438 + 2.42041i −7.99292 0.336454i 6.40000 + 4.64987i −3.72120 9.28185i
59.2 −1.99168 0.182208i 1.74937 5.38400i 3.93360 + 0.725801i 0.976283 4.90376i −4.46519 + 10.4045i −1.06057 3.26411i −7.70224 2.16230i −18.6460 13.5471i −2.83795 + 9.58885i
59.3 −1.98733 + 0.224748i 1.18555 3.64876i 3.89898 0.893297i −0.255765 + 4.99345i −1.53604 + 7.51775i −3.38642 10.4223i −7.54780 + 2.65156i −4.62675 3.36153i −0.613977 9.98113i
59.4 −1.98211 0.266910i −1.39459 + 4.29210i 3.85752 + 1.05809i 4.36346 2.44136i 3.90983 8.13518i −2.25420 6.93772i −7.36361 3.12686i −9.19606 6.68133i −9.30048 + 3.67439i
59.5 −1.96450 + 0.375154i 0.297638 0.916036i 3.71852 1.47398i 2.59881 4.27156i −0.241055 + 1.91121i 3.56529 + 10.9728i −6.75206 + 4.29066i 6.53062 + 4.74477i −3.50287 + 9.36643i
59.6 −1.95041 + 0.442590i 0.493733 1.51955i 3.60823 1.72647i −4.95116 0.697179i −0.290445 + 3.18228i 1.02359 + 3.15030i −6.27342 + 4.96429i 5.21588 + 3.78956i 9.96537 0.831544i
59.7 −1.94544 + 0.463981i −1.69177 + 5.20673i 3.56944 1.80529i −3.49424 + 3.57635i 0.875406 10.9143i 0.724872 + 2.23093i −6.10650 + 5.16823i −16.9668 12.3271i 5.13846 8.57883i
59.8 −1.86310 0.727225i −0.746523 + 2.29756i 2.94229 + 2.70979i −4.97494 + 0.499944i 3.06169 3.73770i −2.37053 7.29575i −3.51115 7.18831i 2.55966 + 1.85970i 9.63239 + 2.68646i
59.9 −1.81509 0.839903i −1.18739 + 3.65441i 2.58913 + 3.04900i −2.20769 4.48621i 5.22457 5.63580i 3.39360 + 10.4444i −2.13864 7.70884i −4.66365 3.38834i 0.239176 + 9.99714i
59.10 −1.81449 + 0.841212i −0.331631 + 1.02066i 2.58473 3.05274i −2.69892 4.20902i −0.256847 2.13094i −2.85876 8.79837i −2.12195 + 7.71345i 6.34940 + 4.61311i 8.43783 + 5.36684i
59.11 −1.80603 0.859222i 0.423044 1.30200i 2.52348 + 3.10356i 4.95627 + 0.659848i −1.88273 + 1.98795i −0.668808 2.05838i −1.89083 7.77334i 5.76493 + 4.18846i −8.38421 5.45024i
59.12 −1.80498 0.861422i 1.13599 3.49622i 2.51590 + 3.10970i −4.99633 0.191667i −5.06217 + 5.33204i 1.62081 + 4.98833i −1.86239 7.78020i −3.65195 2.65329i 8.85316 + 4.64990i
59.13 −1.71513 + 1.02875i −0.881019 + 2.71150i 1.88336 3.52888i 4.41135 + 2.35372i −1.27838 5.55693i −0.513208 1.57949i 0.400111 + 7.98999i 0.705121 + 0.512300i −9.98743 + 0.501225i
59.14 −1.63579 + 1.15074i 1.53627 4.72815i 1.35160 3.76473i 2.03822 + 4.56570i 2.92786 + 9.50209i 3.85918 + 11.8773i 2.12129 + 7.71363i −12.7141 9.23736i −8.58803 5.12306i
59.15 −1.52786 + 1.29060i 0.813130 2.50256i 0.668688 3.94371i 4.64314 1.85505i 1.98746 + 4.87298i −1.93951 5.96920i 4.06811 + 6.88843i 1.67954 + 1.22026i −4.69991 + 8.82671i
59.16 −1.37703 1.45044i 1.13599 3.49622i −0.207574 + 3.99461i −1.36166 + 4.81102i −6.63537 + 3.16671i 1.62081 + 4.98833i 6.07979 5.19963i −3.65195 2.65329i 8.85316 4.64990i
59.17 −1.37526 1.45212i 0.423044 1.30200i −0.217310 + 3.99409i 0.904019 4.91760i −2.47245 + 1.17627i −0.668808 2.05838i 6.09876 5.17736i 5.76493 + 4.18846i −8.38421 + 5.45024i
59.18 −1.36729 + 1.45963i −1.35989 + 4.18531i −0.261032 3.99147i −1.91549 4.61854i −4.24964 7.70748i 0.119211 + 0.366892i 6.18298 + 5.07650i −8.38640 6.09308i 9.36038 + 3.51899i
59.19 −1.35969 1.46671i −1.18739 + 3.65441i −0.302489 + 3.98855i 3.58443 + 3.48595i 6.97444 3.22730i 3.39360 + 10.4444i 6.26134 4.97952i −4.66365 3.38834i 0.239176 9.99714i
59.20 −1.34289 + 1.48211i −0.399083 + 1.22825i −0.393305 3.98062i −3.44013 + 3.62843i −1.28448 2.24089i 2.62793 + 8.08795i 6.42788 + 4.76260i 5.93182 + 4.30972i −0.758029 9.97123i
See next 80 embeddings (of 272 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 59.68
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
11.c even 5 1 inner
20.d odd 2 1 inner
44.h odd 10 1 inner
55.j even 10 1 inner
220.n odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.3.n.a 272
4.b odd 2 1 inner 220.3.n.a 272
5.b even 2 1 inner 220.3.n.a 272
11.c even 5 1 inner 220.3.n.a 272
20.d odd 2 1 inner 220.3.n.a 272
44.h odd 10 1 inner 220.3.n.a 272
55.j even 10 1 inner 220.3.n.a 272
220.n odd 10 1 inner 220.3.n.a 272
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.3.n.a 272 1.a even 1 1 trivial
220.3.n.a 272 4.b odd 2 1 inner
220.3.n.a 272 5.b even 2 1 inner
220.3.n.a 272 11.c even 5 1 inner
220.3.n.a 272 20.d odd 2 1 inner
220.3.n.a 272 44.h odd 10 1 inner
220.3.n.a 272 55.j even 10 1 inner
220.3.n.a 272 220.n odd 10 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).