Properties

Label 220.3.i.a.43.5
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.5
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96707 + 0.361417i) q^{2} +(-2.82785 + 2.82785i) q^{3} +(3.73876 - 1.42187i) q^{4} +(3.27930 - 3.77442i) q^{5} +(4.54056 - 6.58463i) q^{6} +(-1.01424 + 1.01424i) q^{7} +(-6.84052 + 4.14816i) q^{8} -6.99351i q^{9} +(-5.08648 + 8.60974i) q^{10} +(-9.38106 + 5.74419i) q^{11} +(-6.55182 + 14.5935i) q^{12} +(-6.58788 + 6.58788i) q^{13} +(1.62853 - 2.36166i) q^{14} +(1.40012 + 19.9469i) q^{15} +(11.9566 - 10.6320i) q^{16} +(-4.97600 - 4.97600i) q^{17} +(2.52757 + 13.7567i) q^{18} -28.5444i q^{19} +(6.89378 - 18.7743i) q^{20} -5.73627i q^{21} +(16.3772 - 14.6897i) q^{22} +(-6.64492 + 6.64492i) q^{23} +(7.61359 - 31.0744i) q^{24} +(-3.49242 - 24.7549i) q^{25} +(10.5779 - 15.3398i) q^{26} +(-5.67406 - 5.67406i) q^{27} +(-2.34989 + 5.23413i) q^{28} -9.10097 q^{29} +(-9.96327 - 38.7309i) q^{30} -34.1714i q^{31} +(-19.6769 + 25.2353i) q^{32} +(10.2846 - 42.7720i) q^{33} +(11.5866 + 7.98975i) q^{34} +(0.502170 + 7.15418i) q^{35} +(-9.94383 - 26.1470i) q^{36} +(0.442813 - 0.442813i) q^{37} +(10.3164 + 56.1489i) q^{38} -37.2591i q^{39} +(-6.77521 + 39.4220i) q^{40} -37.1634i q^{41} +(2.07318 + 11.2837i) q^{42} +(24.3777 + 24.3777i) q^{43} +(-26.9060 + 34.8147i) q^{44} +(-26.3964 - 22.9338i) q^{45} +(10.6695 - 15.4726i) q^{46} +(-38.0953 - 38.0953i) q^{47} +(-3.74569 + 63.8773i) q^{48} +46.9426i q^{49} +(15.8167 + 47.4324i) q^{50} +28.1428 q^{51} +(-15.2634 + 33.9975i) q^{52} +(-66.2966 - 66.2966i) q^{53} +(13.2120 + 9.11060i) q^{54} +(-9.08235 + 54.2449i) q^{55} +(2.73071 - 11.1452i) q^{56} +(80.7193 + 80.7193i) q^{57} +(17.9023 - 3.28924i) q^{58} -83.9109 q^{59} +(33.5965 + 72.5857i) q^{60} -8.08430i q^{61} +(12.3501 + 67.2177i) q^{62} +(7.09312 + 7.09312i) q^{63} +(29.5855 - 56.7512i) q^{64} +(3.26177 + 46.4690i) q^{65} +(-4.77196 + 87.8526i) q^{66} +(-3.95289 - 3.95289i) q^{67} +(-25.6793 - 11.5288i) q^{68} -37.5817i q^{69} +(-3.57345 - 13.8913i) q^{70} +42.6559i q^{71} +(29.0102 + 47.8392i) q^{72} +(93.4981 - 93.4981i) q^{73} +(-0.711006 + 1.03109i) q^{74} +(79.8792 + 60.1271i) q^{75} +(-40.5863 - 106.720i) q^{76} +(3.68868 - 15.3407i) q^{77} +(13.4661 + 73.2914i) q^{78} +41.4724i q^{79} +(-0.920447 - 79.9947i) q^{80} +95.0324 q^{81} +(13.4315 + 73.1032i) q^{82} +(-65.0178 - 65.0178i) q^{83} +(-8.15620 - 21.4465i) q^{84} +(-35.0993 + 2.46371i) q^{85} +(-56.7632 - 39.1422i) q^{86} +(25.7362 - 25.7362i) q^{87} +(40.3435 - 78.2074i) q^{88} +125.157i q^{89} +(60.2123 + 35.5724i) q^{90} -13.3634i q^{91} +(-15.3956 + 34.2919i) q^{92} +(96.6318 + 96.6318i) q^{93} +(88.7045 + 61.1680i) q^{94} +(-107.738 - 93.6055i) q^{95} +(-15.7183 - 127.005i) q^{96} +(-62.8186 + 62.8186i) q^{97} +(-16.9658 - 92.3396i) q^{98} +(40.1720 + 65.6065i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96707 + 0.361417i −0.983537 + 0.180708i
\(3\) −2.82785 + 2.82785i −0.942618 + 0.942618i −0.998441 0.0558229i \(-0.982222\pi\)
0.0558229 + 0.998441i \(0.482222\pi\)
\(4\) 3.73876 1.42187i 0.934689 0.355467i
\(5\) 3.27930 3.77442i 0.655859 0.754883i
\(6\) 4.54056 6.58463i 0.756760 1.09744i
\(7\) −1.01424 + 1.01424i −0.144892 + 0.144892i −0.775832 0.630940i \(-0.782669\pi\)
0.630940 + 0.775832i \(0.282669\pi\)
\(8\) −6.84052 + 4.14816i −0.855065 + 0.518521i
\(9\) 6.99351i 0.777057i
\(10\) −5.08648 + 8.60974i −0.508648 + 0.860974i
\(11\) −9.38106 + 5.74419i −0.852824 + 0.522199i
\(12\) −6.55182 + 14.5935i −0.545985 + 1.21612i
\(13\) −6.58788 + 6.58788i −0.506760 + 0.506760i −0.913530 0.406771i \(-0.866655\pi\)
0.406771 + 0.913530i \(0.366655\pi\)
\(14\) 1.62853 2.36166i 0.116323 0.168690i
\(15\) 1.40012 + 19.9469i 0.0933414 + 1.32979i
\(16\) 11.9566 10.6320i 0.747287 0.664501i
\(17\) −4.97600 4.97600i −0.292706 0.292706i 0.545442 0.838148i \(-0.316362\pi\)
−0.838148 + 0.545442i \(0.816362\pi\)
\(18\) 2.52757 + 13.7567i 0.140421 + 0.764264i
\(19\) 28.5444i 1.50234i −0.660111 0.751168i \(-0.729491\pi\)
0.660111 0.751168i \(-0.270509\pi\)
\(20\) 6.89378 18.7743i 0.344689 0.938717i
\(21\) 5.73627i 0.273155i
\(22\) 16.3772 14.6897i 0.744418 0.667714i
\(23\) −6.64492 + 6.64492i −0.288910 + 0.288910i −0.836649 0.547739i \(-0.815489\pi\)
0.547739 + 0.836649i \(0.315489\pi\)
\(24\) 7.61359 31.0744i 0.317233 1.29477i
\(25\) −3.49242 24.7549i −0.139697 0.990194i
\(26\) 10.5779 15.3398i 0.406841 0.589993i
\(27\) −5.67406 5.67406i −0.210150 0.210150i
\(28\) −2.34989 + 5.23413i −0.0839247 + 0.186933i
\(29\) −9.10097 −0.313826 −0.156913 0.987612i \(-0.550154\pi\)
−0.156913 + 0.987612i \(0.550154\pi\)
\(30\) −9.96327 38.7309i −0.332109 1.29103i
\(31\) 34.1714i 1.10230i −0.834405 0.551152i \(-0.814188\pi\)
0.834405 0.551152i \(-0.185812\pi\)
\(32\) −19.6769 + 25.2353i −0.614903 + 0.788603i
\(33\) 10.2846 42.7720i 0.311653 1.29612i
\(34\) 11.5866 + 7.98975i 0.340781 + 0.234993i
\(35\) 0.502170 + 7.15418i 0.0143477 + 0.204405i
\(36\) −9.94383 26.1470i −0.276218 0.726306i
\(37\) 0.442813 0.442813i 0.0119679 0.0119679i −0.701098 0.713065i \(-0.747306\pi\)
0.713065 + 0.701098i \(0.247306\pi\)
\(38\) 10.3164 + 56.1489i 0.271485 + 1.47760i
\(39\) 37.2591i 0.955361i
\(40\) −6.77521 + 39.4220i −0.169380 + 0.985551i
\(41\) 37.1634i 0.906425i −0.891403 0.453212i \(-0.850278\pi\)
0.891403 0.453212i \(-0.149722\pi\)
\(42\) 2.07318 + 11.2837i 0.0493615 + 0.268658i
\(43\) 24.3777 + 24.3777i 0.566923 + 0.566923i 0.931265 0.364342i \(-0.118706\pi\)
−0.364342 + 0.931265i \(0.618706\pi\)
\(44\) −26.9060 + 34.8147i −0.611501 + 0.791244i
\(45\) −26.3964 22.9338i −0.586587 0.509640i
\(46\) 10.6695 15.4726i 0.231945 0.336362i
\(47\) −38.0953 38.0953i −0.810538 0.810538i 0.174176 0.984714i \(-0.444274\pi\)
−0.984714 + 0.174176i \(0.944274\pi\)
\(48\) −3.74569 + 63.8773i −0.0780352 + 1.33078i
\(49\) 46.9426i 0.958013i
\(50\) 15.8167 + 47.4324i 0.316333 + 0.948648i
\(51\) 28.1428 0.551820
\(52\) −15.2634 + 33.9975i −0.293527 + 0.653799i
\(53\) −66.2966 66.2966i −1.25088 1.25088i −0.955326 0.295553i \(-0.904496\pi\)
−0.295553 0.955326i \(-0.595504\pi\)
\(54\) 13.2120 + 9.11060i 0.244667 + 0.168715i
\(55\) −9.08235 + 54.2449i −0.165134 + 0.986271i
\(56\) 2.73071 11.1452i 0.0487626 0.199022i
\(57\) 80.7193 + 80.7193i 1.41613 + 1.41613i
\(58\) 17.9023 3.28924i 0.308660 0.0567111i
\(59\) −83.9109 −1.42222 −0.711109 0.703081i \(-0.751807\pi\)
−0.711109 + 0.703081i \(0.751807\pi\)
\(60\) 33.5965 + 72.5857i 0.559941 + 1.20976i
\(61\) 8.08430i 0.132530i −0.997802 0.0662648i \(-0.978892\pi\)
0.997802 0.0662648i \(-0.0211082\pi\)
\(62\) 12.3501 + 67.2177i 0.199196 + 1.08416i
\(63\) 7.09312 + 7.09312i 0.112589 + 0.112589i
\(64\) 29.5855 56.7512i 0.462273 0.886738i
\(65\) 3.26177 + 46.4690i 0.0501812 + 0.714907i
\(66\) −4.77196 + 87.8526i −0.0723025 + 1.33110i
\(67\) −3.95289 3.95289i −0.0589984 0.0589984i 0.676992 0.735990i \(-0.263283\pi\)
−0.735990 + 0.676992i \(0.763283\pi\)
\(68\) −25.6793 11.5288i −0.377636 0.169542i
\(69\) 37.5817i 0.544663i
\(70\) −3.57345 13.8913i −0.0510492 0.198447i
\(71\) 42.6559i 0.600787i 0.953815 + 0.300394i \(0.0971180\pi\)
−0.953815 + 0.300394i \(0.902882\pi\)
\(72\) 29.0102 + 47.8392i 0.402920 + 0.664434i
\(73\) 93.4981 93.4981i 1.28080 1.28080i 0.340580 0.940215i \(-0.389376\pi\)
0.940215 0.340580i \(-0.110624\pi\)
\(74\) −0.711006 + 1.03109i −0.00960818 + 0.0139336i
\(75\) 79.8792 + 60.1271i 1.06506 + 0.801694i
\(76\) −40.5863 106.720i −0.534030 1.40422i
\(77\) 3.68868 15.3407i 0.0479049 0.199230i
\(78\) 13.4661 + 73.2914i 0.172642 + 0.939633i
\(79\) 41.4724i 0.524968i 0.964936 + 0.262484i \(0.0845416\pi\)
−0.964936 + 0.262484i \(0.915458\pi\)
\(80\) −0.920447 79.9947i −0.0115056 0.999934i
\(81\) 95.0324 1.17324
\(82\) 13.4315 + 73.1032i 0.163799 + 0.891502i
\(83\) −65.0178 65.0178i −0.783347 0.783347i 0.197047 0.980394i \(-0.436865\pi\)
−0.980394 + 0.197047i \(0.936865\pi\)
\(84\) −8.15620 21.4465i −0.0970977 0.255315i
\(85\) −35.0993 + 2.46371i −0.412933 + 0.0289848i
\(86\) −56.7632 39.1422i −0.660037 0.455142i
\(87\) 25.7362 25.7362i 0.295818 0.295818i
\(88\) 40.3435 78.2074i 0.458449 0.888721i
\(89\) 125.157i 1.40626i 0.711063 + 0.703128i \(0.248214\pi\)
−0.711063 + 0.703128i \(0.751786\pi\)
\(90\) 60.2123 + 35.5724i 0.669026 + 0.395248i
\(91\) 13.3634i 0.146851i
\(92\) −15.3956 + 34.2919i −0.167343 + 0.372738i
\(93\) 96.6318 + 96.6318i 1.03905 + 1.03905i
\(94\) 88.7045 + 61.1680i 0.943665 + 0.650723i
\(95\) −107.738 93.6055i −1.13409 0.985321i
\(96\) −15.7183 127.005i −0.163732 1.32297i
\(97\) −62.8186 + 62.8186i −0.647614 + 0.647614i −0.952416 0.304802i \(-0.901410\pi\)
0.304802 + 0.952416i \(0.401410\pi\)
\(98\) −16.9658 92.3396i −0.173121 0.942241i
\(99\) 40.1720 + 65.6065i 0.405778 + 0.662692i
\(100\) −48.2554 87.5866i −0.482554 0.875866i
\(101\) 162.543i 1.60933i 0.593728 + 0.804666i \(0.297656\pi\)
−0.593728 + 0.804666i \(0.702344\pi\)
\(102\) −55.3589 + 10.1713i −0.542735 + 0.0997184i
\(103\) 16.6743 16.6743i 0.161887 0.161887i −0.621515 0.783402i \(-0.713483\pi\)
0.783402 + 0.621515i \(0.213483\pi\)
\(104\) 17.7369 72.3921i 0.170547 0.696078i
\(105\) −21.6510 18.8109i −0.206200 0.179152i
\(106\) 154.371 + 106.450i 1.45633 + 1.00424i
\(107\) −92.0951 + 92.0951i −0.860702 + 0.860702i −0.991420 0.130718i \(-0.958272\pi\)
0.130718 + 0.991420i \(0.458272\pi\)
\(108\) −29.2817 13.1462i −0.271127 0.121724i
\(109\) −145.701 −1.33671 −0.668354 0.743844i \(-0.733001\pi\)
−0.668354 + 0.743844i \(0.733001\pi\)
\(110\) −1.73937 109.986i −0.0158124 0.999875i
\(111\) 2.50442i 0.0225623i
\(112\) −1.34344 + 22.9104i −0.0119950 + 0.204557i
\(113\) −3.96020 3.96020i −0.0350460 0.0350460i 0.689367 0.724413i \(-0.257889\pi\)
−0.724413 + 0.689367i \(0.757889\pi\)
\(114\) −187.954 129.608i −1.64872 1.13691i
\(115\) 3.29002 + 46.8714i 0.0286089 + 0.407577i
\(116\) −34.0263 + 12.9404i −0.293330 + 0.111555i
\(117\) 46.0724 + 46.0724i 0.393781 + 0.393781i
\(118\) 165.059 30.3268i 1.39880 0.257007i
\(119\) 10.0938 0.0848215
\(120\) −92.3204 130.639i −0.769337 1.08866i
\(121\) 55.0087 107.773i 0.454617 0.890687i
\(122\) 2.92180 + 15.9024i 0.0239492 + 0.130348i
\(123\) 105.093 + 105.093i 0.854412 + 0.854412i
\(124\) −48.5872 127.759i −0.391832 1.03031i
\(125\) −104.888 67.9967i −0.839102 0.543974i
\(126\) −16.5163 11.3891i −0.131081 0.0903898i
\(127\) 70.4189 70.4189i 0.554479 0.554479i −0.373251 0.927730i \(-0.621757\pi\)
0.927730 + 0.373251i \(0.121757\pi\)
\(128\) −37.6859 + 122.326i −0.294421 + 0.955676i
\(129\) −137.873 −1.06878
\(130\) −23.2108 90.2290i −0.178545 0.694070i
\(131\) 241.083 1.84033 0.920163 0.391535i \(-0.128056\pi\)
0.920163 + 0.391535i \(0.128056\pi\)
\(132\) −22.3646 174.537i −0.169429 1.32225i
\(133\) 28.9510 + 28.9510i 0.217676 + 0.217676i
\(134\) 9.20427 + 6.34699i 0.0686886 + 0.0473656i
\(135\) −40.0232 + 2.80933i −0.296468 + 0.0208099i
\(136\) 54.6797 + 13.3972i 0.402057 + 0.0985086i
\(137\) −20.2524 + 20.2524i −0.147828 + 0.147828i −0.777147 0.629319i \(-0.783334\pi\)
0.629319 + 0.777147i \(0.283334\pi\)
\(138\) 13.5827 + 73.9260i 0.0984251 + 0.535696i
\(139\) 82.7488i 0.595315i 0.954673 + 0.297658i \(0.0962054\pi\)
−0.954673 + 0.297658i \(0.903795\pi\)
\(140\) 12.0498 + 26.0337i 0.0860699 + 0.185955i
\(141\) 215.456 1.52806
\(142\) −15.4165 83.9072i −0.108567 0.590896i
\(143\) 23.9593 99.6433i 0.167548 0.696806i
\(144\) −74.3551 83.6185i −0.516355 0.580684i
\(145\) −29.8448 + 34.3508i −0.205826 + 0.236902i
\(146\) −150.126 + 217.709i −1.02826 + 1.49116i
\(147\) −132.747 132.747i −0.903040 0.903040i
\(148\) 1.02595 2.28519i 0.00693209 0.0154405i
\(149\) −163.982 −1.10055 −0.550274 0.834984i \(-0.685477\pi\)
−0.550274 + 0.834984i \(0.685477\pi\)
\(150\) −178.859 89.4047i −1.19239 0.596031i
\(151\) 21.7413 0.143982 0.0719910 0.997405i \(-0.477065\pi\)
0.0719910 + 0.997405i \(0.477065\pi\)
\(152\) 118.407 + 195.258i 0.778992 + 1.28459i
\(153\) −34.7997 + 34.7997i −0.227449 + 0.227449i
\(154\) −1.71152 + 31.5094i −0.0111138 + 0.204607i
\(155\) −128.977 112.058i −0.832111 0.722957i
\(156\) −52.9775 139.303i −0.339599 0.892966i
\(157\) −26.3279 + 26.3279i −0.167694 + 0.167694i −0.785965 0.618271i \(-0.787833\pi\)
0.618271 + 0.785965i \(0.287833\pi\)
\(158\) −14.9888 81.5794i −0.0948660 0.516325i
\(159\) 374.954 2.35820
\(160\) 30.7220 + 157.023i 0.192013 + 0.981392i
\(161\) 13.4791i 0.0837214i
\(162\) −186.936 + 34.3463i −1.15392 + 0.212014i
\(163\) 50.1844 50.1844i 0.307879 0.307879i −0.536207 0.844086i \(-0.680143\pi\)
0.844086 + 0.536207i \(0.180143\pi\)
\(164\) −52.8414 138.945i −0.322204 0.847225i
\(165\) −127.713 179.080i −0.774019 1.08533i
\(166\) 151.393 + 104.396i 0.912008 + 0.628894i
\(167\) 141.192 141.192i 0.845459 0.845459i −0.144103 0.989563i \(-0.546030\pi\)
0.989563 + 0.144103i \(0.0460298\pi\)
\(168\) 23.7950 + 39.2390i 0.141637 + 0.233566i
\(169\) 82.1998i 0.486389i
\(170\) 68.1524 17.5318i 0.400897 0.103128i
\(171\) −199.625 −1.16740
\(172\) 125.804 + 56.4804i 0.731419 + 0.328375i
\(173\) −85.8584 + 85.8584i −0.496291 + 0.496291i −0.910281 0.413990i \(-0.864135\pi\)
0.413990 + 0.910281i \(0.364135\pi\)
\(174\) −41.3235 + 59.9265i −0.237491 + 0.344405i
\(175\) 28.6496 + 21.5653i 0.163712 + 0.123230i
\(176\) −51.0932 + 168.421i −0.290302 + 0.956935i
\(177\) 237.288 237.288i 1.34061 1.34061i
\(178\) −45.2337 246.193i −0.254122 1.38310i
\(179\) 80.6220 0.450402 0.225201 0.974312i \(-0.427696\pi\)
0.225201 + 0.974312i \(0.427696\pi\)
\(180\) −131.299 48.2117i −0.729436 0.267843i
\(181\) −156.229 −0.863145 −0.431573 0.902078i \(-0.642041\pi\)
−0.431573 + 0.902078i \(0.642041\pi\)
\(182\) 4.82977 + 26.2868i 0.0265372 + 0.144433i
\(183\) 22.8612 + 22.8612i 0.124925 + 0.124925i
\(184\) 17.8905 73.0190i 0.0972310 0.396842i
\(185\) −0.219245 3.12348i −0.00118511 0.0168837i
\(186\) −225.006 155.158i −1.20971 0.834180i
\(187\) 75.2632 + 18.0971i 0.402477 + 0.0967759i
\(188\) −196.595 88.2626i −1.04572 0.469482i
\(189\) 11.5098 0.0608982
\(190\) 245.760 + 145.190i 1.29347 + 0.764160i
\(191\) 140.417i 0.735166i −0.929991 0.367583i \(-0.880185\pi\)
0.929991 0.367583i \(-0.119815\pi\)
\(192\) 76.8208 + 244.147i 0.400108 + 1.27160i
\(193\) 137.765 137.765i 0.713808 0.713808i −0.253522 0.967330i \(-0.581589\pi\)
0.967330 + 0.253522i \(0.0815890\pi\)
\(194\) 100.865 146.272i 0.519923 0.753982i
\(195\) −140.631 122.184i −0.721186 0.626583i
\(196\) 66.7461 + 175.507i 0.340541 + 0.895444i
\(197\) 189.233 + 189.233i 0.960575 + 0.960575i 0.999252 0.0386771i \(-0.0123144\pi\)
−0.0386771 + 0.999252i \(0.512314\pi\)
\(198\) −102.733 114.534i −0.518851 0.578455i
\(199\) 209.413 1.05232 0.526162 0.850384i \(-0.323630\pi\)
0.526162 + 0.850384i \(0.323630\pi\)
\(200\) 126.577 + 154.849i 0.632886 + 0.774245i
\(201\) 22.3564 0.111226
\(202\) −58.7456 319.733i −0.290820 1.58284i
\(203\) 9.23060 9.23060i 0.0454709 0.0454709i
\(204\) 105.219 40.0153i 0.515780 0.196153i
\(205\) −140.270 121.870i −0.684245 0.594487i
\(206\) −26.7733 + 38.8260i −0.129967 + 0.188476i
\(207\) 46.4713 + 46.4713i 0.224499 + 0.224499i
\(208\) −8.72610 + 148.811i −0.0419524 + 0.715438i
\(209\) 163.964 + 267.777i 0.784518 + 1.28123i
\(210\) 49.3878 + 29.1774i 0.235180 + 0.138940i
\(211\) −171.000 −0.810425 −0.405213 0.914223i \(-0.632802\pi\)
−0.405213 + 0.914223i \(0.632802\pi\)
\(212\) −342.132 153.602i −1.61383 0.724537i
\(213\) −120.625 120.625i −0.566313 0.566313i
\(214\) 147.873 214.443i 0.690996 1.00207i
\(215\) 171.953 12.0698i 0.799782 0.0561387i
\(216\) 62.3505 + 15.2766i 0.288660 + 0.0707250i
\(217\) 34.6582 + 34.6582i 0.159715 + 0.159715i
\(218\) 286.605 52.6588i 1.31470 0.241554i
\(219\) 528.798i 2.41460i
\(220\) 43.1723 + 215.722i 0.196238 + 0.980556i
\(221\) 65.5625 0.296663
\(222\) −0.905139 4.92638i −0.00407720 0.0221909i
\(223\) −279.031 + 279.031i −1.25126 + 1.25126i −0.296104 + 0.955156i \(0.595687\pi\)
−0.955156 + 0.296104i \(0.904313\pi\)
\(224\) −5.63755 45.5519i −0.0251676 0.203357i
\(225\) −173.123 + 24.4243i −0.769437 + 0.108552i
\(226\) 9.22128 + 6.35872i 0.0408021 + 0.0281359i
\(227\) −201.011 + 201.011i −0.885513 + 0.885513i −0.994088 0.108575i \(-0.965371\pi\)
0.108575 + 0.994088i \(0.465371\pi\)
\(228\) 416.562 + 187.018i 1.82703 + 0.820253i
\(229\) 313.536i 1.36915i 0.728940 + 0.684577i \(0.240013\pi\)
−0.728940 + 0.684577i \(0.759987\pi\)
\(230\) −23.4118 91.0104i −0.101790 0.395697i
\(231\) 32.9502 + 53.8123i 0.142641 + 0.232954i
\(232\) 62.2554 37.7523i 0.268342 0.162725i
\(233\) −267.874 + 267.874i −1.14967 + 1.14967i −0.163056 + 0.986617i \(0.552135\pi\)
−0.986617 + 0.163056i \(0.947865\pi\)
\(234\) −107.279 73.9764i −0.458458 0.316139i
\(235\) −268.713 + 18.8617i −1.14346 + 0.0802624i
\(236\) −313.722 + 119.310i −1.32933 + 0.505551i
\(237\) −117.278 117.278i −0.494844 0.494844i
\(238\) −19.8552 + 3.64805i −0.0834250 + 0.0153279i
\(239\) 435.146i 1.82069i −0.413847 0.910347i \(-0.635815\pi\)
0.413847 0.910347i \(-0.364185\pi\)
\(240\) 228.816 + 223.610i 0.953401 + 0.931710i
\(241\) 40.2443i 0.166989i −0.996508 0.0834944i \(-0.973392\pi\)
0.996508 0.0834944i \(-0.0266081\pi\)
\(242\) −69.2551 + 231.879i −0.286178 + 0.958176i
\(243\) −217.671 + 217.671i −0.895766 + 0.895766i
\(244\) −11.4948 30.2252i −0.0471098 0.123874i
\(245\) 177.181 + 153.939i 0.723187 + 0.628322i
\(246\) −244.707 168.743i −0.994745 0.685946i
\(247\) 188.047 + 188.047i 0.761323 + 0.761323i
\(248\) 141.749 + 233.750i 0.571567 + 0.942542i
\(249\) 367.722 1.47679
\(250\) 230.897 + 95.8463i 0.923589 + 0.383385i
\(251\) 65.1380i 0.259514i 0.991546 + 0.129757i \(0.0414197\pi\)
−0.991546 + 0.129757i \(0.958580\pi\)
\(252\) 36.6049 + 16.4340i 0.145258 + 0.0652142i
\(253\) 24.1668 100.506i 0.0955208 0.397257i
\(254\) −113.069 + 163.970i −0.445152 + 0.645550i
\(255\) 92.2886 106.223i 0.361916 0.416559i
\(256\) 29.9202 254.246i 0.116876 0.993147i
\(257\) 284.539 284.539i 1.10716 1.10716i 0.113633 0.993523i \(-0.463751\pi\)
0.993523 0.113633i \(-0.0362489\pi\)
\(258\) 271.206 49.8296i 1.05119 0.193138i
\(259\) 0.898241i 0.00346811i
\(260\) 78.2677 + 169.098i 0.301029 + 0.650378i
\(261\) 63.6477i 0.243861i
\(262\) −474.227 + 87.1313i −1.81003 + 0.332562i
\(263\) 136.916 + 136.916i 0.520592 + 0.520592i 0.917750 0.397158i \(-0.130003\pi\)
−0.397158 + 0.917750i \(0.630003\pi\)
\(264\) 107.074 + 335.245i 0.405581 + 1.26987i
\(265\) −467.637 + 32.8246i −1.76467 + 0.123867i
\(266\) −67.4120 46.4853i −0.253429 0.174757i
\(267\) −353.925 353.925i −1.32556 1.32556i
\(268\) −20.3994 9.15841i −0.0761171 0.0341732i
\(269\) 436.064i 1.62106i −0.585700 0.810528i \(-0.699180\pi\)
0.585700 0.810528i \(-0.300820\pi\)
\(270\) 77.7133 19.9912i 0.287827 0.0740415i
\(271\) 154.250 0.569189 0.284594 0.958648i \(-0.408141\pi\)
0.284594 + 0.958648i \(0.408141\pi\)
\(272\) −112.401 6.59106i −0.413239 0.0242318i
\(273\) 37.7898 + 37.7898i 0.138424 + 0.138424i
\(274\) 32.5184 47.1575i 0.118680 0.172108i
\(275\) 174.959 + 212.166i 0.636215 + 0.771512i
\(276\) −53.4362 140.509i −0.193609 0.509090i
\(277\) −0.735422 0.735422i −0.00265495 0.00265495i 0.705778 0.708433i \(-0.250598\pi\)
−0.708433 + 0.705778i \(0.750598\pi\)
\(278\) −29.9068 162.773i −0.107578 0.585514i
\(279\) −238.978 −0.856553
\(280\) −33.1118 46.8553i −0.118257 0.167340i
\(281\) 466.090i 1.65869i 0.558741 + 0.829343i \(0.311285\pi\)
−0.558741 + 0.829343i \(0.688715\pi\)
\(282\) −423.817 + 77.8693i −1.50290 + 0.276132i
\(283\) −310.695 310.695i −1.09786 1.09786i −0.994660 0.103203i \(-0.967091\pi\)
−0.103203 0.994660i \(-0.532909\pi\)
\(284\) 60.6510 + 159.480i 0.213560 + 0.561549i
\(285\) 569.371 39.9656i 1.99779 0.140230i
\(286\) −11.1170 + 204.665i −0.0388705 + 0.715612i
\(287\) 37.6928 + 37.6928i 0.131334 + 0.131334i
\(288\) 176.483 + 137.611i 0.612789 + 0.477815i
\(289\) 239.479i 0.828647i
\(290\) 46.2919 78.3570i 0.159627 0.270197i
\(291\) 355.283i 1.22091i
\(292\) 216.625 482.508i 0.741866 1.65243i
\(293\) 250.373 250.373i 0.854515 0.854515i −0.136170 0.990685i \(-0.543479\pi\)
0.990685 + 0.136170i \(0.0434795\pi\)
\(294\) 309.100 + 213.146i 1.05136 + 0.724986i
\(295\) −275.169 + 316.715i −0.932776 + 1.07361i
\(296\) −1.19221 + 4.86593i −0.00402774 + 0.0164390i
\(297\) 85.8216 + 20.6359i 0.288962 + 0.0694810i
\(298\) 322.564 59.2657i 1.08243 0.198878i
\(299\) 87.5519i 0.292816i
\(300\) 384.141 + 111.223i 1.28047 + 0.370743i
\(301\) −49.4498 −0.164285
\(302\) −42.7667 + 7.85766i −0.141612 + 0.0260187i
\(303\) −459.647 459.647i −1.51699 1.51699i
\(304\) −303.484 341.293i −0.998304 1.12268i
\(305\) −30.5135 26.5108i −0.100044 0.0869208i
\(306\) 55.8764 81.0308i 0.182603 0.264806i
\(307\) −182.250 + 182.250i −0.593647 + 0.593647i −0.938615 0.344967i \(-0.887890\pi\)
0.344967 + 0.938615i \(0.387890\pi\)
\(308\) −8.02134 62.5999i −0.0260433 0.203246i
\(309\) 94.3052i 0.305195i
\(310\) 294.207 + 173.812i 0.949056 + 0.560685i
\(311\) 176.904i 0.568824i −0.958702 0.284412i \(-0.908202\pi\)
0.958702 0.284412i \(-0.0917984\pi\)
\(312\) 154.557 + 254.872i 0.495375 + 0.816896i
\(313\) 2.62455 + 2.62455i 0.00838513 + 0.00838513i 0.711287 0.702902i \(-0.248113\pi\)
−0.702902 + 0.711287i \(0.748113\pi\)
\(314\) 42.2736 61.3043i 0.134629 0.195237i
\(315\) 50.0328 3.51193i 0.158834 0.0111490i
\(316\) 58.9683 + 155.055i 0.186608 + 0.490682i
\(317\) 27.4855 27.4855i 0.0867050 0.0867050i −0.662424 0.749129i \(-0.730472\pi\)
0.749129 + 0.662424i \(0.230472\pi\)
\(318\) −737.562 + 135.515i −2.31938 + 0.426147i
\(319\) 85.3767 52.2776i 0.267639 0.163880i
\(320\) −117.183 297.772i −0.366197 0.930537i
\(321\) 520.863i 1.62263i
\(322\) 4.87159 + 26.5145i 0.0151292 + 0.0823431i
\(323\) −142.037 + 142.037i −0.439742 + 0.439742i
\(324\) 355.303 135.123i 1.09661 0.417048i
\(325\) 186.090 + 140.074i 0.572583 + 0.430998i
\(326\) −80.5788 + 116.854i −0.247174 + 0.358447i
\(327\) 412.021 412.021i 1.26000 1.26000i
\(328\) 154.160 + 254.217i 0.470000 + 0.775052i
\(329\) 77.2758 0.234881
\(330\) 315.944 + 306.106i 0.957405 + 0.927595i
\(331\) 20.1934i 0.0610072i −0.999535 0.0305036i \(-0.990289\pi\)
0.999535 0.0305036i \(-0.00971110\pi\)
\(332\) −335.533 150.639i −1.01064 0.453732i
\(333\) −3.09682 3.09682i −0.00929975 0.00929975i
\(334\) −226.705 + 328.763i −0.678759 + 0.984322i
\(335\) −27.8826 + 1.95715i −0.0832315 + 0.00584223i
\(336\) −60.9881 68.5862i −0.181512 0.204126i
\(337\) −378.683 378.683i −1.12369 1.12369i −0.991182 0.132508i \(-0.957697\pi\)
−0.132508 0.991182i \(-0.542303\pi\)
\(338\) −29.7084 161.693i −0.0878946 0.478382i
\(339\) 22.3977 0.0660700
\(340\) −127.725 + 59.1177i −0.375660 + 0.173876i
\(341\) 196.287 + 320.564i 0.575622 + 0.940071i
\(342\) 392.678 72.1479i 1.14818 0.210959i
\(343\) −97.3092 97.3092i −0.283700 0.283700i
\(344\) −267.879 65.6334i −0.778717 0.190795i
\(345\) −141.849 123.242i −0.411157 0.357222i
\(346\) 137.859 199.920i 0.398437 0.577805i
\(347\) −235.055 + 235.055i −0.677391 + 0.677391i −0.959409 0.282018i \(-0.908996\pi\)
0.282018 + 0.959409i \(0.408996\pi\)
\(348\) 59.6279 132.815i 0.171345 0.381652i
\(349\) −235.716 −0.675404 −0.337702 0.941253i \(-0.609650\pi\)
−0.337702 + 0.941253i \(0.609650\pi\)
\(350\) −64.1500 32.0661i −0.183286 0.0916173i
\(351\) 74.7601 0.212992
\(352\) 39.6341 349.762i 0.112597 0.993641i
\(353\) −367.715 367.715i −1.04168 1.04168i −0.999093 0.0425925i \(-0.986438\pi\)
−0.0425925 0.999093i \(-0.513562\pi\)
\(354\) −381.003 + 552.522i −1.07628 + 1.56080i
\(355\) 161.001 + 139.881i 0.453524 + 0.394032i
\(356\) 177.956 + 467.931i 0.499877 + 1.31441i
\(357\) −28.5437 + 28.5437i −0.0799542 + 0.0799542i
\(358\) −158.589 + 29.1381i −0.442987 + 0.0813915i
\(359\) 235.587i 0.656230i 0.944638 + 0.328115i \(0.106413\pi\)
−0.944638 + 0.328115i \(0.893587\pi\)
\(360\) 275.698 + 47.3825i 0.765829 + 0.131618i
\(361\) −453.781 −1.25701
\(362\) 307.314 56.4639i 0.848935 0.155978i
\(363\) 149.210 + 460.323i 0.411047 + 1.26811i
\(364\) −19.0010 49.9626i −0.0522006 0.137260i
\(365\) −46.2926 659.509i −0.126829 1.80687i
\(366\) −53.2321 36.7073i −0.145443 0.100293i
\(367\) 225.118 + 225.118i 0.613401 + 0.613401i 0.943831 0.330429i \(-0.107194\pi\)
−0.330429 + 0.943831i \(0.607194\pi\)
\(368\) −8.80166 + 150.100i −0.0239176 + 0.407879i
\(369\) −259.903 −0.704343
\(370\) 1.56015 + 6.06487i 0.00421661 + 0.0163915i
\(371\) 134.482 0.362485
\(372\) 498.680 + 223.885i 1.34054 + 0.601842i
\(373\) 273.487 273.487i 0.733209 0.733209i −0.238045 0.971254i \(-0.576507\pi\)
0.971254 + 0.238045i \(0.0765066\pi\)
\(374\) −154.589 8.39693i −0.413339 0.0224517i
\(375\) 488.892 104.323i 1.30371 0.278194i
\(376\) 418.617 + 102.566i 1.11334 + 0.272782i
\(377\) 59.9560 59.9560i 0.159035 0.159035i
\(378\) −22.6406 + 4.15982i −0.0598957 + 0.0110048i
\(379\) 72.4143 0.191067 0.0955334 0.995426i \(-0.469544\pi\)
0.0955334 + 0.995426i \(0.469544\pi\)
\(380\) −535.902 196.779i −1.41027 0.517838i
\(381\) 398.269i 1.04532i
\(382\) 50.7490 + 276.210i 0.132851 + 0.723063i
\(383\) 451.049 451.049i 1.17767 1.17767i 0.197338 0.980336i \(-0.436770\pi\)
0.980336 0.197338i \(-0.0632295\pi\)
\(384\) −239.351 452.492i −0.623310 1.17836i
\(385\) −45.8058 64.2293i −0.118976 0.166829i
\(386\) −221.203 + 320.784i −0.573065 + 0.831047i
\(387\) 170.486 170.486i 0.440531 0.440531i
\(388\) −145.544 + 324.183i −0.375113 + 0.835523i
\(389\) 49.7514i 0.127896i 0.997953 + 0.0639478i \(0.0203691\pi\)
−0.997953 + 0.0639478i \(0.979631\pi\)
\(390\) 320.791 + 189.518i 0.822542 + 0.485943i
\(391\) 66.1303 0.169131
\(392\) −194.726 321.112i −0.496749 0.819163i
\(393\) −681.747 + 681.747i −1.73472 + 1.73472i
\(394\) −440.628 303.844i −1.11834 0.771177i
\(395\) 156.534 + 136.000i 0.396289 + 0.344305i
\(396\) 243.477 + 188.168i 0.614841 + 0.475171i
\(397\) 195.266 195.266i 0.491855 0.491855i −0.417036 0.908890i \(-0.636931\pi\)
0.908890 + 0.417036i \(0.136931\pi\)
\(398\) −411.930 + 75.6852i −1.03500 + 0.190164i
\(399\) −163.738 −0.410371
\(400\) −304.952 258.852i −0.762379 0.647131i
\(401\) 29.4592 0.0734643 0.0367322 0.999325i \(-0.488305\pi\)
0.0367322 + 0.999325i \(0.488305\pi\)
\(402\) −43.9767 + 8.07997i −0.109395 + 0.0200994i
\(403\) 225.117 + 225.117i 0.558603 + 0.558603i
\(404\) 231.114 + 607.707i 0.572064 + 1.50423i
\(405\) 311.640 358.692i 0.769480 0.885659i
\(406\) −14.8212 + 21.4934i −0.0365054 + 0.0529393i
\(407\) −1.61046 + 6.69766i −0.00395689 + 0.0164562i
\(408\) −192.511 + 116.741i −0.471842 + 0.286130i
\(409\) −123.288 −0.301437 −0.150719 0.988577i \(-0.548159\pi\)
−0.150719 + 0.988577i \(0.548159\pi\)
\(410\) 319.968 + 189.031i 0.780409 + 0.461051i
\(411\) 114.542i 0.278690i
\(412\) 38.6326 86.0500i 0.0937685 0.208859i
\(413\) 85.1061 85.1061i 0.206068 0.206068i
\(414\) −108.208 74.6170i −0.261372 0.180234i
\(415\) −458.617 + 32.1915i −1.10510 + 0.0775699i
\(416\) −36.6179 295.876i −0.0880238 0.711240i
\(417\) −234.001 234.001i −0.561155 0.561155i
\(418\) −419.309 467.477i −1.00313 1.11837i
\(419\) −610.564 −1.45719 −0.728596 0.684943i \(-0.759827\pi\)
−0.728596 + 0.684943i \(0.759827\pi\)
\(420\) −107.695 39.5445i −0.256416 0.0941537i
\(421\) −668.258 −1.58731 −0.793656 0.608367i \(-0.791825\pi\)
−0.793656 + 0.608367i \(0.791825\pi\)
\(422\) 336.369 61.8021i 0.797083 0.146451i
\(423\) −266.420 + 266.420i −0.629834 + 0.629834i
\(424\) 728.512 + 178.494i 1.71819 + 0.420977i
\(425\) −105.802 + 140.558i −0.248946 + 0.330726i
\(426\) 280.873 + 193.682i 0.659327 + 0.454652i
\(427\) 8.19945 + 8.19945i 0.0192025 + 0.0192025i
\(428\) −213.374 + 475.268i −0.498538 + 1.11044i
\(429\) 214.023 + 349.530i 0.498888 + 0.814755i
\(430\) −333.882 + 85.8890i −0.776471 + 0.199742i
\(431\) −457.041 −1.06042 −0.530210 0.847867i \(-0.677887\pi\)
−0.530210 + 0.847867i \(0.677887\pi\)
\(432\) −128.169 7.51569i −0.296688 0.0173974i
\(433\) 228.327 + 228.327i 0.527314 + 0.527314i 0.919770 0.392457i \(-0.128375\pi\)
−0.392457 + 0.919770i \(0.628375\pi\)
\(434\) −80.7012 55.6491i −0.185947 0.128224i
\(435\) −12.7425 181.536i −0.0292930 0.417324i
\(436\) −544.741 + 207.168i −1.24941 + 0.475155i
\(437\) 189.675 + 189.675i 0.434039 + 0.434039i
\(438\) −191.116 1040.18i −0.436339 2.37485i
\(439\) 114.601i 0.261051i 0.991445 + 0.130525i \(0.0416664\pi\)
−0.991445 + 0.130525i \(0.958334\pi\)
\(440\) −162.889 408.739i −0.370202 0.928951i
\(441\) 328.294 0.744430
\(442\) −128.966 + 23.6954i −0.291779 + 0.0536095i
\(443\) 315.936 315.936i 0.713173 0.713173i −0.254025 0.967198i \(-0.581754\pi\)
0.967198 + 0.254025i \(0.0817545\pi\)
\(444\) 3.56095 + 9.36342i 0.00802016 + 0.0210888i
\(445\) 472.394 + 410.426i 1.06156 + 0.922306i
\(446\) 448.028 649.721i 1.00455 1.45677i
\(447\) 463.716 463.716i 1.03740 1.03740i
\(448\) 27.5527 + 87.5664i 0.0615015 + 0.195461i
\(449\) 27.7842i 0.0618802i −0.999521 0.0309401i \(-0.990150\pi\)
0.999521 0.0309401i \(-0.00985012\pi\)
\(450\) 331.719 110.614i 0.737153 0.245809i
\(451\) 213.474 + 348.632i 0.473334 + 0.773021i
\(452\) −20.4371 9.17534i −0.0452148 0.0202994i
\(453\) −61.4811 + 61.4811i −0.135720 + 0.135720i
\(454\) 322.755 468.053i 0.710915 1.03095i
\(455\) −50.4391 43.8226i −0.110855 0.0963135i
\(456\) −886.999 217.325i −1.94517 0.476590i
\(457\) −286.988 286.988i −0.627981 0.627981i 0.319578 0.947560i \(-0.396459\pi\)
−0.947560 + 0.319578i \(0.896459\pi\)
\(458\) −113.317 616.749i −0.247418 1.34661i
\(459\) 56.4683i 0.123025i
\(460\) 78.9454 + 170.563i 0.171620 + 0.370788i
\(461\) 740.355i 1.60598i −0.595995 0.802988i \(-0.703242\pi\)
0.595995 0.802988i \(-0.296758\pi\)
\(462\) −84.2641 93.9439i −0.182390 0.203342i
\(463\) 304.330 304.330i 0.657299 0.657299i −0.297441 0.954740i \(-0.596133\pi\)
0.954740 + 0.297441i \(0.0961331\pi\)
\(464\) −108.817 + 96.7617i −0.234518 + 0.208538i
\(465\) 681.613 47.8441i 1.46583 0.102891i
\(466\) 430.113 623.741i 0.922990 1.33850i
\(467\) 190.747 + 190.747i 0.408451 + 0.408451i 0.881198 0.472747i \(-0.156738\pi\)
−0.472747 + 0.881198i \(0.656738\pi\)
\(468\) 237.762 + 106.745i 0.508039 + 0.228087i
\(469\) 8.01839 0.0170968
\(470\) 521.762 134.220i 1.11013 0.285574i
\(471\) 148.903i 0.316142i
\(472\) 573.994 348.076i 1.21609 0.737450i
\(473\) −368.719 88.6587i −0.779532 0.187439i
\(474\) 273.081 + 188.308i 0.576120 + 0.397275i
\(475\) −706.612 + 99.6889i −1.48760 + 0.209871i
\(476\) 37.7381 14.3520i 0.0792817 0.0301512i
\(477\) −463.646 + 463.646i −0.972004 + 0.972004i
\(478\) 157.269 + 855.964i 0.329014 + 1.79072i
\(479\) 51.0809i 0.106641i −0.998577 0.0533203i \(-0.983020\pi\)
0.998577 0.0533203i \(-0.0169804\pi\)
\(480\) −530.915 357.160i −1.10607 0.744084i
\(481\) 5.83439i 0.0121297i
\(482\) 14.5450 + 79.1635i 0.0301763 + 0.164240i
\(483\) 38.1170 + 38.1170i 0.0789173 + 0.0789173i
\(484\) 52.4250 481.152i 0.108316 0.994117i
\(485\) 31.1026 + 443.104i 0.0641291 + 0.913617i
\(486\) 349.505 506.845i 0.719146 1.04289i
\(487\) −80.6865 80.6865i −0.165681 0.165681i 0.619397 0.785078i \(-0.287377\pi\)
−0.785078 + 0.619397i \(0.787377\pi\)
\(488\) 33.5350 + 55.3008i 0.0687193 + 0.113321i
\(489\) 283.828i 0.580425i
\(490\) −404.164 238.773i −0.824824 0.487291i
\(491\) 292.286 0.595287 0.297643 0.954677i \(-0.403799\pi\)
0.297643 + 0.954677i \(0.403799\pi\)
\(492\) 542.344 + 243.488i 1.10232 + 0.494895i
\(493\) 45.2864 + 45.2864i 0.0918588 + 0.0918588i
\(494\) −437.865 301.939i −0.886367 0.611212i
\(495\) 379.362 + 63.5175i 0.766388 + 0.128318i
\(496\) −363.311 408.574i −0.732483 0.823738i
\(497\) −43.2635 43.2635i −0.0870492 0.0870492i
\(498\) −723.336 + 132.901i −1.45248 + 0.266869i
\(499\) 80.9534 0.162231 0.0811156 0.996705i \(-0.474152\pi\)
0.0811156 + 0.996705i \(0.474152\pi\)
\(500\) −488.832 105.087i −0.977664 0.210173i
\(501\) 798.539i 1.59389i
\(502\) −23.5420 128.131i −0.0468963 0.255241i
\(503\) −341.197 341.197i −0.678323 0.678323i 0.281297 0.959621i \(-0.409235\pi\)
−0.959621 + 0.281297i \(0.909235\pi\)
\(504\) −77.9441 19.0972i −0.154651 0.0378913i
\(505\) 613.503 + 533.025i 1.21486 + 1.05550i
\(506\) −11.2132 + 206.437i −0.0221605 + 0.407979i
\(507\) −232.449 232.449i −0.458479 0.458479i
\(508\) 163.153 363.405i 0.321167 0.715365i
\(509\) 108.383i 0.212933i −0.994316 0.106467i \(-0.966046\pi\)
0.994316 0.106467i \(-0.0339538\pi\)
\(510\) −143.148 + 242.302i −0.280682 + 0.475103i
\(511\) 189.660i 0.371154i
\(512\) 33.0334 + 510.933i 0.0645183 + 0.997917i
\(513\) −161.963 + 161.963i −0.315717 + 0.315717i
\(514\) −456.872 + 662.547i −0.888856 + 1.28900i
\(515\) −8.25577 117.616i −0.0160306 0.228381i
\(516\) −515.474 + 196.037i −0.998980 + 0.379917i
\(517\) 576.201 + 138.548i 1.11451 + 0.267984i
\(518\) −0.324639 1.76691i −0.000626717 0.00341101i
\(519\) 485.590i 0.935626i
\(520\) −215.073 304.342i −0.413602 0.585273i
\(521\) 781.573 1.50014 0.750070 0.661359i \(-0.230020\pi\)
0.750070 + 0.661359i \(0.230020\pi\)
\(522\) −23.0033 125.200i −0.0440677 0.239846i
\(523\) 117.827 + 117.827i 0.225291 + 0.225291i 0.810722 0.585431i \(-0.199075\pi\)
−0.585431 + 0.810722i \(0.699075\pi\)
\(524\) 901.350 342.787i 1.72013 0.654175i
\(525\) −142.000 + 20.0334i −0.270477 + 0.0381589i
\(526\) −318.807 219.840i −0.606097 0.417946i
\(527\) −170.037 + 170.037i −0.322651 + 0.322651i
\(528\) −331.784 620.753i −0.628380 1.17567i
\(529\) 440.690i 0.833062i
\(530\) 908.013 233.580i 1.71323 0.440718i
\(531\) 586.832i 1.10514i
\(532\) 149.405 + 67.0762i 0.280836 + 0.126083i
\(533\) 244.828 + 244.828i 0.459340 + 0.459340i
\(534\) 824.111 + 568.282i 1.54328 + 1.06420i
\(535\) 45.5979 + 649.612i 0.0852298 + 1.21423i
\(536\) 43.4371 + 10.6426i 0.0810393 + 0.0198556i
\(537\) −227.987 + 227.987i −0.424557 + 0.424557i
\(538\) 157.601 + 857.770i 0.292938 + 1.59437i
\(539\) −269.647 440.372i −0.500273 0.817016i
\(540\) −145.643 + 67.4111i −0.269708 + 0.124835i
\(541\) 546.734i 1.01060i −0.862944 0.505299i \(-0.831382\pi\)
0.862944 0.505299i \(-0.168618\pi\)
\(542\) −303.421 + 55.7486i −0.559818 + 0.102857i
\(543\) 441.793 441.793i 0.813616 0.813616i
\(544\) 223.483 27.6585i 0.410814 0.0508428i
\(545\) −477.797 + 549.937i −0.876692 + 1.00906i
\(546\) −87.9932 60.6775i −0.161160 0.111131i
\(547\) 178.497 178.497i 0.326320 0.326320i −0.524865 0.851185i \(-0.675884\pi\)
0.851185 + 0.524865i \(0.175884\pi\)
\(548\) −46.9226 + 104.515i −0.0856251 + 0.190721i
\(549\) −56.5376 −0.102983
\(550\) −420.838 354.113i −0.765159 0.643841i
\(551\) 259.781i 0.471473i
\(552\) 155.895 + 257.079i 0.282419 + 0.465722i
\(553\) −42.0632 42.0632i −0.0760636 0.0760636i
\(554\) 1.71242 + 1.18084i 0.00309102 + 0.00213147i
\(555\) 9.45272 + 8.21274i 0.0170319 + 0.0147977i
\(556\) 117.658 + 309.378i 0.211615 + 0.556434i
\(557\) 22.5628 + 22.5628i 0.0405076 + 0.0405076i 0.727070 0.686563i \(-0.240881\pi\)
−0.686563 + 0.727070i \(0.740881\pi\)
\(558\) 470.088 86.3707i 0.842451 0.154786i
\(559\) −321.194 −0.574588
\(560\) 82.0677 + 80.2006i 0.146549 + 0.143215i
\(561\) −264.009 + 161.657i −0.470605 + 0.288159i
\(562\) −168.453 916.834i −0.299738 1.63138i
\(563\) 631.928 + 631.928i 1.12243 + 1.12243i 0.991375 + 0.131055i \(0.0418364\pi\)
0.131055 + 0.991375i \(0.458164\pi\)
\(564\) 805.537 306.349i 1.42826 0.543173i
\(565\) −27.9341 + 1.96076i −0.0494409 + 0.00347038i
\(566\) 723.451 + 498.870i 1.27818 + 0.881396i
\(567\) −96.3860 + 96.3860i −0.169993 + 0.169993i
\(568\) −176.944 291.788i −0.311520 0.513712i
\(569\) 891.102 1.56608 0.783042 0.621968i \(-0.213667\pi\)
0.783042 + 0.621968i \(0.213667\pi\)
\(570\) −1105.55 + 284.395i −1.93956 + 0.498939i
\(571\) −558.409 −0.977949 −0.488975 0.872298i \(-0.662629\pi\)
−0.488975 + 0.872298i \(0.662629\pi\)
\(572\) −52.1015 406.609i −0.0910865 0.710854i
\(573\) 397.078 + 397.078i 0.692981 + 0.692981i
\(574\) −87.7672 60.5217i −0.152905 0.105438i
\(575\) 187.701 + 141.287i 0.326436 + 0.245717i
\(576\) −396.890 206.906i −0.689045 0.359212i
\(577\) −336.069 + 336.069i −0.582442 + 0.582442i −0.935574 0.353131i \(-0.885117\pi\)
0.353131 + 0.935574i \(0.385117\pi\)
\(578\) 86.5517 + 471.072i 0.149743 + 0.815004i
\(579\) 779.158i 1.34570i
\(580\) −62.7400 + 170.865i −0.108172 + 0.294594i
\(581\) 131.888 0.227002
\(582\) 128.405 + 698.869i 0.220628 + 1.20081i
\(583\) 1002.75 + 241.113i 1.71999 + 0.413572i
\(584\) −251.730 + 1027.42i −0.431045 + 1.75928i
\(585\) 324.981 22.8113i 0.555524 0.0389936i
\(586\) −402.013 + 582.991i −0.686029 + 0.994865i
\(587\) 471.198 + 471.198i 0.802723 + 0.802723i 0.983520 0.180798i \(-0.0578679\pi\)
−0.180798 + 0.983520i \(0.557868\pi\)
\(588\) −685.056 307.560i −1.16506 0.523061i
\(589\) −975.402 −1.65603
\(590\) 426.811 722.451i 0.723409 1.22449i
\(591\) −1070.25 −1.81091
\(592\) 0.586536 10.0025i 0.000990771 0.0168962i
\(593\) 744.232 744.232i 1.25503 1.25503i 0.301591 0.953438i \(-0.402482\pi\)
0.953438 0.301591i \(-0.0975176\pi\)
\(594\) −176.276 9.57491i −0.296760 0.0161194i
\(595\) 33.1004 38.0980i 0.0556310 0.0640303i
\(596\) −613.087 + 233.160i −1.02867 + 0.391208i
\(597\) −592.188 + 592.188i −0.991940 + 0.991940i
\(598\) 31.6427 + 172.221i 0.0529142 + 0.287995i
\(599\) −812.447 −1.35634 −0.678169 0.734906i \(-0.737226\pi\)
−0.678169 + 0.734906i \(0.737226\pi\)
\(600\) −795.832 79.9486i −1.32639 0.133248i
\(601\) 609.203i 1.01365i 0.862049 + 0.506825i \(0.169181\pi\)
−0.862049 + 0.506825i \(0.830819\pi\)
\(602\) 97.2715 17.8720i 0.161581 0.0296877i
\(603\) −27.6446 + 27.6446i −0.0458451 + 0.0458451i
\(604\) 81.2853 30.9132i 0.134578 0.0511808i
\(605\) −226.391 561.046i −0.374200 0.927348i
\(606\) 1070.28 + 738.035i 1.76614 + 1.21788i
\(607\) −442.748 + 442.748i −0.729403 + 0.729403i −0.970501 0.241098i \(-0.922493\pi\)
0.241098 + 0.970501i \(0.422493\pi\)
\(608\) 720.325 + 561.665i 1.18475 + 0.923791i
\(609\) 52.2056i 0.0857234i
\(610\) 69.6038 + 41.1207i 0.114105 + 0.0674109i
\(611\) 501.934 0.821496
\(612\) −80.6271 + 179.588i −0.131744 + 0.293445i
\(613\) −167.994 + 167.994i −0.274052 + 0.274052i −0.830729 0.556677i \(-0.812076\pi\)
0.556677 + 0.830729i \(0.312076\pi\)
\(614\) 292.630 424.367i 0.476597 0.691151i
\(615\) 741.294 52.0333i 1.20536 0.0846070i
\(616\) 38.4032 + 120.240i 0.0623429 + 0.195194i
\(617\) −237.555 + 237.555i −0.385016 + 0.385016i −0.872906 0.487889i \(-0.837767\pi\)
0.487889 + 0.872906i \(0.337767\pi\)
\(618\) −34.0835 185.505i −0.0551513 0.300170i
\(619\) 1135.27 1.83404 0.917019 0.398845i \(-0.130589\pi\)
0.917019 + 0.398845i \(0.130589\pi\)
\(620\) −641.546 235.570i −1.03475 0.379952i
\(621\) 75.4074 0.121429
\(622\) 63.9362 + 347.984i 0.102791 + 0.559460i
\(623\) −126.939 126.939i −0.203755 0.203755i
\(624\) −396.140 445.492i −0.634839 0.713929i
\(625\) −600.606 + 172.909i −0.960970 + 0.276654i
\(626\) −6.11123 4.21412i −0.00976235 0.00673182i
\(627\) −1220.90 293.566i −1.94721 0.468208i
\(628\) −60.9989 + 135.869i −0.0971320 + 0.216351i
\(629\) −4.40687 −0.00700616
\(630\) −97.1490 + 24.9909i −0.154205 + 0.0396681i
\(631\) 149.150i 0.236371i −0.992992 0.118186i \(-0.962292\pi\)
0.992992 0.118186i \(-0.0377078\pi\)
\(632\) −172.035 283.693i −0.272207 0.448882i
\(633\) 483.562 483.562i 0.763921 0.763921i
\(634\) −44.1322 + 63.9997i −0.0696092 + 0.100946i
\(635\) −34.8656 496.715i −0.0549065 0.782228i
\(636\) 1401.86 533.135i 2.20419 0.838262i
\(637\) −309.252 309.252i −0.485482 0.485482i
\(638\) −149.048 + 133.691i −0.233618 + 0.209546i
\(639\) 298.314 0.466845
\(640\) 338.128 + 543.387i 0.528324 + 0.849043i
\(641\) 9.33545 0.0145639 0.00728194 0.999973i \(-0.497682\pi\)
0.00728194 + 0.999973i \(0.497682\pi\)
\(642\) 188.249 + 1024.58i 0.293222 + 1.59591i
\(643\) 288.014 288.014i 0.447923 0.447923i −0.446741 0.894663i \(-0.647415\pi\)
0.894663 + 0.446741i \(0.147415\pi\)
\(644\) −19.1655 50.3952i −0.0297602 0.0782535i
\(645\) −452.127 + 520.390i −0.700972 + 0.806807i
\(646\) 228.062 330.731i 0.353038 0.511968i
\(647\) 812.608 + 812.608i 1.25596 + 1.25596i 0.953003 + 0.302960i \(0.0979749\pi\)
0.302960 + 0.953003i \(0.402025\pi\)
\(648\) −650.071 + 394.210i −1.00320 + 0.608349i
\(649\) 787.173 482.000i 1.21290 0.742681i
\(650\) −416.677 208.281i −0.641042 0.320432i
\(651\) −196.016 −0.301100
\(652\) 116.272 258.982i 0.178331 0.397212i
\(653\) −100.863 100.863i −0.154460 0.154460i 0.625646 0.780107i \(-0.284835\pi\)
−0.780107 + 0.625646i \(0.784835\pi\)
\(654\) −661.565 + 959.388i −1.01157 + 1.46695i
\(655\) 790.582 909.946i 1.20700 1.38923i
\(656\) −395.122 444.348i −0.602321 0.677360i
\(657\) −653.880 653.880i −0.995251 0.995251i
\(658\) −152.007 + 27.9288i −0.231014 + 0.0424449i
\(659\) 71.8407i 0.109015i 0.998513 + 0.0545073i \(0.0173588\pi\)
−0.998513 + 0.0545073i \(0.982641\pi\)
\(660\) −732.116 487.946i −1.10927 0.739313i
\(661\) −243.935 −0.369039 −0.184520 0.982829i \(-0.559073\pi\)
−0.184520 + 0.982829i \(0.559073\pi\)
\(662\) 7.29822 + 39.7219i 0.0110245 + 0.0600028i
\(663\) −185.401 + 185.401i −0.279640 + 0.279640i
\(664\) 714.461 + 175.051i 1.07599 + 0.263631i
\(665\) 204.212 14.3341i 0.307085 0.0215551i
\(666\) 7.21091 + 4.97242i 0.0108272 + 0.00746610i
\(667\) 60.4752 60.4752i 0.0906675 0.0906675i
\(668\) 327.126 728.637i 0.489709 1.09077i
\(669\) 1578.12i 2.35892i
\(670\) 54.1397 13.9271i 0.0808055 0.0207867i
\(671\) 46.4377 + 75.8393i 0.0692068 + 0.113024i
\(672\) 144.756 + 112.872i 0.215411 + 0.167964i
\(673\) −599.461 + 599.461i −0.890730 + 0.890730i −0.994592 0.103862i \(-0.966880\pi\)
0.103862 + 0.994592i \(0.466880\pi\)
\(674\) 881.761 + 608.036i 1.30825 + 0.902130i
\(675\) −120.644 + 160.277i −0.178732 + 0.237447i
\(676\) 116.877 + 307.325i 0.172895 + 0.454623i
\(677\) −204.115 204.115i −0.301500 0.301500i 0.540101 0.841600i \(-0.318386\pi\)
−0.841600 + 0.540101i \(0.818386\pi\)
\(678\) −44.0579 + 8.09491i −0.0649822 + 0.0119394i
\(679\) 127.427i 0.187668i
\(680\) 229.877 162.451i 0.338055 0.238898i
\(681\) 1136.86i 1.66940i
\(682\) −501.968 559.632i −0.736024 0.820575i
\(683\) −247.722 + 247.722i −0.362697 + 0.362697i −0.864805 0.502108i \(-0.832558\pi\)
0.502108 + 0.864805i \(0.332558\pi\)
\(684\) −746.350 + 283.841i −1.09116 + 0.414972i
\(685\) 10.0273 + 142.855i 0.0146384 + 0.208547i
\(686\) 226.584 + 156.245i 0.330297 + 0.227763i
\(687\) −886.635 886.635i −1.29059 1.29059i
\(688\) 550.658 + 32.2899i 0.800375 + 0.0469331i
\(689\) 873.508 1.26779
\(690\) 323.569 + 191.159i 0.468941 + 0.277042i
\(691\) 758.275i 1.09736i −0.836033 0.548679i \(-0.815131\pi\)
0.836033 0.548679i \(-0.184869\pi\)
\(692\) −198.924 + 443.083i −0.287463 + 0.640293i
\(693\) −107.285 25.7968i −0.154813 0.0372248i
\(694\) 377.417 547.322i 0.543829 0.788649i
\(695\) 312.328 + 271.358i 0.449393 + 0.390443i
\(696\) −69.2910 + 282.807i −0.0995561 + 0.406332i
\(697\) −184.925 + 184.925i −0.265316 + 0.265316i
\(698\) 463.671 85.1917i 0.664285 0.122051i
\(699\) 1515.02i 2.16740i
\(700\) 137.777 + 39.8914i 0.196824 + 0.0569878i
\(701\) 357.402i 0.509845i −0.966961 0.254923i \(-0.917950\pi\)
0.966961 0.254923i \(-0.0820500\pi\)
\(702\) −147.059 + 27.0195i −0.209485 + 0.0384894i
\(703\) −12.6398 12.6398i −0.0179798 0.0179798i
\(704\) 48.4464 + 702.331i 0.0688159 + 0.997629i
\(705\) 706.544 813.220i 1.00219 1.15350i
\(706\) 856.220 + 590.424i 1.21278 + 0.836294i
\(707\) −164.858 164.858i −0.233179 0.233179i
\(708\) 549.769 1224.55i 0.776511 1.72959i
\(709\) 1138.96i 1.60643i −0.595687 0.803217i \(-0.703120\pi\)
0.595687 0.803217i \(-0.296880\pi\)
\(710\) −367.256 216.968i −0.517262 0.305589i
\(711\) 290.038 0.407930
\(712\) −519.171 856.138i −0.729173 1.20244i
\(713\) 227.067 + 227.067i 0.318466 + 0.318466i
\(714\) 45.8313 66.4636i 0.0641895 0.0930863i
\(715\) −297.525 417.192i −0.416119 0.583486i
\(716\) 301.426 114.634i 0.420986 0.160103i
\(717\) 1230.53 + 1230.53i 1.71622 + 1.71622i
\(718\) −85.1449 463.416i −0.118586 0.645426i
\(719\) 212.648 0.295755 0.147877 0.989006i \(-0.452756\pi\)
0.147877 + 0.989006i \(0.452756\pi\)
\(720\) −559.444 + 6.43716i −0.777005 + 0.00894050i
\(721\) 33.8237i 0.0469122i
\(722\) 892.621 164.004i 1.23632 0.227153i
\(723\) 113.805 + 113.805i 0.157407 + 0.157407i
\(724\) −584.103 + 222.137i −0.806772 + 0.306819i
\(725\) 31.7844 + 225.293i 0.0438405 + 0.310749i
\(726\) −459.876 851.562i −0.633438 1.17295i
\(727\) −224.546 224.546i −0.308867 0.308867i 0.535603 0.844470i \(-0.320084\pi\)
−0.844470 + 0.535603i \(0.820084\pi\)
\(728\) 55.4337 + 91.4128i 0.0761452 + 0.125567i
\(729\) 375.792i 0.515490i
\(730\) 329.418 + 1280.57i 0.451258 + 1.75421i
\(731\) 242.607i 0.331883i
\(732\) 117.978 + 52.9669i 0.161172 + 0.0723592i
\(733\) 239.656 239.656i 0.326952 0.326952i −0.524474 0.851426i \(-0.675738\pi\)
0.851426 + 0.524474i \(0.175738\pi\)
\(734\) −524.186 361.463i −0.714149 0.492456i
\(735\) −936.358 + 65.7253i −1.27396 + 0.0894222i
\(736\) −36.9350 298.438i −0.0501834 0.405486i
\(737\) 59.7885 + 14.3762i 0.0811241 + 0.0195064i
\(738\) 511.248 93.9332i 0.692748 0.127281i
\(739\) 1042.68i 1.41093i −0.708746 0.705464i \(-0.750739\pi\)
0.708746 0.705464i \(-0.249261\pi\)
\(740\) −5.26087 11.3662i −0.00710928 0.0153597i
\(741\) −1063.54 −1.43527
\(742\) −264.536 + 48.6040i −0.356517 + 0.0655040i
\(743\) −700.774 700.774i −0.943168 0.943168i 0.0553017 0.998470i \(-0.482388\pi\)
−0.998470 + 0.0553017i \(0.982388\pi\)
\(744\) −1061.86 260.167i −1.42723 0.349687i
\(745\) −537.744 + 618.935i −0.721805 + 0.830785i
\(746\) −439.126 + 636.812i −0.588641 + 0.853635i
\(747\) −454.703 + 454.703i −0.608705 + 0.608705i
\(748\) 307.123 39.3536i 0.410592 0.0526118i
\(749\) 186.814i 0.249418i
\(750\) −923.983 + 381.904i −1.23198 + 0.509205i
\(751\) 1246.38i 1.65962i 0.558043 + 0.829812i \(0.311552\pi\)
−0.558043 + 0.829812i \(0.688448\pi\)
\(752\) −860.520 50.4599i −1.14431 0.0671009i
\(753\) −184.201 184.201i −0.244622 0.244622i
\(754\) −96.2688 + 139.607i −0.127677 + 0.185155i
\(755\) 71.2961 82.0606i 0.0944319 0.108690i
\(756\) 43.0322 16.3654i 0.0569209 0.0216473i
\(757\) −8.03843 + 8.03843i −0.0106188 + 0.0106188i −0.712396 0.701777i \(-0.752390\pi\)
0.701777 + 0.712396i \(0.252390\pi\)
\(758\) −142.444 + 26.1718i −0.187921 + 0.0345274i
\(759\) 215.876 + 352.557i 0.284422 + 0.464501i
\(760\) 1125.28 + 193.394i 1.48063 + 0.254466i
\(761\) 1214.85i 1.59639i −0.602402 0.798193i \(-0.705790\pi\)
0.602402 0.798193i \(-0.294210\pi\)
\(762\) −143.941 783.424i −0.188899 1.02811i
\(763\) 147.776 147.776i 0.193678 0.193678i
\(764\) −199.654 524.984i −0.261327 0.687152i
\(765\) 17.2300 + 245.467i 0.0225228 + 0.320872i
\(766\) −724.230 + 1050.26i −0.945469 + 1.37110i
\(767\) 552.795 552.795i 0.720723 0.720723i
\(768\) 634.359 + 803.579i 0.825988 + 1.04633i
\(769\) −538.046 −0.699670 −0.349835 0.936811i \(-0.613762\pi\)
−0.349835 + 0.936811i \(0.613762\pi\)
\(770\) 113.317 + 109.789i 0.147165 + 0.142583i
\(771\) 1609.27i 2.08725i
\(772\) 319.186 710.953i 0.413454 0.920923i