Properties

Label 220.3.i.a.43.8
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.8
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.87429 - 0.697868i) q^{2} +(-0.715296 + 0.715296i) q^{3} +(3.02596 + 2.61602i) q^{4} +(-4.99120 + 0.296598i) q^{5} +(1.83986 - 0.841493i) q^{6} +(2.22084 - 2.22084i) q^{7} +(-3.84590 - 7.01492i) q^{8} +7.97670i q^{9} +(9.56196 + 2.92729i) q^{10} +(-10.8744 - 1.65777i) q^{11} +(-4.03569 + 0.293227i) q^{12} +(13.5930 - 13.5930i) q^{13} +(-5.71235 + 2.61265i) q^{14} +(3.35803 - 3.78234i) q^{15} +(2.31286 + 15.8320i) q^{16} +(9.03223 + 9.03223i) q^{17} +(5.56669 - 14.9507i) q^{18} -22.0371i q^{19} +(-15.8791 - 12.1596i) q^{20} +3.17711i q^{21} +(19.2249 + 10.6960i) q^{22} +(18.4603 - 18.4603i) q^{23} +(7.76870 + 2.26679i) q^{24} +(24.8241 - 2.96076i) q^{25} +(-34.9633 + 15.9911i) q^{26} +(-12.1434 - 12.1434i) q^{27} +(12.5299 - 0.910404i) q^{28} -17.1469 q^{29} +(-8.93351 + 4.74576i) q^{30} -48.4755i q^{31} +(6.71364 - 31.2878i) q^{32} +(8.96419 - 6.59260i) q^{33} +(-10.6257 - 23.2324i) q^{34} +(-10.4259 + 11.7433i) q^{35} +(-20.8672 + 24.1372i) q^{36} +(26.8510 - 26.8510i) q^{37} +(-15.3790 + 41.3039i) q^{38} +19.4460i q^{39} +(21.2762 + 33.8721i) q^{40} -42.9149i q^{41} +(2.21721 - 5.95484i) q^{42} +(-21.2909 - 21.2909i) q^{43} +(-28.5686 - 33.4639i) q^{44} +(-2.36588 - 39.8133i) q^{45} +(-47.4828 + 21.7171i) q^{46} +(-8.10647 - 8.10647i) q^{47} +(-12.9789 - 9.67016i) q^{48} +39.1358i q^{49} +(-48.5938 - 11.7746i) q^{50} -12.9214 q^{51} +(76.6912 - 5.57226i) q^{52} +(24.9928 + 24.9928i) q^{53} +(14.2858 + 31.2347i) q^{54} +(54.7678 + 5.04891i) q^{55} +(-24.1201 - 7.03787i) q^{56} +(15.7630 + 15.7630i) q^{57} +(32.1384 + 11.9663i) q^{58} +102.987 q^{59} +(20.0559 - 2.66053i) q^{60} +37.6033i q^{61} +(-33.8295 + 90.8573i) q^{62} +(17.7149 + 17.7149i) q^{63} +(-34.4181 + 53.9573i) q^{64} +(-63.8135 + 71.8768i) q^{65} +(-21.4023 + 6.10065i) q^{66} +(-56.7371 - 56.7371i) q^{67} +(3.70265 + 50.9597i) q^{68} +26.4091i q^{69} +(27.7366 - 14.7345i) q^{70} +52.4379i q^{71} +(55.9559 - 30.6776i) q^{72} +(-19.3554 + 19.3554i) q^{73} +(-69.0652 + 31.5882i) q^{74} +(-15.6387 + 19.8744i) q^{75} +(57.6494 - 66.6832i) q^{76} +(-27.8318 + 20.4686i) q^{77} +(13.5707 - 36.4475i) q^{78} +124.938i q^{79} +(-16.2397 - 78.3344i) q^{80} -54.4181 q^{81} +(-29.9490 + 80.4352i) q^{82} +(-39.9204 - 39.9204i) q^{83} +(-8.31139 + 9.61381i) q^{84} +(-47.7606 - 42.4027i) q^{85} +(25.0472 + 54.7637i) q^{86} +(12.2651 - 12.2651i) q^{87} +(30.1926 + 82.6584i) q^{88} +54.7788i q^{89} +(-23.3501 + 76.2729i) q^{90} -60.3755i q^{91} +(104.152 - 7.56756i) q^{92} +(34.6743 + 34.6743i) q^{93} +(9.53666 + 20.8512i) q^{94} +(6.53615 + 109.991i) q^{95} +(17.5778 + 27.1823i) q^{96} +(36.2543 - 36.2543i) q^{97} +(27.3116 - 73.3520i) q^{98} +(13.2235 - 86.7416i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.87429 0.697868i −0.937147 0.348934i
\(3\) −0.715296 + 0.715296i −0.238432 + 0.238432i −0.816201 0.577769i \(-0.803924\pi\)
0.577769 + 0.816201i \(0.303924\pi\)
\(4\) 3.02596 + 2.61602i 0.756490 + 0.654005i
\(5\) −4.99120 + 0.296598i −0.998239 + 0.0593197i
\(6\) 1.83986 0.841493i 0.306643 0.140249i
\(7\) 2.22084 2.22084i 0.317262 0.317262i −0.530452 0.847715i \(-0.677978\pi\)
0.847715 + 0.530452i \(0.177978\pi\)
\(8\) −3.84590 7.01492i −0.480737 0.876865i
\(9\) 7.97670i 0.886300i
\(10\) 9.56196 + 2.92729i 0.956196 + 0.292729i
\(11\) −10.8744 1.65777i −0.988579 0.150706i
\(12\) −4.03569 + 0.293227i −0.336307 + 0.0244356i
\(13\) 13.5930 13.5930i 1.04561 1.04561i 0.0467036 0.998909i \(-0.485128\pi\)
0.998909 0.0467036i \(-0.0148716\pi\)
\(14\) −5.71235 + 2.61265i −0.408025 + 0.186618i
\(15\) 3.35803 3.78234i 0.223869 0.252156i
\(16\) 2.31286 + 15.8320i 0.144554 + 0.989497i
\(17\) 9.03223 + 9.03223i 0.531308 + 0.531308i 0.920961 0.389654i \(-0.127405\pi\)
−0.389654 + 0.920961i \(0.627405\pi\)
\(18\) 5.56669 14.9507i 0.309260 0.830594i
\(19\) 22.0371i 1.15985i −0.814672 0.579923i \(-0.803083\pi\)
0.814672 0.579923i \(-0.196917\pi\)
\(20\) −15.8791 12.1596i −0.793953 0.607979i
\(21\) 3.17711i 0.151291i
\(22\) 19.2249 + 10.6960i 0.873857 + 0.486183i
\(23\) 18.4603 18.4603i 0.802620 0.802620i −0.180884 0.983504i \(-0.557896\pi\)
0.983504 + 0.180884i \(0.0578959\pi\)
\(24\) 7.76870 + 2.26679i 0.323696 + 0.0944494i
\(25\) 24.8241 2.96076i 0.992962 0.118430i
\(26\) −34.9633 + 15.9911i −1.34474 + 0.615043i
\(27\) −12.1434 12.1434i −0.449755 0.449755i
\(28\) 12.5299 0.910404i 0.447497 0.0325144i
\(29\) −17.1469 −0.591274 −0.295637 0.955300i \(-0.595532\pi\)
−0.295637 + 0.955300i \(0.595532\pi\)
\(30\) −8.93351 + 4.74576i −0.297784 + 0.158192i
\(31\) 48.4755i 1.56373i −0.623451 0.781863i \(-0.714270\pi\)
0.623451 0.781863i \(-0.285730\pi\)
\(32\) 6.71364 31.2878i 0.209801 0.977744i
\(33\) 8.96419 6.59260i 0.271642 0.199776i
\(34\) −10.6257 23.2324i −0.312522 0.683305i
\(35\) −10.4259 + 11.7433i −0.297884 + 0.335523i
\(36\) −20.8672 + 24.1372i −0.579645 + 0.670477i
\(37\) 26.8510 26.8510i 0.725703 0.725703i −0.244058 0.969761i \(-0.578479\pi\)
0.969761 + 0.244058i \(0.0784786\pi\)
\(38\) −15.3790 + 41.3039i −0.404710 + 1.08695i
\(39\) 19.4460i 0.498615i
\(40\) 21.2762 + 33.8721i 0.531906 + 0.846803i
\(41\) 42.9149i 1.04671i −0.852116 0.523353i \(-0.824681\pi\)
0.852116 0.523353i \(-0.175319\pi\)
\(42\) 2.21721 5.95484i 0.0527906 0.141782i
\(43\) −21.2909 21.2909i −0.495138 0.495138i 0.414783 0.909920i \(-0.363858\pi\)
−0.909920 + 0.414783i \(0.863858\pi\)
\(44\) −28.5686 33.4639i −0.649287 0.760543i
\(45\) −2.36588 39.8133i −0.0525750 0.884740i
\(46\) −47.4828 + 21.7171i −1.03224 + 0.472112i
\(47\) −8.10647 8.10647i −0.172478 0.172478i 0.615589 0.788067i \(-0.288918\pi\)
−0.788067 + 0.615589i \(0.788918\pi\)
\(48\) −12.9789 9.67016i −0.270394 0.201462i
\(49\) 39.1358i 0.798689i
\(50\) −48.5938 11.7746i −0.971876 0.235492i
\(51\) −12.9214 −0.253362
\(52\) 76.6912 5.57226i 1.47483 0.107159i
\(53\) 24.9928 + 24.9928i 0.471562 + 0.471562i 0.902420 0.430858i \(-0.141789\pi\)
−0.430858 + 0.902420i \(0.641789\pi\)
\(54\) 14.2858 + 31.2347i 0.264551 + 0.578421i
\(55\) 54.7678 + 5.04891i 0.995778 + 0.0917984i
\(56\) −24.1201 7.03787i −0.430716 0.125676i
\(57\) 15.7630 + 15.7630i 0.276544 + 0.276544i
\(58\) 32.1384 + 11.9663i 0.554110 + 0.206316i
\(59\) 102.987 1.74555 0.872774 0.488124i \(-0.162319\pi\)
0.872774 + 0.488124i \(0.162319\pi\)
\(60\) 20.0559 2.66053i 0.334266 0.0443422i
\(61\) 37.6033i 0.616447i 0.951314 + 0.308224i \(0.0997345\pi\)
−0.951314 + 0.308224i \(0.900265\pi\)
\(62\) −33.8295 + 90.8573i −0.545637 + 1.46544i
\(63\) 17.7149 + 17.7149i 0.281190 + 0.281190i
\(64\) −34.4181 + 53.9573i −0.537783 + 0.843083i
\(65\) −63.8135 + 71.8768i −0.981746 + 1.10580i
\(66\) −21.4023 + 6.10065i −0.324277 + 0.0924341i
\(67\) −56.7371 56.7371i −0.846823 0.846823i 0.142913 0.989735i \(-0.454353\pi\)
−0.989735 + 0.142913i \(0.954353\pi\)
\(68\) 3.70265 + 50.9597i 0.0544507 + 0.749407i
\(69\) 26.4091i 0.382741i
\(70\) 27.7366 14.7345i 0.396236 0.210493i
\(71\) 52.4379i 0.738562i 0.929318 + 0.369281i \(0.120396\pi\)
−0.929318 + 0.369281i \(0.879604\pi\)
\(72\) 55.9559 30.6776i 0.777165 0.426078i
\(73\) −19.3554 + 19.3554i −0.265142 + 0.265142i −0.827139 0.561997i \(-0.810033\pi\)
0.561997 + 0.827139i \(0.310033\pi\)
\(74\) −69.0652 + 31.5882i −0.933313 + 0.426868i
\(75\) −15.6387 + 19.8744i −0.208517 + 0.264992i
\(76\) 57.6494 66.6832i 0.758545 0.877411i
\(77\) −27.8318 + 20.4686i −0.361452 + 0.265825i
\(78\) 13.5707 36.4475i 0.173984 0.467276i
\(79\) 124.938i 1.58149i 0.612147 + 0.790744i \(0.290306\pi\)
−0.612147 + 0.790744i \(0.709694\pi\)
\(80\) −16.2397 78.3344i −0.202996 0.979180i
\(81\) −54.4181 −0.671828
\(82\) −29.9490 + 80.4352i −0.365231 + 0.980918i
\(83\) −39.9204 39.9204i −0.480968 0.480968i 0.424472 0.905441i \(-0.360460\pi\)
−0.905441 + 0.424472i \(0.860460\pi\)
\(84\) −8.31139 + 9.61381i −0.0989452 + 0.114450i
\(85\) −47.7606 42.4027i −0.561889 0.498855i
\(86\) 25.0472 + 54.7637i 0.291246 + 0.636788i
\(87\) 12.2651 12.2651i 0.140979 0.140979i
\(88\) 30.1926 + 82.6584i 0.343098 + 0.939300i
\(89\) 54.7788i 0.615492i 0.951469 + 0.307746i \(0.0995746\pi\)
−0.951469 + 0.307746i \(0.900425\pi\)
\(90\) −23.3501 + 76.2729i −0.259445 + 0.847476i
\(91\) 60.3755i 0.663467i
\(92\) 104.152 7.56756i 1.13209 0.0822560i
\(93\) 34.6743 + 34.6743i 0.372842 + 0.372842i
\(94\) 9.53666 + 20.8512i 0.101454 + 0.221821i
\(95\) 6.53615 + 109.991i 0.0688016 + 1.15780i
\(96\) 17.5778 + 27.1823i 0.183102 + 0.283149i
\(97\) 36.2543 36.2543i 0.373756 0.373756i −0.495087 0.868843i \(-0.664864\pi\)
0.868843 + 0.495087i \(0.164864\pi\)
\(98\) 27.3116 73.3520i 0.278690 0.748489i
\(99\) 13.2235 86.7416i 0.133571 0.876177i
\(100\) 82.8620 + 55.9811i 0.828620 + 0.559811i
\(101\) 130.016i 1.28729i −0.765323 0.643646i \(-0.777421\pi\)
0.765323 0.643646i \(-0.222579\pi\)
\(102\) 24.2186 + 9.01747i 0.237437 + 0.0884065i
\(103\) −6.33217 + 6.33217i −0.0614773 + 0.0614773i −0.737177 0.675700i \(-0.763842\pi\)
0.675700 + 0.737177i \(0.263842\pi\)
\(104\) −147.631 43.0763i −1.41953 0.414195i
\(105\) −0.942326 15.8576i −0.00897453 0.151025i
\(106\) −29.4022 64.2855i −0.277379 0.606467i
\(107\) 105.599 105.599i 0.986904 0.986904i −0.0130112 0.999915i \(-0.504142\pi\)
0.999915 + 0.0130112i \(0.00414171\pi\)
\(108\) −4.97802 68.5127i −0.0460928 0.634377i
\(109\) 28.9484 0.265582 0.132791 0.991144i \(-0.457606\pi\)
0.132791 + 0.991144i \(0.457606\pi\)
\(110\) −99.1274 47.6838i −0.901159 0.433490i
\(111\) 38.4129i 0.346062i
\(112\) 40.2966 + 30.0237i 0.359791 + 0.268069i
\(113\) −150.357 150.357i −1.33060 1.33060i −0.904835 0.425761i \(-0.860006\pi\)
−0.425761 0.904835i \(-0.639994\pi\)
\(114\) −18.5440 40.5451i −0.162667 0.355659i
\(115\) −86.6635 + 97.6141i −0.753596 + 0.848818i
\(116\) −51.8859 44.8567i −0.447292 0.386696i
\(117\) 108.427 + 108.427i 0.926727 + 0.926727i
\(118\) −193.029 71.8716i −1.63584 0.609082i
\(119\) 40.1182 0.337128
\(120\) −39.4474 9.00979i −0.328729 0.0750816i
\(121\) 115.504 + 36.0543i 0.954575 + 0.297969i
\(122\) 26.2422 70.4796i 0.215100 0.577702i
\(123\) 30.6969 + 30.6969i 0.249568 + 0.249568i
\(124\) 126.813 146.685i 1.02268 1.18294i
\(125\) −123.024 + 22.1405i −0.984189 + 0.177124i
\(126\) −20.8403 45.5657i −0.165399 0.361633i
\(127\) −12.1820 + 12.1820i −0.0959211 + 0.0959211i −0.753439 0.657518i \(-0.771606\pi\)
0.657518 + 0.753439i \(0.271606\pi\)
\(128\) 102.165 77.1126i 0.798162 0.602442i
\(129\) 30.4586 0.236114
\(130\) 169.766 90.1848i 1.30589 0.693729i
\(131\) −206.414 −1.57568 −0.787840 0.615880i \(-0.788801\pi\)
−0.787840 + 0.615880i \(0.788801\pi\)
\(132\) 44.3717 + 3.50157i 0.336149 + 0.0265270i
\(133\) −48.9407 48.9407i −0.367975 0.367975i
\(134\) 66.7470 + 145.937i 0.498112 + 1.08908i
\(135\) 64.2117 + 57.0082i 0.475642 + 0.422283i
\(136\) 28.6233 98.0974i 0.210465 0.721304i
\(137\) 54.2707 54.2707i 0.396136 0.396136i −0.480732 0.876868i \(-0.659629\pi\)
0.876868 + 0.480732i \(0.159629\pi\)
\(138\) 18.4301 49.4985i 0.133551 0.358685i
\(139\) 82.8999i 0.596402i −0.954503 0.298201i \(-0.903613\pi\)
0.954503 0.298201i \(-0.0963866\pi\)
\(140\) −62.2692 + 8.26035i −0.444780 + 0.0590025i
\(141\) 11.5971 0.0822486
\(142\) 36.5948 98.2841i 0.257710 0.692142i
\(143\) −170.349 + 125.281i −1.19125 + 0.876090i
\(144\) −126.287 + 18.4490i −0.876991 + 0.128118i
\(145\) 85.5837 5.08575i 0.590232 0.0350741i
\(146\) 49.7852 22.7702i 0.340995 0.155960i
\(147\) −27.9937 27.9937i −0.190433 0.190433i
\(148\) 151.493 11.0072i 1.02360 0.0743732i
\(149\) −74.9458 −0.502992 −0.251496 0.967858i \(-0.580923\pi\)
−0.251496 + 0.967858i \(0.580923\pi\)
\(150\) 43.1813 26.3367i 0.287875 0.175578i
\(151\) 29.5062 0.195405 0.0977027 0.995216i \(-0.468851\pi\)
0.0977027 + 0.995216i \(0.468851\pi\)
\(152\) −154.588 + 84.7523i −1.01703 + 0.557581i
\(153\) −72.0474 + 72.0474i −0.470898 + 0.470898i
\(154\) 66.4493 18.9412i 0.431489 0.122995i
\(155\) 14.3777 + 241.951i 0.0927596 + 1.56097i
\(156\) −50.8711 + 58.8428i −0.326097 + 0.377197i
\(157\) −20.6552 + 20.6552i −0.131562 + 0.131562i −0.769821 0.638260i \(-0.779655\pi\)
0.638260 + 0.769821i \(0.279655\pi\)
\(158\) 87.1900 234.170i 0.551835 1.48209i
\(159\) −35.7545 −0.224871
\(160\) −24.2292 + 158.155i −0.151432 + 0.988468i
\(161\) 81.9945i 0.509282i
\(162\) 101.996 + 37.9767i 0.629602 + 0.234424i
\(163\) −210.111 + 210.111i −1.28902 + 1.28902i −0.353645 + 0.935380i \(0.615058\pi\)
−0.935380 + 0.353645i \(0.884942\pi\)
\(164\) 112.266 129.859i 0.684551 0.791822i
\(165\) −42.7867 + 35.5637i −0.259313 + 0.215538i
\(166\) 46.9634 + 102.682i 0.282912 + 0.618565i
\(167\) −38.3042 + 38.3042i −0.229367 + 0.229367i −0.812428 0.583061i \(-0.801855\pi\)
0.583061 + 0.812428i \(0.301855\pi\)
\(168\) 22.2872 12.2189i 0.132662 0.0727313i
\(169\) 200.537i 1.18661i
\(170\) 59.9259 + 112.806i 0.352505 + 0.663563i
\(171\) 175.783 1.02797
\(172\) −8.72795 120.123i −0.0507439 0.698390i
\(173\) 212.941 212.941i 1.23087 1.23087i 0.267242 0.963630i \(-0.413888\pi\)
0.963630 0.267242i \(-0.0861122\pi\)
\(174\) −31.5479 + 14.4290i −0.181310 + 0.0829254i
\(175\) 48.5548 61.7055i 0.277456 0.352603i
\(176\) 1.09478 175.997i 0.00622037 0.999981i
\(177\) −73.6665 + 73.6665i −0.416195 + 0.416195i
\(178\) 38.2284 102.672i 0.214766 0.576806i
\(179\) 228.179 1.27474 0.637370 0.770558i \(-0.280022\pi\)
0.637370 + 0.770558i \(0.280022\pi\)
\(180\) 96.9934 126.663i 0.538852 0.703681i
\(181\) −34.9814 −0.193267 −0.0966337 0.995320i \(-0.530808\pi\)
−0.0966337 + 0.995320i \(0.530808\pi\)
\(182\) −42.1341 + 113.161i −0.231506 + 0.621766i
\(183\) −26.8975 26.8975i −0.146981 0.146981i
\(184\) −200.494 58.5009i −1.08964 0.317940i
\(185\) −126.055 + 141.983i −0.681377 + 0.767474i
\(186\) −40.7918 89.1880i −0.219311 0.479506i
\(187\) −83.2464 113.193i −0.445168 0.605311i
\(188\) −3.32314 45.7365i −0.0176763 0.243279i
\(189\) −53.9369 −0.285380
\(190\) 64.5088 210.717i 0.339520 1.10904i
\(191\) 236.391i 1.23765i −0.785529 0.618825i \(-0.787609\pi\)
0.785529 0.618825i \(-0.212391\pi\)
\(192\) −13.9763 63.2146i −0.0727934 0.329243i
\(193\) 136.099 136.099i 0.705178 0.705178i −0.260339 0.965517i \(-0.583834\pi\)
0.965517 + 0.260339i \(0.0838343\pi\)
\(194\) −93.2521 + 42.6506i −0.480681 + 0.219848i
\(195\) −5.76765 97.0587i −0.0295777 0.497737i
\(196\) −102.380 + 118.423i −0.522347 + 0.604200i
\(197\) −0.907559 0.907559i −0.00460690 0.00460690i 0.704800 0.709406i \(-0.251037\pi\)
−0.709406 + 0.704800i \(0.751037\pi\)
\(198\) −85.3189 + 153.351i −0.430904 + 0.774500i
\(199\) 110.730 0.556432 0.278216 0.960519i \(-0.410257\pi\)
0.278216 + 0.960519i \(0.410257\pi\)
\(200\) −116.240 162.752i −0.581202 0.813760i
\(201\) 81.1677 0.403820
\(202\) −90.7344 + 243.689i −0.449180 + 1.20638i
\(203\) −38.0805 + 38.0805i −0.187589 + 0.187589i
\(204\) −39.0998 33.8028i −0.191665 0.165700i
\(205\) 12.7285 + 214.197i 0.0620902 + 1.04486i
\(206\) 16.2874 7.44932i 0.0790649 0.0361618i
\(207\) 147.252 + 147.252i 0.711363 + 0.711363i
\(208\) 246.642 + 183.764i 1.18578 + 0.883483i
\(209\) −36.5323 + 239.639i −0.174796 + 1.14660i
\(210\) −9.30031 + 30.3794i −0.0442872 + 0.144664i
\(211\) −161.308 −0.764492 −0.382246 0.924061i \(-0.624849\pi\)
−0.382246 + 0.924061i \(0.624849\pi\)
\(212\) 10.2455 + 141.009i 0.0483278 + 0.665136i
\(213\) −37.5087 37.5087i −0.176097 0.176097i
\(214\) −271.617 + 124.229i −1.26924 + 0.580510i
\(215\) 112.582 + 99.9523i 0.523637 + 0.464894i
\(216\) −38.4826 + 131.887i −0.178160 + 0.610588i
\(217\) −107.656 107.656i −0.496111 0.496111i
\(218\) −54.2579 20.2022i −0.248889 0.0926706i
\(219\) 27.6897i 0.126437i
\(220\) 152.517 + 158.551i 0.693259 + 0.720689i
\(221\) 245.549 1.11108
\(222\) 26.8071 71.9970i 0.120753 0.324311i
\(223\) 81.9777 81.9777i 0.367613 0.367613i −0.498993 0.866606i \(-0.666297\pi\)
0.866606 + 0.498993i \(0.166297\pi\)
\(224\) −54.5752 84.3950i −0.243639 0.376763i
\(225\) 23.6171 + 198.014i 0.104965 + 0.880063i
\(226\) 176.884 + 386.744i 0.782674 + 1.71126i
\(227\) −116.079 + 116.079i −0.511363 + 0.511363i −0.914944 0.403581i \(-0.867765\pi\)
0.403581 + 0.914944i \(0.367765\pi\)
\(228\) 6.46186 + 88.9347i 0.0283415 + 0.390065i
\(229\) 27.8767i 0.121732i 0.998146 + 0.0608662i \(0.0193863\pi\)
−0.998146 + 0.0608662i \(0.980614\pi\)
\(230\) 230.555 122.478i 1.00241 0.532512i
\(231\) 5.26691 34.5491i 0.0228005 0.149563i
\(232\) 65.9454 + 120.284i 0.284247 + 0.518467i
\(233\) −115.050 + 115.050i −0.493777 + 0.493777i −0.909494 0.415717i \(-0.863531\pi\)
0.415717 + 0.909494i \(0.363531\pi\)
\(234\) −127.556 278.892i −0.545113 1.19185i
\(235\) 42.8653 + 38.0566i 0.182406 + 0.161943i
\(236\) 311.636 + 269.417i 1.32049 + 1.14160i
\(237\) −89.3674 89.3674i −0.377078 0.377078i
\(238\) −75.1933 27.9972i −0.315938 0.117635i
\(239\) 314.014i 1.31387i 0.753949 + 0.656933i \(0.228146\pi\)
−0.753949 + 0.656933i \(0.771854\pi\)
\(240\) 67.6485 + 44.4161i 0.281869 + 0.185067i
\(241\) 443.899i 1.84190i 0.389676 + 0.920952i \(0.372587\pi\)
−0.389676 + 0.920952i \(0.627413\pi\)
\(242\) −191.327 148.183i −0.790606 0.612325i
\(243\) 148.215 148.215i 0.609940 0.609940i
\(244\) −98.3710 + 113.786i −0.403160 + 0.466336i
\(245\) −11.6076 195.334i −0.0473780 0.797283i
\(246\) −36.1126 78.9574i −0.146799 0.320965i
\(247\) −299.549 299.549i −1.21275 1.21275i
\(248\) −340.051 + 186.432i −1.37118 + 0.751741i
\(249\) 57.1098 0.229357
\(250\) 246.034 + 44.3564i 0.984134 + 0.177426i
\(251\) 240.731i 0.959089i −0.877517 0.479545i \(-0.840802\pi\)
0.877517 0.479545i \(-0.159198\pi\)
\(252\) 7.26202 + 99.9474i 0.0288175 + 0.396617i
\(253\) −231.347 + 170.141i −0.914413 + 0.672494i
\(254\) 31.3340 14.3312i 0.123362 0.0564221i
\(255\) 64.4934 3.83248i 0.252915 0.0150293i
\(256\) −245.301 + 73.2342i −0.958208 + 0.286071i
\(257\) 236.660 236.660i 0.920855 0.920855i −0.0762349 0.997090i \(-0.524290\pi\)
0.997090 + 0.0762349i \(0.0242899\pi\)
\(258\) −57.0885 21.2561i −0.221273 0.0823881i
\(259\) 119.263i 0.460476i
\(260\) −381.128 + 50.5587i −1.46588 + 0.194457i
\(261\) 136.776i 0.524046i
\(262\) 386.881 + 144.050i 1.47664 + 0.549809i
\(263\) 84.5250 + 84.5250i 0.321388 + 0.321388i 0.849299 0.527911i \(-0.177025\pi\)
−0.527911 + 0.849299i \(0.677025\pi\)
\(264\) −80.7219 37.5285i −0.305765 0.142154i
\(265\) −132.157 117.331i −0.498705 0.442759i
\(266\) 57.5751 + 125.883i 0.216448 + 0.473246i
\(267\) −39.1830 39.1830i −0.146753 0.146753i
\(268\) −23.2587 320.110i −0.0867861 1.19444i
\(269\) 159.019i 0.591150i 0.955319 + 0.295575i \(0.0955113\pi\)
−0.955319 + 0.295575i \(0.904489\pi\)
\(270\) −80.5673 151.662i −0.298397 0.561709i
\(271\) 266.913 0.984920 0.492460 0.870335i \(-0.336098\pi\)
0.492460 + 0.870335i \(0.336098\pi\)
\(272\) −122.108 + 163.888i −0.448925 + 0.602530i
\(273\) 43.1864 + 43.1864i 0.158192 + 0.158192i
\(274\) −139.593 + 63.8454i −0.509463 + 0.233012i
\(275\) −274.854 8.95609i −0.999470 0.0325676i
\(276\) −69.0869 + 79.9129i −0.250315 + 0.289540i
\(277\) −7.39230 7.39230i −0.0266870 0.0266870i 0.693637 0.720324i \(-0.256007\pi\)
−0.720324 + 0.693637i \(0.756007\pi\)
\(278\) −57.8532 + 155.379i −0.208105 + 0.558917i
\(279\) 386.674 1.38593
\(280\) 122.475 + 27.9734i 0.437412 + 0.0999050i
\(281\) 441.260i 1.57032i −0.619293 0.785160i \(-0.712581\pi\)
0.619293 0.785160i \(-0.287419\pi\)
\(282\) −21.7363 8.09322i −0.0770791 0.0286994i
\(283\) 99.6962 + 99.6962i 0.352283 + 0.352283i 0.860959 0.508675i \(-0.169865\pi\)
−0.508675 + 0.860959i \(0.669865\pi\)
\(284\) −137.179 + 158.675i −0.483024 + 0.558715i
\(285\) −83.3516 74.0011i −0.292462 0.259653i
\(286\) 406.713 115.932i 1.42207 0.405357i
\(287\) −95.3070 95.3070i −0.332080 0.332080i
\(288\) 249.574 + 53.5527i 0.866575 + 0.185947i
\(289\) 125.838i 0.435425i
\(290\) −163.958 50.1940i −0.565373 0.173083i
\(291\) 51.8652i 0.178231i
\(292\) −109.203 + 7.93450i −0.373982 + 0.0271730i
\(293\) −260.491 + 260.491i −0.889047 + 0.889047i −0.994432 0.105384i \(-0.966393\pi\)
0.105384 + 0.994432i \(0.466393\pi\)
\(294\) 32.9325 + 72.0043i 0.112015 + 0.244913i
\(295\) −514.030 + 30.5459i −1.74247 + 0.103545i
\(296\) −291.624 85.0913i −0.985216 0.287471i
\(297\) 111.921 + 152.182i 0.376837 + 0.512398i
\(298\) 140.470 + 52.3023i 0.471377 + 0.175511i
\(299\) 501.859i 1.67846i
\(300\) −99.3140 + 19.2278i −0.331047 + 0.0640926i
\(301\) −94.5673 −0.314177
\(302\) −55.3033 20.5915i −0.183124 0.0681836i
\(303\) 93.0003 + 93.0003i 0.306932 + 0.306932i
\(304\) 348.890 50.9686i 1.14766 0.167660i
\(305\) −11.1531 187.685i −0.0365674 0.615362i
\(306\) 185.318 84.7584i 0.605613 0.276988i
\(307\) −200.278 + 200.278i −0.652371 + 0.652371i −0.953563 0.301193i \(-0.902615\pi\)
0.301193 + 0.953563i \(0.402615\pi\)
\(308\) −137.764 10.8716i −0.447286 0.0352974i
\(309\) 9.05875i 0.0293163i
\(310\) 141.902 463.520i 0.457747 1.49523i
\(311\) 53.9933i 0.173612i −0.996225 0.0868059i \(-0.972334\pi\)
0.996225 0.0868059i \(-0.0276660\pi\)
\(312\) 136.412 74.7873i 0.437218 0.239703i
\(313\) 229.397 + 229.397i 0.732897 + 0.732897i 0.971193 0.238296i \(-0.0765888\pi\)
−0.238296 + 0.971193i \(0.576589\pi\)
\(314\) 53.1285 24.2993i 0.169199 0.0773863i
\(315\) −93.6730 83.1645i −0.297375 0.264014i
\(316\) −326.839 + 378.056i −1.03430 + 1.19638i
\(317\) 143.530 143.530i 0.452776 0.452776i −0.443499 0.896275i \(-0.646263\pi\)
0.896275 + 0.443499i \(0.146263\pi\)
\(318\) 67.0145 + 24.9519i 0.210737 + 0.0784652i
\(319\) 186.462 + 28.4256i 0.584520 + 0.0891084i
\(320\) 155.784 279.520i 0.486825 0.873500i
\(321\) 151.069i 0.470619i
\(322\) −57.2213 + 153.682i −0.177706 + 0.477273i
\(323\) 199.044 199.044i 0.616235 0.616235i
\(324\) −164.667 142.359i −0.508231 0.439379i
\(325\) 297.187 377.678i 0.914421 1.16209i
\(326\) 540.440 247.180i 1.65779 0.758221i
\(327\) −20.7067 + 20.7067i −0.0633232 + 0.0633232i
\(328\) −301.045 + 165.047i −0.917819 + 0.503191i
\(329\) −36.0063 −0.109442
\(330\) 105.014 36.7974i 0.318223 0.111507i
\(331\) 331.244i 1.00074i −0.865812 0.500369i \(-0.833198\pi\)
0.865812 0.500369i \(-0.166802\pi\)
\(332\) −16.3649 225.230i −0.0492917 0.678404i
\(333\) 214.183 + 214.183i 0.643191 + 0.643191i
\(334\) 98.5248 45.0621i 0.294984 0.134916i
\(335\) 300.014 + 266.358i 0.895565 + 0.795098i
\(336\) −50.2999 + 7.34821i −0.149702 + 0.0218697i
\(337\) −275.569 275.569i −0.817712 0.817712i 0.168064 0.985776i \(-0.446249\pi\)
−0.985776 + 0.168064i \(0.946249\pi\)
\(338\) −139.949 + 375.866i −0.414049 + 1.11203i
\(339\) 215.100 0.634514
\(340\) −33.5952 253.251i −0.0988094 0.744857i
\(341\) −80.3610 + 527.140i −0.235663 + 1.54587i
\(342\) −329.469 122.673i −0.963360 0.358694i
\(343\) 195.735 + 195.735i 0.570656 + 0.570656i
\(344\) −67.4713 + 231.237i −0.196138 + 0.672200i
\(345\) −7.83290 131.813i −0.0227041 0.382067i
\(346\) −547.718 + 250.509i −1.58300 + 0.724014i
\(347\) −51.3590 + 51.3590i −0.148009 + 0.148009i −0.777228 0.629219i \(-0.783375\pi\)
0.629219 + 0.777228i \(0.283375\pi\)
\(348\) 69.1997 5.02794i 0.198850 0.0144481i
\(349\) 398.578 1.14206 0.571029 0.820930i \(-0.306544\pi\)
0.571029 + 0.820930i \(0.306544\pi\)
\(350\) −134.068 + 81.7694i −0.383052 + 0.233627i
\(351\) −330.129 −0.940538
\(352\) −124.874 + 329.105i −0.354757 + 0.934959i
\(353\) 66.5648 + 66.5648i 0.188569 + 0.188569i 0.795077 0.606508i \(-0.207430\pi\)
−0.606508 + 0.795077i \(0.707430\pi\)
\(354\) 189.482 86.6632i 0.535260 0.244811i
\(355\) −15.5530 261.728i −0.0438113 0.737262i
\(356\) −143.302 + 165.758i −0.402535 + 0.465613i
\(357\) −28.6964 + 28.6964i −0.0803821 + 0.0803821i
\(358\) −427.674 159.239i −1.19462 0.444801i
\(359\) 164.580i 0.458439i −0.973375 0.229220i \(-0.926383\pi\)
0.973375 0.229220i \(-0.0736174\pi\)
\(360\) −270.188 + 169.714i −0.750522 + 0.471429i
\(361\) −124.632 −0.345241
\(362\) 65.5654 + 24.4124i 0.181120 + 0.0674376i
\(363\) −108.409 + 56.8298i −0.298647 + 0.156556i
\(364\) 157.944 182.694i 0.433911 0.501906i
\(365\) 90.8658 102.347i 0.248947 0.280404i
\(366\) 31.6429 + 69.1848i 0.0864561 + 0.189029i
\(367\) 22.0064 + 22.0064i 0.0599630 + 0.0599630i 0.736452 0.676489i \(-0.236500\pi\)
−0.676489 + 0.736452i \(0.736500\pi\)
\(368\) 334.958 + 249.566i 0.910212 + 0.678169i
\(369\) 342.320 0.927696
\(370\) 335.349 178.148i 0.906348 0.481480i
\(371\) 111.010 0.299218
\(372\) 14.2143 + 195.632i 0.0382105 + 0.525892i
\(373\) −17.8852 + 17.8852i −0.0479496 + 0.0479496i −0.730675 0.682725i \(-0.760795\pi\)
0.682725 + 0.730675i \(0.260795\pi\)
\(374\) 77.0345 + 270.252i 0.205974 + 0.722599i
\(375\) 72.1613 103.835i 0.192430 0.276894i
\(376\) −25.6895 + 88.0429i −0.0683232 + 0.234157i
\(377\) −233.078 + 233.078i −0.618243 + 0.618243i
\(378\) 101.094 + 37.6408i 0.267443 + 0.0995789i
\(379\) −519.305 −1.37020 −0.685099 0.728450i \(-0.740241\pi\)
−0.685099 + 0.728450i \(0.740241\pi\)
\(380\) −267.961 + 349.928i −0.705162 + 0.920863i
\(381\) 17.4275i 0.0457414i
\(382\) −164.970 + 443.067i −0.431858 + 1.15986i
\(383\) 191.782 191.782i 0.500737 0.500737i −0.410930 0.911667i \(-0.634796\pi\)
0.911667 + 0.410930i \(0.134796\pi\)
\(384\) −17.9197 + 128.236i −0.0466660 + 0.333949i
\(385\) 132.843 110.417i 0.345047 0.286798i
\(386\) −350.070 + 160.111i −0.906917 + 0.414795i
\(387\) 169.831 169.831i 0.438841 0.438841i
\(388\) 204.546 14.8620i 0.527181 0.0383042i
\(389\) 514.704i 1.32315i 0.749880 + 0.661574i \(0.230111\pi\)
−0.749880 + 0.661574i \(0.769889\pi\)
\(390\) −56.9240 + 185.942i −0.145959 + 0.476774i
\(391\) 333.475 0.852877
\(392\) 274.534 150.512i 0.700342 0.383960i
\(393\) 147.647 147.647i 0.375693 0.375693i
\(394\) 1.06768 + 2.33439i 0.00270984 + 0.00592485i
\(395\) −37.0563 623.588i −0.0938133 1.57870i
\(396\) 266.932 227.883i 0.674070 0.575463i
\(397\) 181.692 181.692i 0.457663 0.457663i −0.440225 0.897888i \(-0.645101\pi\)
0.897888 + 0.440225i \(0.145101\pi\)
\(398\) −207.541 77.2749i −0.521459 0.194158i
\(399\) 70.0142 0.175474
\(400\) 104.289 + 386.165i 0.260723 + 0.965414i
\(401\) 264.079 0.658551 0.329275 0.944234i \(-0.393196\pi\)
0.329275 + 0.944234i \(0.393196\pi\)
\(402\) −152.132 56.6444i −0.378438 0.140906i
\(403\) −658.925 658.925i −1.63505 1.63505i
\(404\) 340.126 393.425i 0.841896 0.973823i
\(405\) 271.611 16.1403i 0.670645 0.0398526i
\(406\) 97.9493 44.7989i 0.241254 0.110342i
\(407\) −336.500 + 247.475i −0.826782 + 0.608047i
\(408\) 49.6946 + 90.6428i 0.121800 + 0.222164i
\(409\) −154.396 −0.377496 −0.188748 0.982026i \(-0.560443\pi\)
−0.188748 + 0.982026i \(0.560443\pi\)
\(410\) 125.624 410.351i 0.306401 1.00086i
\(411\) 77.6392i 0.188903i
\(412\) −35.7260 + 2.59579i −0.0867135 + 0.00630047i
\(413\) 228.718 228.718i 0.553797 0.553797i
\(414\) −173.231 378.756i −0.418433 0.914870i
\(415\) 211.091 + 187.410i 0.508652 + 0.451591i
\(416\) −334.036 516.552i −0.802971 1.24171i
\(417\) 59.2980 + 59.2980i 0.142201 + 0.142201i
\(418\) 235.709 423.659i 0.563897 1.01354i
\(419\) −105.235 −0.251159 −0.125579 0.992084i \(-0.540079\pi\)
−0.125579 + 0.992084i \(0.540079\pi\)
\(420\) 38.6323 50.4495i 0.0919818 0.120118i
\(421\) −154.459 −0.366885 −0.183443 0.983030i \(-0.558724\pi\)
−0.183443 + 0.983030i \(0.558724\pi\)
\(422\) 302.338 + 112.572i 0.716441 + 0.266757i
\(423\) 64.6629 64.6629i 0.152867 0.152867i
\(424\) 79.2026 271.442i 0.186799 0.640194i
\(425\) 250.959 + 197.474i 0.590491 + 0.464645i
\(426\) 44.1262 + 96.4784i 0.103583 + 0.226475i
\(427\) 83.5107 + 83.5107i 0.195576 + 0.195576i
\(428\) 595.786 43.2889i 1.39202 0.101142i
\(429\) 32.2369 211.463i 0.0751443 0.492920i
\(430\) −141.258 265.907i −0.328508 0.618390i
\(431\) −134.177 −0.311315 −0.155657 0.987811i \(-0.549750\pi\)
−0.155657 + 0.987811i \(0.549750\pi\)
\(432\) 164.167 220.339i 0.380017 0.510044i
\(433\) −470.363 470.363i −1.08629 1.08629i −0.995907 0.0903823i \(-0.971191\pi\)
−0.0903823 0.995907i \(-0.528809\pi\)
\(434\) 126.649 + 276.909i 0.291819 + 0.638039i
\(435\) −57.5799 + 64.8555i −0.132368 + 0.149093i
\(436\) 87.5967 + 75.7297i 0.200910 + 0.173692i
\(437\) −406.810 406.810i −0.930915 0.930915i
\(438\) −19.3238 + 51.8986i −0.0441182 + 0.118490i
\(439\) 663.345i 1.51104i 0.655128 + 0.755518i \(0.272615\pi\)
−0.655128 + 0.755518i \(0.727385\pi\)
\(440\) −175.214 403.609i −0.398213 0.917293i
\(441\) −312.174 −0.707879
\(442\) −460.232 171.361i −1.04125 0.387695i
\(443\) −362.609 + 362.609i −0.818530 + 0.818530i −0.985895 0.167365i \(-0.946474\pi\)
0.167365 + 0.985895i \(0.446474\pi\)
\(444\) −100.489 + 116.236i −0.226326 + 0.261792i
\(445\) −16.2473 273.411i −0.0365107 0.614408i
\(446\) −210.860 + 96.4407i −0.472780 + 0.216235i
\(447\) 53.6084 53.6084i 0.119929 0.119929i
\(448\) 43.3934 + 196.267i 0.0968603 + 0.438097i
\(449\) 246.087i 0.548078i 0.961719 + 0.274039i \(0.0883597\pi\)
−0.961719 + 0.274039i \(0.911640\pi\)
\(450\) 93.9224 387.618i 0.208716 0.861374i
\(451\) −71.1429 + 466.673i −0.157745 + 1.03475i
\(452\) −61.6372 848.314i −0.136365 1.87680i
\(453\) −21.1057 + 21.1057i −0.0465909 + 0.0465909i
\(454\) 298.575 136.559i 0.657654 0.300790i
\(455\) 17.9073 + 301.346i 0.0393566 + 0.662298i
\(456\) 49.9533 171.199i 0.109547 0.375437i
\(457\) −181.041 181.041i −0.396150 0.396150i 0.480723 0.876873i \(-0.340374\pi\)
−0.876873 + 0.480723i \(0.840374\pi\)
\(458\) 19.4543 52.2491i 0.0424766 0.114081i
\(459\) 219.363i 0.477916i
\(460\) −517.601 + 68.6626i −1.12522 + 0.149267i
\(461\) 663.725i 1.43975i 0.694103 + 0.719876i \(0.255801\pi\)
−0.694103 + 0.719876i \(0.744199\pi\)
\(462\) −33.9824 + 61.0795i −0.0735551 + 0.132207i
\(463\) −276.754 + 276.754i −0.597742 + 0.597742i −0.939711 0.341970i \(-0.888906\pi\)
0.341970 + 0.939711i \(0.388906\pi\)
\(464\) −39.6584 271.469i −0.0854708 0.585063i
\(465\) −183.351 162.782i −0.394303 0.350069i
\(466\) 295.927 135.348i 0.635037 0.290446i
\(467\) 446.447 + 446.447i 0.955989 + 0.955989i 0.999072 0.0430827i \(-0.0137179\pi\)
−0.0430827 + 0.999072i \(0.513718\pi\)
\(468\) 44.4483 + 611.743i 0.0949750 + 1.30714i
\(469\) −252.008 −0.537330
\(470\) −53.7837 101.244i −0.114433 0.215412i
\(471\) 29.5491i 0.0627370i
\(472\) −396.079 722.448i −0.839150 1.53061i
\(473\) 196.230 + 266.821i 0.414862 + 0.564103i
\(474\) 105.134 + 229.867i 0.221802 + 0.484952i
\(475\) −65.2464 547.049i −0.137361 1.15168i
\(476\) 121.396 + 104.950i 0.255034 + 0.220483i
\(477\) −199.360 + 199.360i −0.417946 + 0.417946i
\(478\) 219.140 588.554i 0.458453 1.23129i
\(479\) 36.0860i 0.0753362i −0.999290 0.0376681i \(-0.988007\pi\)
0.999290 0.0376681i \(-0.0119930\pi\)
\(480\) −95.7965 130.459i −0.199576 0.271789i
\(481\) 729.970i 1.51761i
\(482\) 309.783 831.997i 0.642703 1.72614i
\(483\) 58.6503 + 58.6503i 0.121429 + 0.121429i
\(484\) 255.190 + 411.259i 0.527253 + 0.849708i
\(485\) −170.200 + 191.706i −0.350927 + 0.395269i
\(486\) −381.234 + 174.364i −0.784433 + 0.358775i
\(487\) −121.404 121.404i −0.249289 0.249289i 0.571390 0.820679i \(-0.306405\pi\)
−0.820679 + 0.571390i \(0.806405\pi\)
\(488\) 263.784 144.619i 0.540541 0.296349i
\(489\) 300.583i 0.614690i
\(490\) −114.562 + 374.215i −0.233799 + 0.763703i
\(491\) 746.205 1.51977 0.759883 0.650060i \(-0.225256\pi\)
0.759883 + 0.650060i \(0.225256\pi\)
\(492\) 12.5838 + 173.191i 0.0255768 + 0.352015i
\(493\) −154.875 154.875i −0.314148 0.314148i
\(494\) 352.397 + 770.488i 0.713354 + 1.55969i
\(495\) −40.2737 + 436.866i −0.0813610 + 0.882558i
\(496\) 767.461 112.117i 1.54730 0.226042i
\(497\) 116.456 + 116.456i 0.234318 + 0.234318i
\(498\) −107.041 39.8551i −0.214941 0.0800304i
\(499\) −795.445 −1.59408 −0.797039 0.603928i \(-0.793601\pi\)
−0.797039 + 0.603928i \(0.793601\pi\)
\(500\) −430.184 254.836i −0.860369 0.509672i
\(501\) 54.7978i 0.109377i
\(502\) −167.999 + 451.202i −0.334659 + 0.898808i
\(503\) 591.542 + 591.542i 1.17603 + 1.17603i 0.980747 + 0.195281i \(0.0625618\pi\)
0.195281 + 0.980747i \(0.437438\pi\)
\(504\) 56.1390 192.399i 0.111387 0.381744i
\(505\) 38.5627 + 648.938i 0.0763617 + 1.28503i
\(506\) 552.347 157.445i 1.09160 0.311156i
\(507\) 143.444 + 143.444i 0.282926 + 0.282926i
\(508\) −68.7305 + 4.99385i −0.135296 + 0.00983042i
\(509\) 435.062i 0.854739i −0.904077 0.427370i \(-0.859440\pi\)
0.904077 0.427370i \(-0.140560\pi\)
\(510\) −123.554 37.8247i −0.242263 0.0741662i
\(511\) 85.9703i 0.168239i
\(512\) 510.875 + 33.9257i 0.997802 + 0.0662611i
\(513\) −267.604 + 267.604i −0.521646 + 0.521646i
\(514\) −608.727 + 278.413i −1.18429 + 0.541659i
\(515\) 29.7270 33.4832i 0.0577223 0.0650159i
\(516\) 92.1666 + 79.6805i 0.178617 + 0.154420i
\(517\) 74.7141 + 101.591i 0.144515 + 0.196502i
\(518\) −83.2302 + 223.535i −0.160676 + 0.431534i
\(519\) 304.631i 0.586958i
\(520\) 749.630 + 171.215i 1.44160 + 0.329260i
\(521\) −107.146 −0.205655 −0.102828 0.994699i \(-0.532789\pi\)
−0.102828 + 0.994699i \(0.532789\pi\)
\(522\) −95.4516 + 256.358i −0.182858 + 0.491108i
\(523\) 120.994 + 120.994i 0.231347 + 0.231347i 0.813255 0.581908i \(-0.197694\pi\)
−0.581908 + 0.813255i \(0.697694\pi\)
\(524\) −624.601 539.984i −1.19199 1.03050i
\(525\) 9.40666 + 78.8688i 0.0179175 + 0.150226i
\(526\) −99.4375 217.412i −0.189045 0.413331i
\(527\) 437.842 437.842i 0.830819 0.830819i
\(528\) 125.107 + 126.673i 0.236944 + 0.239911i
\(529\) 152.563i 0.288399i
\(530\) 165.819 + 312.141i 0.312866 + 0.588945i
\(531\) 821.499i 1.54708i
\(532\) −20.0626 276.122i −0.0377117 0.519027i
\(533\) −583.341 583.341i −1.09445 1.09445i
\(534\) 46.0959 + 100.785i 0.0863220 + 0.188736i
\(535\) −495.744 + 558.384i −0.926623 + 1.04371i
\(536\) −179.801 + 616.212i −0.335449 + 1.14965i
\(537\) −163.215 + 163.215i −0.303939 + 0.303939i
\(538\) 110.975 298.049i 0.206273 0.553995i
\(539\) 64.8779 425.577i 0.120367 0.789567i
\(540\) 45.1670 + 340.484i 0.0836426 + 0.630525i
\(541\) 96.6598i 0.178669i −0.996002 0.0893344i \(-0.971526\pi\)
0.996002 0.0893344i \(-0.0284740\pi\)
\(542\) −500.274 186.270i −0.923015 0.343672i
\(543\) 25.0221 25.0221i 0.0460812 0.0460812i
\(544\) 343.238 221.960i 0.630952 0.408014i
\(545\) −144.487 + 8.58605i −0.265114 + 0.0157542i
\(546\) −50.8055 111.082i −0.0930505 0.203447i
\(547\) −338.435 + 338.435i −0.618710 + 0.618710i −0.945201 0.326490i \(-0.894134\pi\)
0.326490 + 0.945201i \(0.394134\pi\)
\(548\) 306.194 22.2476i 0.558748 0.0405978i
\(549\) −299.950 −0.546358
\(550\) 508.907 + 208.598i 0.925286 + 0.379270i
\(551\) 377.868i 0.685786i
\(552\) 185.258 101.567i 0.335612 0.183998i
\(553\) 277.466 + 277.466i 0.501746 + 0.501746i
\(554\) 8.69649 + 19.0142i 0.0156976 + 0.0343216i
\(555\) −11.3932 191.726i −0.0205283 0.345452i
\(556\) 216.868 250.852i 0.390050 0.451172i
\(557\) 218.540 + 218.540i 0.392352 + 0.392352i 0.875525 0.483173i \(-0.160516\pi\)
−0.483173 + 0.875525i \(0.660516\pi\)
\(558\) −724.742 269.848i −1.29882 0.483598i
\(559\) −578.813 −1.03544
\(560\) −210.033 137.902i −0.375060 0.246254i
\(561\) 140.512 + 21.4207i 0.250468 + 0.0381831i
\(562\) −307.941 + 827.051i −0.547938 + 1.47162i
\(563\) 192.400 + 192.400i 0.341740 + 0.341740i 0.857021 0.515281i \(-0.172312\pi\)
−0.515281 + 0.857021i \(0.672312\pi\)
\(564\) 35.0922 + 30.3381i 0.0622202 + 0.0537910i
\(565\) 795.059 + 705.868i 1.40718 + 1.24932i
\(566\) −117.285 256.435i −0.207218 0.453065i
\(567\) −120.854 + 120.854i −0.213146 + 0.213146i
\(568\) 367.848 201.671i 0.647619 0.355055i
\(569\) 770.119 1.35346 0.676730 0.736231i \(-0.263396\pi\)
0.676730 + 0.736231i \(0.263396\pi\)
\(570\) 104.583 + 196.868i 0.183478 + 0.345383i
\(571\) −353.045 −0.618293 −0.309147 0.951014i \(-0.600043\pi\)
−0.309147 + 0.951014i \(0.600043\pi\)
\(572\) −843.206 66.5412i −1.47414 0.116331i
\(573\) 169.090 + 169.090i 0.295095 + 0.295095i
\(574\) 112.122 + 245.145i 0.195334 + 0.427082i
\(575\) 403.602 512.915i 0.701917 0.892027i
\(576\) −430.402 274.543i −0.747225 0.476637i
\(577\) −382.173 + 382.173i −0.662344 + 0.662344i −0.955932 0.293588i \(-0.905151\pi\)
0.293588 + 0.955932i \(0.405151\pi\)
\(578\) −87.8181 + 235.857i −0.151935 + 0.408057i
\(579\) 194.703i 0.336274i
\(580\) 272.277 + 208.500i 0.469443 + 0.359482i
\(581\) −177.313 −0.305186
\(582\) 36.1951 97.2107i 0.0621909 0.167029i
\(583\) −230.349 313.213i −0.395109 0.537244i
\(584\) 210.215 + 61.3376i 0.359958 + 0.105030i
\(585\) −573.340 509.021i −0.980068 0.870121i
\(586\) 670.025 306.448i 1.14339 0.522949i
\(587\) 286.984 + 286.984i 0.488899 + 0.488899i 0.907959 0.419059i \(-0.137640\pi\)
−0.419059 + 0.907959i \(0.637640\pi\)
\(588\) −11.4757 157.940i −0.0195164 0.268605i
\(589\) −1068.26 −1.81368
\(590\) 984.760 + 301.473i 1.66909 + 0.510972i
\(591\) 1.29835 0.00219687
\(592\) 487.207 + 363.001i 0.822984 + 0.613178i
\(593\) −548.319 + 548.319i −0.924652 + 0.924652i −0.997354 0.0727017i \(-0.976838\pi\)
0.0727017 + 0.997354i \(0.476838\pi\)
\(594\) −103.569 363.340i −0.174358 0.611684i
\(595\) −200.238 + 11.8990i −0.336534 + 0.0199983i
\(596\) −226.783 196.060i −0.380508 0.328959i
\(597\) −79.2047 + 79.2047i −0.132671 + 0.132671i
\(598\) −350.232 + 940.632i −0.585672 + 1.57296i
\(599\) 280.389 0.468095 0.234047 0.972225i \(-0.424803\pi\)
0.234047 + 0.972225i \(0.424803\pi\)
\(600\) 199.562 + 33.2696i 0.332604 + 0.0554493i
\(601\) 277.723i 0.462101i 0.972942 + 0.231050i \(0.0742162\pi\)
−0.972942 + 0.231050i \(0.925784\pi\)
\(602\) 177.247 + 65.9955i 0.294430 + 0.109627i
\(603\) 452.575 452.575i 0.750539 0.750539i
\(604\) 89.2846 + 77.1889i 0.147822 + 0.127796i
\(605\) −587.195 145.696i −0.970570 0.240820i
\(606\) −109.408 239.212i −0.180541 0.394739i
\(607\) 546.262 546.262i 0.899937 0.899937i −0.0954931 0.995430i \(-0.530443\pi\)
0.995430 + 0.0954931i \(0.0304428\pi\)
\(608\) −689.491 147.949i −1.13403 0.243337i
\(609\) 54.4777i 0.0894544i
\(610\) −110.076 + 359.561i −0.180452 + 0.589444i
\(611\) −220.382 −0.360690
\(612\) −406.490 + 29.5349i −0.664199 + 0.0482597i
\(613\) 247.426 247.426i 0.403632 0.403632i −0.475879 0.879511i \(-0.657870\pi\)
0.879511 + 0.475879i \(0.157870\pi\)
\(614\) 515.147 235.612i 0.839002 0.383733i
\(615\) −162.319 144.110i −0.263933 0.234325i
\(616\) 250.624 + 116.518i 0.406856 + 0.189152i
\(617\) −146.415 + 146.415i −0.237302 + 0.237302i −0.815732 0.578430i \(-0.803666\pi\)
0.578430 + 0.815732i \(0.303666\pi\)
\(618\) −6.32182 + 16.9788i −0.0102295 + 0.0274737i
\(619\) −126.439 −0.204264 −0.102132 0.994771i \(-0.532566\pi\)
−0.102132 + 0.994771i \(0.532566\pi\)
\(620\) −589.442 + 769.745i −0.950712 + 1.24152i
\(621\) −448.340 −0.721964
\(622\) −37.6802 + 101.199i −0.0605791 + 0.162700i
\(623\) 121.655 + 121.655i 0.195272 + 0.195272i
\(624\) −307.868 + 44.9758i −0.493378 + 0.0720767i
\(625\) 607.468 146.996i 0.971948 0.235194i
\(626\) −269.868 590.046i −0.431099 0.942565i
\(627\) −145.282 197.544i −0.231709 0.315063i
\(628\) −116.536 + 8.46733i −0.185567 + 0.0134830i
\(629\) 485.049 0.771143
\(630\) 117.533 + 221.246i 0.186560 + 0.351184i
\(631\) 477.322i 0.756453i 0.925713 + 0.378226i \(0.123466\pi\)
−0.925713 + 0.378226i \(0.876534\pi\)
\(632\) 876.427 480.497i 1.38675 0.760281i
\(633\) 115.383 115.383i 0.182279 0.182279i
\(634\) −369.182 + 168.852i −0.582306 + 0.266329i
\(635\) 57.1895 64.4158i 0.0900622 0.101442i
\(636\) −108.192 93.5346i −0.170113 0.147067i
\(637\) 531.971 + 531.971i 0.835119 + 0.835119i
\(638\) −329.647 183.404i −0.516689 0.287467i
\(639\) −418.282 −0.654588
\(640\) −487.053 + 415.186i −0.761020 + 0.648728i
\(641\) 612.843 0.956073 0.478037 0.878340i \(-0.341349\pi\)
0.478037 + 0.878340i \(0.341349\pi\)
\(642\) 105.426 283.147i 0.164215 0.441040i
\(643\) 444.097 444.097i 0.690663 0.690663i −0.271714 0.962378i \(-0.587591\pi\)
0.962378 + 0.271714i \(0.0875906\pi\)
\(644\) 214.499 248.112i 0.333073 0.385267i
\(645\) −152.025 + 9.03398i −0.235698 + 0.0140062i
\(646\) −511.973 + 234.160i −0.792528 + 0.362477i
\(647\) 757.476 + 757.476i 1.17075 + 1.17075i 0.982031 + 0.188719i \(0.0604336\pi\)
0.188719 + 0.982031i \(0.439566\pi\)
\(648\) 209.287 + 381.738i 0.322973 + 0.589103i
\(649\) −1119.92 170.729i −1.72561 0.263065i
\(650\) −820.585 + 500.482i −1.26244 + 0.769973i
\(651\) 154.012 0.236578
\(652\) −1185.44 + 86.1324i −1.81816 + 0.132105i
\(653\) 268.042 + 268.042i 0.410478 + 0.410478i 0.881905 0.471427i \(-0.156261\pi\)
−0.471427 + 0.881905i \(0.656261\pi\)
\(654\) 53.2610 24.3599i 0.0814388 0.0372475i
\(655\) 1030.25 61.2221i 1.57291 0.0934688i
\(656\) 679.427 99.2562i 1.03571 0.151305i
\(657\) −154.392 154.392i −0.234996 0.234996i
\(658\) 67.4863 + 25.1276i 0.102563 + 0.0381879i
\(659\) 340.314i 0.516409i 0.966090 + 0.258205i \(0.0831309\pi\)
−0.966090 + 0.258205i \(0.916869\pi\)
\(660\) −222.506 4.31647i −0.337131 0.00654010i
\(661\) 255.455 0.386468 0.193234 0.981153i \(-0.438102\pi\)
0.193234 + 0.981153i \(0.438102\pi\)
\(662\) −231.165 + 620.849i −0.349192 + 0.937839i
\(663\) −175.641 + 175.641i −0.264918 + 0.264918i
\(664\) −126.508 + 433.568i −0.190525 + 0.652964i
\(665\) 258.788 + 229.757i 0.389155 + 0.345499i
\(666\) −251.970 550.912i −0.378333 0.827196i
\(667\) −316.537 + 316.537i −0.474568 + 0.474568i
\(668\) −216.112 + 15.7023i −0.323521 + 0.0235065i
\(669\) 117.277i 0.175301i
\(670\) −376.432 708.604i −0.561839 1.05762i
\(671\) 62.3374 408.912i 0.0929023 0.609407i
\(672\) 99.4049 + 21.3300i 0.147924 + 0.0317410i
\(673\) 891.991 891.991i 1.32540 1.32540i 0.416057 0.909339i \(-0.363412\pi\)
0.909339 0.416057i \(-0.136588\pi\)
\(674\) 324.187 + 708.809i 0.480989 + 1.05164i
\(675\) −337.401 265.494i −0.499854 0.393325i
\(676\) 524.610 606.817i 0.776050 0.897659i
\(677\) 597.002 + 597.002i 0.881835 + 0.881835i 0.993721 0.111886i \(-0.0356891\pi\)
−0.111886 + 0.993721i \(0.535689\pi\)
\(678\) −403.161 150.112i −0.594633 0.221404i
\(679\) 161.030i 0.237157i
\(680\) −113.769 + 498.113i −0.167307 + 0.732519i
\(681\) 166.062i 0.243851i
\(682\) 518.495 931.934i 0.760256 1.36647i
\(683\) −131.657 + 131.657i −0.192763 + 0.192763i −0.796889 0.604126i \(-0.793522\pi\)
0.604126 + 0.796889i \(0.293522\pi\)
\(684\) 531.912 + 459.852i 0.777650 + 0.672299i
\(685\) −254.779 + 286.972i −0.371940 + 0.418937i
\(686\) −230.268 503.463i −0.335667 0.733910i
\(687\) −19.9401 19.9401i −0.0290249 0.0290249i
\(688\) 287.834 386.320i 0.418363 0.561511i
\(689\) 679.452 0.986143
\(690\) −77.3070 + 252.523i −0.112039 + 0.365975i
\(691\) 113.690i 0.164530i −0.996610 0.0822651i \(-0.973785\pi\)
0.996610 0.0822651i \(-0.0262154\pi\)
\(692\) 1201.41 87.2924i 1.73614 0.126145i
\(693\) −163.272 222.006i −0.235601 0.320355i
\(694\) 132.104 60.4201i 0.190351 0.0870607i
\(695\) 24.5880 + 413.770i 0.0353784 + 0.595352i
\(696\) −133.209 38.8684i −0.191393 0.0558454i
\(697\) 387.618 387.618i 0.556123 0.556123i
\(698\) −747.053 278.155i −1.07028 0.398503i
\(699\) 164.590i 0.235465i
\(700\) 308.348 59.6980i 0.440497 0.0852828i
\(701\) 881.751i 1.25785i −0.777467 0.628923i \(-0.783496\pi\)
0.777467 0.628923i \(-0.216504\pi\)
\(702\) 618.759 + 230.386i 0.881422 + 0.328186i
\(703\) −591.717 591.717i −0.841703 0.841703i
\(704\) 463.724 529.695i 0.658698 0.752407i
\(705\) −57.8832 + 3.43967i −0.0821038 + 0.00487896i
\(706\) −78.3085 171.215i −0.110919 0.242515i
\(707\) −288.745 288.745i −0.408409 0.408409i
\(708\) −415.625 + 30.1986i −0.587041 + 0.0426535i
\(709\) 571.537i 0.806117i −0.915174 0.403059i \(-0.867947\pi\)
0.915174 0.403059i \(-0.132053\pi\)
\(710\) −153.501 + 501.409i −0.216198 + 0.706210i
\(711\) −996.590 −1.40167
\(712\) 384.268 210.674i 0.539703 0.295890i
\(713\) −894.870 894.870i −1.25508 1.25508i
\(714\) 73.8118 33.7592i 0.103378 0.0472818i
\(715\) 813.086 675.826i 1.13718 0.945212i
\(716\) 690.459 + 596.920i 0.964328 + 0.833687i
\(717\) −224.613 224.613i −0.313268 0.313268i
\(718\) −114.855 + 308.471i −0.159965 + 0.429625i
\(719\) −967.150 −1.34513 −0.672566 0.740037i \(-0.734808\pi\)
−0.672566 + 0.740037i \(0.734808\pi\)
\(720\) 624.850 129.539i 0.867847 0.179915i
\(721\) 28.1254i 0.0390089i
\(722\) 233.597 + 86.9767i 0.323542 + 0.120466i
\(723\) −317.519 317.519i −0.439169 0.439169i
\(724\) −105.852 91.5121i −0.146205 0.126398i
\(725\) −425.656 + 50.7679i −0.587112 + 0.0700247i
\(726\) 242.850 30.8607i 0.334504 0.0425079i
\(727\) 209.678 + 209.678i 0.288415 + 0.288415i 0.836453 0.548038i \(-0.184625\pi\)
−0.548038 + 0.836453i \(0.684625\pi\)
\(728\) −423.529 + 232.198i −0.581770 + 0.318953i
\(729\) 277.727i 0.380970i
\(730\) −241.734 + 128.417i −0.331143 + 0.175913i
\(731\) 384.609i 0.526141i
\(732\) −11.0263 151.755i −0.0150632 0.207316i
\(733\) −2.42183 + 2.42183i −0.00330400 + 0.00330400i −0.708757 0.705453i \(-0.750744\pi\)
0.705453 + 0.708757i \(0.250744\pi\)
\(734\) −25.8889 56.6041i −0.0352710 0.0771173i
\(735\) 148.025 + 131.419i 0.201394 + 0.178801i
\(736\) −453.646 701.517i −0.616367 0.953148i
\(737\) 522.923 + 711.037i 0.709530 + 0.964772i
\(738\) −641.608 238.894i −0.869387 0.323705i
\(739\) 895.710i 1.21206i 0.795443 + 0.606028i \(0.207238\pi\)
−0.795443 + 0.606028i \(0.792762\pi\)
\(740\) −752.866 + 99.8718i −1.01739 + 0.134962i
\(741\) 428.532 0.578316
\(742\) −208.065 77.4702i −0.280411 0.104407i
\(743\) −1025.20 1025.20i −1.37981 1.37981i −0.844926 0.534883i \(-0.820356\pi\)
−0.534883 0.844926i \(-0.679644\pi\)
\(744\) 109.884 376.592i 0.147693 0.506171i
\(745\) 374.069 22.2288i 0.502106 0.0298373i
\(746\) 46.0036 21.0406i 0.0616671 0.0282046i
\(747\) 318.433 318.433i 0.426282 0.426282i
\(748\) 44.2152 560.292i 0.0591113 0.749054i
\(749\) 469.035i 0.626215i
\(750\) −207.715 + 144.259i −0.276953 + 0.192345i
\(751\) 57.9172i 0.0771201i 0.999256 + 0.0385601i \(0.0122771\pi\)
−0.999256 + 0.0385601i \(0.987723\pi\)
\(752\) 109.592 147.090i 0.145734 0.195599i
\(753\) 172.194 + 172.194i 0.228678 + 0.228678i
\(754\) 599.513 274.199i 0.795111 0.363659i
\(755\) −147.271 + 8.75149i −0.195061 + 0.0115914i
\(756\) −163.211 141.100i −0.215887 0.186640i
\(757\) 438.030 438.030i 0.578639 0.578639i −0.355889 0.934528i \(-0.615822\pi\)
0.934528 + 0.355889i \(0.115822\pi\)
\(758\) 973.330 + 362.406i 1.28408 + 0.478109i
\(759\) 43.7801 287.183i 0.0576813 0.378370i
\(760\) 746.442 468.866i 0.982161 0.616929i
\(761\) 488.849i 0.642377i 0.947015 + 0.321189i \(0.104082\pi\)
−0.947015 + 0.321189i \(0.895918\pi\)
\(762\) −12.1621 + 32.6642i −0.0159607 + 0.0428664i
\(763\) 64.2897 64.2897i 0.0842591 0.0842591i
\(764\) 618.404 715.310i 0.809430 0.936269i
\(765\) 338.234 380.972i 0.442135 0.498002i
\(766\) −493.296 + 225.618i −0.643989 + 0.294540i
\(767\) 1399.90 1399.90i 1.82517 1.82517i
\(768\) 123.079 227.847i 0.160259 0.296676i
\(769\) 524.235 0.681710 0.340855 0.940116i \(-0.389283\pi\)
0.340855 + 0.940116i \(0.389283\pi\)
\(770\) −326.044 + 114.248i −0.423433 + 0.148374i
\(771\) 338.564i 0.439123i
\(772\) 767.870 55.7923i 0.994651 0.0722698i