Properties

Label 220.3.i.a.43.4
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.4
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.97634 - 0.306706i) q^{2} +(-0.409452 + 0.409452i) q^{3} +(3.81186 + 1.21231i) q^{4} +(4.83179 + 1.28601i) q^{5} +(0.934798 - 0.683636i) q^{6} +(5.71256 - 5.71256i) q^{7} +(-7.16172 - 3.56507i) q^{8} +8.66470i q^{9} +(-9.15485 - 4.02353i) q^{10} +(4.85945 - 9.86842i) q^{11} +(-2.05716 + 1.06439i) q^{12} +(-5.84564 + 5.84564i) q^{13} +(-13.0421 + 9.53790i) q^{14} +(-2.50494 + 1.45183i) q^{15} +(13.0606 + 9.24234i) q^{16} +(-3.24226 - 3.24226i) q^{17} +(2.65752 - 17.1244i) q^{18} +8.60845i q^{19} +(16.8591 + 10.7597i) q^{20} +4.67804i q^{21} +(-12.6306 + 18.0130i) q^{22} +(19.1843 - 19.1843i) q^{23} +(4.39210 - 1.47266i) q^{24} +(21.6924 + 12.4274i) q^{25} +(13.3459 - 9.76009i) q^{26} +(-7.23284 - 7.23284i) q^{27} +(28.7009 - 14.8501i) q^{28} +43.1511 q^{29} +(5.39591 - 2.10103i) q^{30} +18.8814i q^{31} +(-22.9775 - 22.2718i) q^{32} +(2.05093 + 6.03035i) q^{33} +(5.41339 + 7.40223i) q^{34} +(34.9483 - 20.2555i) q^{35} +(-10.5043 + 33.0286i) q^{36} +(34.1716 - 34.1716i) q^{37} +(2.64026 - 17.0133i) q^{38} -4.78701i q^{39} +(-30.0192 - 26.4357i) q^{40} +24.9595i q^{41} +(1.43478 - 9.24540i) q^{42} +(24.3874 + 24.3874i) q^{43} +(30.4872 - 31.7259i) q^{44} +(-11.1428 + 41.8660i) q^{45} +(-43.7987 + 32.0308i) q^{46} +(-1.45945 - 1.45945i) q^{47} +(-9.13198 + 1.56339i) q^{48} -16.2667i q^{49} +(-39.0600 - 31.2140i) q^{50} +2.65510 q^{51} +(-29.3695 + 15.1960i) q^{52} +(-45.7272 - 45.7272i) q^{53} +(12.0762 + 16.5129i) q^{54} +(36.1707 - 41.4329i) q^{55} +(-61.2775 + 20.5461i) q^{56} +(-3.52474 - 3.52474i) q^{57} +(-85.2814 - 13.2347i) q^{58} -43.3211 q^{59} +(-11.3086 + 2.49739i) q^{60} +108.835i q^{61} +(5.79104 - 37.3161i) q^{62} +(49.4976 + 49.4976i) q^{63} +(38.5806 + 51.0641i) q^{64} +(-35.7624 + 20.7274i) q^{65} +(-2.20380 - 12.5471i) q^{66} +(6.63930 + 6.63930i) q^{67} +(-8.42841 - 16.2897i) q^{68} +15.7101i q^{69} +(-75.2823 + 29.3130i) q^{70} -19.9354i q^{71} +(30.8902 - 62.0542i) q^{72} +(-25.1503 + 25.1503i) q^{73} +(-78.0154 + 57.0541i) q^{74} +(-13.9704 + 3.79356i) q^{75} +(-10.4361 + 32.8142i) q^{76} +(-28.6141 - 84.1339i) q^{77} +(-1.46821 + 9.46078i) q^{78} -122.741i q^{79} +(51.2203 + 61.4530i) q^{80} -72.0593 q^{81} +(7.65523 - 49.3286i) q^{82} +(-56.7102 - 56.7102i) q^{83} +(-5.67124 + 17.8320i) q^{84} +(-11.4963 - 19.8355i) q^{85} +(-40.7182 - 55.6777i) q^{86} +(-17.6683 + 17.6683i) q^{87} +(-69.9836 + 53.3507i) q^{88} -51.9183i q^{89} +(34.8626 - 79.3240i) q^{90} +66.7871i q^{91} +(96.3854 - 49.8706i) q^{92} +(-7.73102 - 7.73102i) q^{93} +(2.43675 + 3.33200i) q^{94} +(-11.0705 + 41.5942i) q^{95} +(18.5274 - 0.288965i) q^{96} +(-41.3583 + 41.3583i) q^{97} +(-4.98910 + 32.1486i) q^{98} +(85.5069 + 42.1057i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.97634 0.306706i −0.988171 0.153353i
\(3\) −0.409452 + 0.409452i −0.136484 + 0.136484i −0.772048 0.635564i \(-0.780768\pi\)
0.635564 + 0.772048i \(0.280768\pi\)
\(4\) 3.81186 + 1.21231i 0.952966 + 0.303078i
\(5\) 4.83179 + 1.28601i 0.966358 + 0.257201i
\(6\) 0.934798 0.683636i 0.155800 0.113939i
\(7\) 5.71256 5.71256i 0.816080 0.816080i −0.169457 0.985538i \(-0.554202\pi\)
0.985538 + 0.169457i \(0.0542015\pi\)
\(8\) −7.16172 3.56507i −0.895216 0.445633i
\(9\) 8.66470i 0.962744i
\(10\) −9.15485 4.02353i −0.915485 0.402353i
\(11\) 4.85945 9.86842i 0.441768 0.897129i
\(12\) −2.05716 + 1.06439i −0.171430 + 0.0886992i
\(13\) −5.84564 + 5.84564i −0.449665 + 0.449665i −0.895243 0.445578i \(-0.852998\pi\)
0.445578 + 0.895243i \(0.352998\pi\)
\(14\) −13.0421 + 9.53790i −0.931576 + 0.681279i
\(15\) −2.50494 + 1.45183i −0.166996 + 0.0967885i
\(16\) 13.0606 + 9.24234i 0.816287 + 0.577646i
\(17\) −3.24226 3.24226i −0.190721 0.190721i 0.605287 0.796008i \(-0.293059\pi\)
−0.796008 + 0.605287i \(0.793059\pi\)
\(18\) 2.65752 17.1244i 0.147640 0.951356i
\(19\) 8.60845i 0.453076i 0.974002 + 0.226538i \(0.0727408\pi\)
−0.974002 + 0.226538i \(0.927259\pi\)
\(20\) 16.8591 + 10.7597i 0.842954 + 0.537986i
\(21\) 4.67804i 0.222764i
\(22\) −12.6306 + 18.0130i −0.574120 + 0.818771i
\(23\) 19.1843 19.1843i 0.834101 0.834101i −0.153974 0.988075i \(-0.549207\pi\)
0.988075 + 0.153974i \(0.0492072\pi\)
\(24\) 4.39210 1.47266i 0.183004 0.0613607i
\(25\) 21.6924 + 12.4274i 0.867695 + 0.497097i
\(26\) 13.3459 9.76009i 0.513303 0.375388i
\(27\) −7.23284 7.23284i −0.267883 0.267883i
\(28\) 28.7009 14.8501i 1.02503 0.530360i
\(29\) 43.1511 1.48797 0.743985 0.668197i \(-0.232934\pi\)
0.743985 + 0.668197i \(0.232934\pi\)
\(30\) 5.39591 2.10103i 0.179864 0.0700343i
\(31\) 18.8814i 0.609077i 0.952500 + 0.304539i \(0.0985022\pi\)
−0.952500 + 0.304539i \(0.901498\pi\)
\(32\) −22.9775 22.2718i −0.718048 0.695994i
\(33\) 2.05093 + 6.03035i 0.0621495 + 0.182738i
\(34\) 5.41339 + 7.40223i 0.159217 + 0.217713i
\(35\) 34.9483 20.2555i 0.998522 0.578729i
\(36\) −10.5043 + 33.0286i −0.291787 + 0.917462i
\(37\) 34.1716 34.1716i 0.923556 0.923556i −0.0737227 0.997279i \(-0.523488\pi\)
0.997279 + 0.0737227i \(0.0234880\pi\)
\(38\) 2.64026 17.0133i 0.0694806 0.447717i
\(39\) 4.78701i 0.122744i
\(40\) −30.0192 26.4357i −0.750481 0.660892i
\(41\) 24.9595i 0.608769i 0.952549 + 0.304384i \(0.0984507\pi\)
−0.952549 + 0.304384i \(0.901549\pi\)
\(42\) 1.43478 9.24540i 0.0341615 0.220129i
\(43\) 24.3874 + 24.3874i 0.567150 + 0.567150i 0.931329 0.364179i \(-0.118650\pi\)
−0.364179 + 0.931329i \(0.618650\pi\)
\(44\) 30.4872 31.7259i 0.692890 0.721043i
\(45\) −11.1428 + 41.8660i −0.247619 + 0.930356i
\(46\) −43.7987 + 32.0308i −0.952147 + 0.696323i
\(47\) −1.45945 1.45945i −0.0310521 0.0310521i 0.691410 0.722462i \(-0.256990\pi\)
−0.722462 + 0.691410i \(0.756990\pi\)
\(48\) −9.13198 + 1.56339i −0.190249 + 0.0325707i
\(49\) 16.2667i 0.331974i
\(50\) −39.0600 31.2140i −0.781200 0.624280i
\(51\) 2.65510 0.0520607
\(52\) −29.3695 + 15.1960i −0.564798 + 0.292231i
\(53\) −45.7272 45.7272i −0.862777 0.862777i 0.128883 0.991660i \(-0.458861\pi\)
−0.991660 + 0.128883i \(0.958861\pi\)
\(54\) 12.0762 + 16.5129i 0.223634 + 0.305795i
\(55\) 36.1707 41.4329i 0.657649 0.753325i
\(56\) −61.2775 + 20.5461i −1.09424 + 0.366895i
\(57\) −3.52474 3.52474i −0.0618376 0.0618376i
\(58\) −85.2814 13.2347i −1.47037 0.228185i
\(59\) −43.3211 −0.734255 −0.367128 0.930171i \(-0.619659\pi\)
−0.367128 + 0.930171i \(0.619659\pi\)
\(60\) −11.3086 + 2.49739i −0.188476 + 0.0416232i
\(61\) 108.835i 1.78417i 0.451864 + 0.892087i \(0.350759\pi\)
−0.451864 + 0.892087i \(0.649241\pi\)
\(62\) 5.79104 37.3161i 0.0934038 0.601873i
\(63\) 49.4976 + 49.4976i 0.785677 + 0.785677i
\(64\) 38.5806 + 51.0641i 0.602822 + 0.797876i
\(65\) −35.7624 + 20.7274i −0.550191 + 0.318883i
\(66\) −2.20380 12.5471i −0.0333909 0.190107i
\(67\) 6.63930 + 6.63930i 0.0990941 + 0.0990941i 0.754916 0.655822i \(-0.227678\pi\)
−0.655822 + 0.754916i \(0.727678\pi\)
\(68\) −8.42841 16.2897i −0.123947 0.239554i
\(69\) 15.7101i 0.227683i
\(70\) −75.2823 + 29.3130i −1.07546 + 0.418757i
\(71\) 19.9354i 0.280781i −0.990096 0.140390i \(-0.955164\pi\)
0.990096 0.140390i \(-0.0448358\pi\)
\(72\) 30.8902 62.0542i 0.429031 0.861864i
\(73\) −25.1503 + 25.1503i −0.344524 + 0.344524i −0.858065 0.513541i \(-0.828333\pi\)
0.513541 + 0.858065i \(0.328333\pi\)
\(74\) −78.0154 + 57.0541i −1.05426 + 0.771002i
\(75\) −13.9704 + 3.79356i −0.186272 + 0.0505808i
\(76\) −10.4361 + 32.8142i −0.137318 + 0.431766i
\(77\) −28.6141 84.1339i −0.371611 1.09265i
\(78\) −1.46821 + 9.46078i −0.0188232 + 0.121292i
\(79\) 122.741i 1.55369i −0.629695 0.776843i \(-0.716820\pi\)
0.629695 0.776843i \(-0.283180\pi\)
\(80\) 51.2203 + 61.4530i 0.640254 + 0.768163i
\(81\) −72.0593 −0.889621
\(82\) 7.65523 49.3286i 0.0933565 0.601568i
\(83\) −56.7102 56.7102i −0.683255 0.683255i 0.277477 0.960732i \(-0.410502\pi\)
−0.960732 + 0.277477i \(0.910502\pi\)
\(84\) −5.67124 + 17.8320i −0.0675148 + 0.212286i
\(85\) −11.4963 19.8355i −0.135251 0.233358i
\(86\) −40.7182 55.6777i −0.473467 0.647416i
\(87\) −17.6683 + 17.6683i −0.203084 + 0.203084i
\(88\) −69.9836 + 53.3507i −0.795268 + 0.606257i
\(89\) 51.9183i 0.583351i −0.956517 0.291676i \(-0.905787\pi\)
0.956517 0.291676i \(-0.0942128\pi\)
\(90\) 34.8626 79.3240i 0.387363 0.881378i
\(91\) 66.7871i 0.733925i
\(92\) 96.3854 49.8706i 1.04767 0.542072i
\(93\) −7.73102 7.73102i −0.0831292 0.0831292i
\(94\) 2.43675 + 3.33200i 0.0259229 + 0.0354468i
\(95\) −11.0705 + 41.5942i −0.116532 + 0.437834i
\(96\) 18.5274 0.288965i 0.192994 0.00301005i
\(97\) −41.3583 + 41.3583i −0.426374 + 0.426374i −0.887391 0.461017i \(-0.847485\pi\)
0.461017 + 0.887391i \(0.347485\pi\)
\(98\) −4.98910 + 32.1486i −0.0509092 + 0.328047i
\(99\) 85.5069 + 42.1057i 0.863706 + 0.425310i
\(100\) 67.6225 + 73.6695i 0.676225 + 0.736695i
\(101\) 136.857i 1.35502i −0.735513 0.677511i \(-0.763059\pi\)
0.735513 0.677511i \(-0.236941\pi\)
\(102\) −5.24738 0.814334i −0.0514449 0.00798366i
\(103\) −118.433 + 118.433i −1.14983 + 1.14983i −0.163245 + 0.986586i \(0.552196\pi\)
−0.986586 + 0.163245i \(0.947804\pi\)
\(104\) 62.7050 21.0248i 0.602932 0.202161i
\(105\) −6.01598 + 22.6033i −0.0572950 + 0.215269i
\(106\) 76.3478 + 104.397i 0.720262 + 0.984881i
\(107\) −58.5150 + 58.5150i −0.546869 + 0.546869i −0.925534 0.378665i \(-0.876383\pi\)
0.378665 + 0.925534i \(0.376383\pi\)
\(108\) −18.8021 36.3391i −0.174094 0.336473i
\(109\) 132.225 1.21307 0.606536 0.795056i \(-0.292559\pi\)
0.606536 + 0.795056i \(0.292559\pi\)
\(110\) −84.1934 + 70.7918i −0.765394 + 0.643562i
\(111\) 27.9832i 0.252101i
\(112\) 127.407 21.8120i 1.13756 0.194750i
\(113\) 5.11251 + 5.11251i 0.0452434 + 0.0452434i 0.729367 0.684123i \(-0.239815\pi\)
−0.684123 + 0.729367i \(0.739815\pi\)
\(114\) 5.88504 + 8.04717i 0.0516232 + 0.0705892i
\(115\) 117.366 68.0235i 1.02057 0.591508i
\(116\) 164.486 + 52.3126i 1.41798 + 0.450971i
\(117\) −50.6507 50.6507i −0.432912 0.432912i
\(118\) 85.6173 + 13.2868i 0.725570 + 0.112600i
\(119\) −37.0432 −0.311287
\(120\) 23.1156 1.46730i 0.192630 0.0122275i
\(121\) −73.7715 95.9102i −0.609682 0.792646i
\(122\) 33.3802 215.094i 0.273608 1.76307i
\(123\) −10.2197 10.2197i −0.0830871 0.0830871i
\(124\) −22.8902 + 71.9733i −0.184598 + 0.580430i
\(125\) 88.8313 + 87.9432i 0.710650 + 0.703545i
\(126\) −82.6431 113.005i −0.655897 0.896869i
\(127\) −130.053 + 130.053i −1.02404 + 1.02404i −0.0243349 + 0.999704i \(0.507747\pi\)
−0.999704 + 0.0243349i \(0.992253\pi\)
\(128\) −60.5868 112.753i −0.473335 0.880883i
\(129\) −19.9710 −0.154814
\(130\) 77.0360 29.9959i 0.592585 0.230737i
\(131\) −60.5454 −0.462178 −0.231089 0.972933i \(-0.574229\pi\)
−0.231089 + 0.972933i \(0.574229\pi\)
\(132\) 0.507202 + 25.4732i 0.00384244 + 0.192979i
\(133\) 49.1763 + 49.1763i 0.369747 + 0.369747i
\(134\) −11.0852 15.1579i −0.0827255 0.113118i
\(135\) −25.6461 44.2490i −0.189971 0.327771i
\(136\) 11.6613 + 34.7790i 0.0857447 + 0.255728i
\(137\) 56.3745 56.3745i 0.411493 0.411493i −0.470766 0.882258i \(-0.656022\pi\)
0.882258 + 0.470766i \(0.156022\pi\)
\(138\) 4.81838 31.0486i 0.0349158 0.224990i
\(139\) 215.606i 1.55112i −0.631272 0.775561i \(-0.717467\pi\)
0.631272 0.775561i \(-0.282533\pi\)
\(140\) 157.774 34.8430i 1.12696 0.248878i
\(141\) 1.19515 0.00847623
\(142\) −6.11432 + 39.3993i −0.0430586 + 0.277460i
\(143\) 29.2807 + 86.0938i 0.204760 + 0.602055i
\(144\) −80.0821 + 113.166i −0.556126 + 0.785876i
\(145\) 208.497 + 55.4926i 1.43791 + 0.382707i
\(146\) 57.4193 41.9918i 0.393283 0.287615i
\(147\) 6.66043 + 6.66043i 0.0453091 + 0.0453091i
\(148\) 171.684 88.8307i 1.16003 0.600208i
\(149\) 72.0890 0.483819 0.241909 0.970299i \(-0.422226\pi\)
0.241909 + 0.970299i \(0.422226\pi\)
\(150\) 28.7738 3.21256i 0.191825 0.0214171i
\(151\) −218.192 −1.44498 −0.722491 0.691381i \(-0.757003\pi\)
−0.722491 + 0.691381i \(0.757003\pi\)
\(152\) 30.6897 61.6514i 0.201906 0.405601i
\(153\) 28.0932 28.0932i 0.183616 0.183616i
\(154\) 30.7468 + 175.053i 0.199655 + 1.13671i
\(155\) −24.2816 + 91.2309i −0.156655 + 0.588586i
\(156\) 5.80336 18.2474i 0.0372010 0.116971i
\(157\) −31.1663 + 31.1663i −0.198511 + 0.198511i −0.799362 0.600850i \(-0.794829\pi\)
0.600850 + 0.799362i \(0.294829\pi\)
\(158\) −37.6455 + 242.579i −0.238262 + 1.53531i
\(159\) 37.4461 0.235510
\(160\) −82.3810 137.162i −0.514881 0.857262i
\(161\) 219.183i 1.36139i
\(162\) 142.414 + 22.1010i 0.879098 + 0.136426i
\(163\) 183.074 183.074i 1.12316 1.12316i 0.131891 0.991264i \(-0.457895\pi\)
0.991264 0.131891i \(-0.0421049\pi\)
\(164\) −30.2587 + 95.1422i −0.184504 + 0.580136i
\(165\) 2.15461 + 31.7749i 0.0130583 + 0.192575i
\(166\) 94.6854 + 129.472i 0.570394 + 0.779952i
\(167\) 18.1541 18.1541i 0.108707 0.108707i −0.650661 0.759368i \(-0.725508\pi\)
0.759368 + 0.650661i \(0.225508\pi\)
\(168\) 16.6775 33.5028i 0.0992709 0.199421i
\(169\) 100.657i 0.595604i
\(170\) 16.6371 + 42.7277i 0.0978651 + 0.251339i
\(171\) −74.5896 −0.436197
\(172\) 63.3964 + 122.527i 0.368584 + 0.712365i
\(173\) −119.355 + 119.355i −0.689916 + 0.689916i −0.962213 0.272297i \(-0.912217\pi\)
0.272297 + 0.962213i \(0.412217\pi\)
\(174\) 40.3376 29.4996i 0.231825 0.169538i
\(175\) 194.911 52.9267i 1.11378 0.302438i
\(176\) 154.675 83.9748i 0.878833 0.477130i
\(177\) 17.7379 17.7379i 0.100214 0.100214i
\(178\) −15.9236 + 102.608i −0.0894587 + 0.576451i
\(179\) −82.2861 −0.459699 −0.229849 0.973226i \(-0.573823\pi\)
−0.229849 + 0.973226i \(0.573823\pi\)
\(180\) −93.2297 + 146.079i −0.517943 + 0.811549i
\(181\) −202.957 −1.12131 −0.560654 0.828050i \(-0.689450\pi\)
−0.560654 + 0.828050i \(0.689450\pi\)
\(182\) 20.4840 131.994i 0.112550 0.725243i
\(183\) −44.5625 44.5625i −0.243511 0.243511i
\(184\) −205.786 + 68.9994i −1.11840 + 0.374997i
\(185\) 209.055 121.165i 1.13003 0.654946i
\(186\) 12.9080 + 17.6503i 0.0693978 + 0.0948940i
\(187\) −47.7515 + 16.2404i −0.255356 + 0.0868469i
\(188\) −3.79391 7.33253i −0.0201804 0.0390028i
\(189\) −82.6361 −0.437228
\(190\) 34.6363 78.8091i 0.182296 0.414784i
\(191\) 289.533i 1.51588i 0.652323 + 0.757941i \(0.273795\pi\)
−0.652323 + 0.757941i \(0.726205\pi\)
\(192\) −36.7052 5.11138i −0.191173 0.0266218i
\(193\) 14.1389 14.1389i 0.0732586 0.0732586i −0.669528 0.742787i \(-0.733504\pi\)
0.742787 + 0.669528i \(0.233504\pi\)
\(194\) 94.4229 69.0533i 0.486716 0.355945i
\(195\) 6.15613 23.1298i 0.0315699 0.118615i
\(196\) 19.7203 62.0065i 0.100614 0.316360i
\(197\) −262.463 262.463i −1.33230 1.33230i −0.903311 0.428987i \(-0.858871\pi\)
−0.428987 0.903311i \(-0.641129\pi\)
\(198\) −156.077 109.441i −0.788267 0.552731i
\(199\) −296.932 −1.49212 −0.746061 0.665878i \(-0.768057\pi\)
−0.746061 + 0.665878i \(0.768057\pi\)
\(200\) −111.050 166.337i −0.555251 0.831683i
\(201\) −5.43695 −0.0270495
\(202\) −41.9749 + 270.477i −0.207797 + 1.33899i
\(203\) 246.503 246.503i 1.21430 1.21430i
\(204\) 10.1209 + 3.21881i 0.0496121 + 0.0157785i
\(205\) −32.0981 + 120.599i −0.156576 + 0.588288i
\(206\) 270.387 197.739i 1.31256 0.959900i
\(207\) 166.226 + 166.226i 0.803026 + 0.803026i
\(208\) −130.375 + 22.3201i −0.626802 + 0.107308i
\(209\) 84.9518 + 41.8323i 0.406468 + 0.200155i
\(210\) 18.8222 42.8267i 0.0896295 0.203937i
\(211\) −141.414 −0.670210 −0.335105 0.942181i \(-0.608772\pi\)
−0.335105 + 0.942181i \(0.608772\pi\)
\(212\) −118.870 229.741i −0.560708 1.08369i
\(213\) 8.16260 + 8.16260i 0.0383221 + 0.0383221i
\(214\) 133.593 97.6988i 0.624265 0.456537i
\(215\) 86.4726 + 149.197i 0.402198 + 0.693941i
\(216\) 26.0140 + 77.5852i 0.120435 + 0.359191i
\(217\) 107.861 + 107.861i 0.497056 + 0.497056i
\(218\) −261.322 40.5542i −1.19872 0.186028i
\(219\) 20.5956i 0.0940440i
\(220\) 188.107 114.086i 0.855033 0.518574i
\(221\) 37.9061 0.171521
\(222\) 8.58262 55.3044i 0.0386605 0.249119i
\(223\) −306.011 + 306.011i −1.37224 + 1.37224i −0.515137 + 0.857108i \(0.672259\pi\)
−0.857108 + 0.515137i \(0.827741\pi\)
\(224\) −258.490 + 4.03156i −1.15397 + 0.0179980i
\(225\) −107.680 + 187.958i −0.478577 + 0.835369i
\(226\) −8.53603 11.6721i −0.0377701 0.0516465i
\(227\) −112.010 + 112.010i −0.493435 + 0.493435i −0.909387 0.415951i \(-0.863449\pi\)
0.415951 + 0.909387i \(0.363449\pi\)
\(228\) −9.16275 17.7089i −0.0401875 0.0776708i
\(229\) 77.6468i 0.339069i 0.985524 + 0.169534i \(0.0542264\pi\)
−0.985524 + 0.169534i \(0.945774\pi\)
\(230\) −252.818 + 98.4409i −1.09921 + 0.428004i
\(231\) 46.1648 + 22.7327i 0.199848 + 0.0984098i
\(232\) −309.036 153.837i −1.33205 0.663089i
\(233\) −248.570 + 248.570i −1.06682 + 1.06682i −0.0692218 + 0.997601i \(0.522052\pi\)
−0.997601 + 0.0692218i \(0.977948\pi\)
\(234\) 84.5683 + 115.638i 0.361403 + 0.494180i
\(235\) −5.17489 8.92861i −0.0220208 0.0379941i
\(236\) −165.134 52.5187i −0.699720 0.222537i
\(237\) 50.2566 + 50.2566i 0.212053 + 0.212053i
\(238\) 73.2100 + 11.3614i 0.307605 + 0.0477368i
\(239\) 3.52915i 0.0147663i −0.999973 0.00738315i \(-0.997650\pi\)
0.999973 0.00738315i \(-0.00235015\pi\)
\(240\) −46.1343 4.18979i −0.192226 0.0174575i
\(241\) 297.959i 1.23634i −0.786043 0.618172i \(-0.787874\pi\)
0.786043 0.618172i \(-0.212126\pi\)
\(242\) 116.382 + 212.178i 0.480916 + 0.876767i
\(243\) 94.6004 94.6004i 0.389302 0.389302i
\(244\) −131.942 + 414.863i −0.540744 + 1.70026i
\(245\) 20.9191 78.5973i 0.0853840 0.320805i
\(246\) 17.0632 + 23.3321i 0.0693627 + 0.0948460i
\(247\) −50.3219 50.3219i −0.203732 0.203732i
\(248\) 67.3134 135.223i 0.271425 0.545255i
\(249\) 46.4401 0.186507
\(250\) −148.588 201.051i −0.594354 0.804204i
\(251\) 471.623i 1.87898i −0.342581 0.939488i \(-0.611301\pi\)
0.342581 0.939488i \(-0.388699\pi\)
\(252\) 128.672 + 248.685i 0.510601 + 0.986844i
\(253\) −96.0937 282.544i −0.379817 1.11678i
\(254\) 296.917 217.141i 1.16897 0.854886i
\(255\) 12.8289 + 3.41447i 0.0503093 + 0.0133901i
\(256\) 85.1583 + 241.421i 0.332650 + 0.943050i
\(257\) −29.9858 + 29.9858i −0.116676 + 0.116676i −0.763034 0.646358i \(-0.776291\pi\)
0.646358 + 0.763034i \(0.276291\pi\)
\(258\) 39.4695 + 6.12522i 0.152982 + 0.0237411i
\(259\) 390.414i 1.50739i
\(260\) −161.450 + 35.6547i −0.620960 + 0.137133i
\(261\) 373.891i 1.43253i
\(262\) 119.658 + 18.5696i 0.456711 + 0.0708764i
\(263\) 282.981 + 282.981i 1.07597 + 1.07597i 0.996866 + 0.0791063i \(0.0252066\pi\)
0.0791063 + 0.996866i \(0.474793\pi\)
\(264\) 6.81039 50.4994i 0.0257969 0.191286i
\(265\) −162.139 279.749i −0.611844 1.05566i
\(266\) −82.1066 112.272i −0.308671 0.422075i
\(267\) 21.2580 + 21.2580i 0.0796181 + 0.0796181i
\(268\) 17.2592 + 33.3570i 0.0644000 + 0.124466i
\(269\) 319.121i 1.18632i −0.805084 0.593161i \(-0.797880\pi\)
0.805084 0.593161i \(-0.202120\pi\)
\(270\) 37.1140 + 95.3171i 0.137459 + 0.353026i
\(271\) 501.057 1.84892 0.924458 0.381283i \(-0.124518\pi\)
0.924458 + 0.381283i \(0.124518\pi\)
\(272\) −12.3798 72.3118i −0.0455138 0.265852i
\(273\) −27.3461 27.3461i −0.100169 0.100169i
\(274\) −128.706 + 94.1249i −0.469729 + 0.343522i
\(275\) 228.052 153.679i 0.829280 0.558833i
\(276\) −19.0456 + 59.8848i −0.0690057 + 0.216974i
\(277\) 220.118 + 220.118i 0.794650 + 0.794650i 0.982246 0.187596i \(-0.0600695\pi\)
−0.187596 + 0.982246i \(0.560070\pi\)
\(278\) −66.1277 + 426.112i −0.237869 + 1.53278i
\(279\) −163.602 −0.586386
\(280\) −322.502 + 20.4714i −1.15179 + 0.0731122i
\(281\) 219.144i 0.779872i 0.920842 + 0.389936i \(0.127503\pi\)
−0.920842 + 0.389936i \(0.872497\pi\)
\(282\) −2.36202 0.366559i −0.00837597 0.00129986i
\(283\) −132.490 132.490i −0.468161 0.468161i 0.433157 0.901318i \(-0.357399\pi\)
−0.901318 + 0.433157i \(0.857399\pi\)
\(284\) 24.1680 75.9912i 0.0850986 0.267575i
\(285\) −12.4980 21.5637i −0.0438526 0.0756620i
\(286\) −31.4631 179.131i −0.110011 0.626334i
\(287\) 142.583 + 142.583i 0.496804 + 0.496804i
\(288\) 192.978 199.093i 0.670064 0.691297i
\(289\) 267.976i 0.927251i
\(290\) −395.042 173.620i −1.36221 0.598688i
\(291\) 33.8684i 0.116386i
\(292\) −126.359 + 65.3793i −0.432737 + 0.223902i
\(293\) 122.524 122.524i 0.418171 0.418171i −0.466402 0.884573i \(-0.654450\pi\)
0.884573 + 0.466402i \(0.154450\pi\)
\(294\) −11.1205 15.2061i −0.0378248 0.0517214i
\(295\) −209.318 55.7111i −0.709554 0.188851i
\(296\) −366.551 + 122.903i −1.23835 + 0.415214i
\(297\) −106.524 + 36.2291i −0.358668 + 0.121984i
\(298\) −142.473 22.1101i −0.478096 0.0741951i
\(299\) 224.289i 0.750131i
\(300\) −57.8523 2.47599i −0.192841 0.00825330i
\(301\) 278.630 0.925680
\(302\) 431.223 + 66.9209i 1.42789 + 0.221592i
\(303\) 56.0364 + 56.0364i 0.184939 + 0.184939i
\(304\) −79.5622 + 112.431i −0.261718 + 0.369840i
\(305\) −139.962 + 525.866i −0.458891 + 1.72415i
\(306\) −64.1381 + 46.9054i −0.209602 + 0.153286i
\(307\) 347.093 347.093i 1.13059 1.13059i 0.140517 0.990078i \(-0.455124\pi\)
0.990078 0.140517i \(-0.0448763\pi\)
\(308\) −7.07635 355.396i −0.0229751 1.15388i
\(309\) 96.9848i 0.313867i
\(310\) 75.9698 172.856i 0.245064 0.557601i
\(311\) 288.132i 0.926470i 0.886235 + 0.463235i \(0.153311\pi\)
−0.886235 + 0.463235i \(0.846689\pi\)
\(312\) −17.0660 + 34.2833i −0.0546988 + 0.109882i
\(313\) 165.999 + 165.999i 0.530348 + 0.530348i 0.920676 0.390328i \(-0.127638\pi\)
−0.390328 + 0.920676i \(0.627638\pi\)
\(314\) 71.1542 52.0364i 0.226606 0.165721i
\(315\) 175.508 + 302.816i 0.557168 + 0.961322i
\(316\) 148.801 467.872i 0.470888 1.48061i
\(317\) −173.748 + 173.748i −0.548100 + 0.548100i −0.925891 0.377791i \(-0.876684\pi\)
0.377791 + 0.925891i \(0.376684\pi\)
\(318\) −74.0064 11.4850i −0.232725 0.0361162i
\(319\) 209.691 425.833i 0.657337 1.33490i
\(320\) 120.745 + 296.346i 0.377327 + 0.926080i
\(321\) 47.9182i 0.149278i
\(322\) −67.2248 + 433.181i −0.208773 + 1.34528i
\(323\) 27.9108 27.9108i 0.0864112 0.0864112i
\(324\) −274.680 87.3584i −0.847778 0.269625i
\(325\) −199.452 + 54.1597i −0.613699 + 0.166645i
\(326\) −417.968 + 305.668i −1.28211 + 0.937631i
\(327\) −54.1397 + 54.1397i −0.165565 + 0.165565i
\(328\) 88.9823 178.753i 0.271288 0.544979i
\(329\) −16.6744 −0.0506820
\(330\) 5.48730 63.4589i 0.0166282 0.192300i
\(331\) 208.576i 0.630139i −0.949069 0.315070i \(-0.897972\pi\)
0.949069 0.315070i \(-0.102028\pi\)
\(332\) −147.421 284.922i −0.444039 0.858198i
\(333\) 296.086 + 296.086i 0.889148 + 0.889148i
\(334\) −41.4468 + 30.3108i −0.124092 + 0.0907510i
\(335\) 23.5415 + 40.6179i 0.0702732 + 0.121247i
\(336\) −43.2360 + 61.0979i −0.128679 + 0.181839i
\(337\) −149.331 149.331i −0.443118 0.443118i 0.449941 0.893058i \(-0.351445\pi\)
−0.893058 + 0.449941i \(0.851445\pi\)
\(338\) 30.8721 198.933i 0.0913376 0.588558i
\(339\) −4.18665 −0.0123500
\(340\) −19.7757 89.5472i −0.0581638 0.263374i
\(341\) 186.330 + 91.7531i 0.546421 + 0.269071i
\(342\) 147.415 + 22.8771i 0.431037 + 0.0668921i
\(343\) 186.991 + 186.991i 0.545163 + 0.545163i
\(344\) −87.7133 261.599i −0.254980 0.760462i
\(345\) −20.2033 + 75.9079i −0.0585602 + 0.220023i
\(346\) 272.494 199.280i 0.787556 0.575955i
\(347\) −26.2543 + 26.2543i −0.0756607 + 0.0756607i −0.743924 0.668264i \(-0.767038\pi\)
0.668264 + 0.743924i \(0.267038\pi\)
\(348\) −88.7686 + 45.9296i −0.255082 + 0.131982i
\(349\) 485.924 1.39233 0.696167 0.717880i \(-0.254887\pi\)
0.696167 + 0.717880i \(0.254887\pi\)
\(350\) −401.445 + 44.8208i −1.14698 + 0.128059i
\(351\) 84.5612 0.240915
\(352\) −331.446 + 118.523i −0.941607 + 0.336714i
\(353\) 315.455 + 315.455i 0.893640 + 0.893640i 0.994864 0.101224i \(-0.0322759\pi\)
−0.101224 + 0.994864i \(0.532276\pi\)
\(354\) −40.4965 + 29.6158i −0.114397 + 0.0836605i
\(355\) 25.6371 96.3239i 0.0722172 0.271335i
\(356\) 62.9412 197.905i 0.176801 0.555914i
\(357\) 15.1674 15.1674i 0.0424857 0.0424857i
\(358\) 162.626 + 25.2377i 0.454261 + 0.0704962i
\(359\) 233.875i 0.651463i 0.945462 + 0.325731i \(0.105611\pi\)
−0.945462 + 0.325731i \(0.894389\pi\)
\(360\) 229.057 260.108i 0.636270 0.722522i
\(361\) 286.895 0.794722
\(362\) 401.112 + 62.2480i 1.10804 + 0.171956i
\(363\) 69.4765 + 9.06471i 0.191395 + 0.0249717i
\(364\) −80.9669 + 254.583i −0.222437 + 0.699405i
\(365\) −153.864 + 89.1774i −0.421546 + 0.244322i
\(366\) 74.4032 + 101.738i 0.203287 + 0.277974i
\(367\) −221.548 221.548i −0.603672 0.603672i 0.337613 0.941285i \(-0.390381\pi\)
−0.941285 + 0.337613i \(0.890381\pi\)
\(368\) 427.867 73.2506i 1.16268 0.199051i
\(369\) −216.267 −0.586088
\(370\) −450.326 + 175.345i −1.21710 + 0.473906i
\(371\) −522.439 −1.40819
\(372\) −20.0972 38.8420i −0.0540246 0.104414i
\(373\) 374.690 374.690i 1.00453 1.00453i 0.00454024 0.999990i \(-0.498555\pi\)
0.999990 0.00454024i \(-0.00144521\pi\)
\(374\) 99.3544 17.4509i 0.265654 0.0466601i
\(375\) −72.3806 + 0.363646i −0.193015 + 0.000969724i
\(376\) 5.24914 + 15.6552i 0.0139605 + 0.0416362i
\(377\) −252.246 + 252.246i −0.669087 + 0.669087i
\(378\) 163.317 + 25.3450i 0.432056 + 0.0670502i
\(379\) 3.86152 0.0101887 0.00509435 0.999987i \(-0.498378\pi\)
0.00509435 + 0.999987i \(0.498378\pi\)
\(380\) −92.6245 + 145.131i −0.243749 + 0.381922i
\(381\) 106.501i 0.279530i
\(382\) 88.8017 572.217i 0.232465 1.49795i
\(383\) −56.6369 + 56.6369i −0.147877 + 0.147877i −0.777169 0.629292i \(-0.783345\pi\)
0.629292 + 0.777169i \(0.283345\pi\)
\(384\) 70.9743 + 21.3595i 0.184829 + 0.0556238i
\(385\) −30.0606 443.315i −0.0780794 1.15147i
\(386\) −32.2798 + 23.6068i −0.0836265 + 0.0611576i
\(387\) −211.310 + 211.310i −0.546020 + 0.546020i
\(388\) −207.791 + 107.513i −0.535544 + 0.277095i
\(389\) 35.7773i 0.0919726i −0.998942 0.0459863i \(-0.985357\pi\)
0.998942 0.0459863i \(-0.0146431\pi\)
\(390\) −19.2607 + 43.8244i −0.0493864 + 0.112370i
\(391\) −124.401 −0.318161
\(392\) −57.9919 + 116.498i −0.147939 + 0.297188i
\(393\) 24.7904 24.7904i 0.0630799 0.0630799i
\(394\) 438.217 + 599.215i 1.11223 + 1.52085i
\(395\) 157.846 593.059i 0.399610 1.50142i
\(396\) 274.895 + 264.162i 0.694180 + 0.667076i
\(397\) −415.625 + 415.625i −1.04691 + 1.04691i −0.0480699 + 0.998844i \(0.515307\pi\)
−0.998844 + 0.0480699i \(0.984693\pi\)
\(398\) 586.840 + 91.0709i 1.47447 + 0.228821i
\(399\) −40.2706 −0.100929
\(400\) 168.457 + 362.798i 0.421143 + 0.906994i
\(401\) 53.4611 0.133320 0.0666598 0.997776i \(-0.478766\pi\)
0.0666598 + 0.997776i \(0.478766\pi\)
\(402\) 10.7453 + 1.66754i 0.0267295 + 0.00414812i
\(403\) −110.374 110.374i −0.273880 0.273880i
\(404\) 165.914 521.681i 0.410678 1.29129i
\(405\) −348.175 92.6686i −0.859692 0.228811i
\(406\) −562.779 + 411.571i −1.38616 + 1.01372i
\(407\) −171.165 503.275i −0.420552 1.23655i
\(408\) −19.0151 9.46559i −0.0466055 0.0232000i
\(409\) −58.7179 −0.143565 −0.0717823 0.997420i \(-0.522869\pi\)
−0.0717823 + 0.997420i \(0.522869\pi\)
\(410\) 100.425 228.501i 0.244940 0.557318i
\(411\) 46.1653i 0.112324i
\(412\) −595.026 + 307.871i −1.44424 + 0.747260i
\(413\) −247.474 + 247.474i −0.599211 + 0.599211i
\(414\) −277.538 379.503i −0.670381 0.916674i
\(415\) −201.082 346.941i −0.484535 0.836003i
\(416\) 264.511 4.12548i 0.635844 0.00991702i
\(417\) 88.2803 + 88.2803i 0.211703 + 0.211703i
\(418\) −155.064 108.730i −0.370966 0.260120i
\(419\) 403.360 0.962673 0.481337 0.876536i \(-0.340152\pi\)
0.481337 + 0.876536i \(0.340152\pi\)
\(420\) −50.3343 + 78.8674i −0.119844 + 0.187779i
\(421\) 298.522 0.709079 0.354539 0.935041i \(-0.384638\pi\)
0.354539 + 0.935041i \(0.384638\pi\)
\(422\) 279.483 + 43.3726i 0.662282 + 0.102779i
\(423\) 12.6457 12.6457i 0.0298953 0.0298953i
\(424\) 164.465 + 490.506i 0.387889 + 1.15685i
\(425\) −30.0394 110.625i −0.0706809 0.260294i
\(426\) −13.6286 18.6356i −0.0319920 0.0437456i
\(427\) 621.724 + 621.724i 1.45603 + 1.45603i
\(428\) −293.990 + 152.113i −0.686892 + 0.355404i
\(429\) −47.2403 23.2622i −0.110117 0.0542244i
\(430\) −125.140 321.387i −0.291023 0.747411i
\(431\) −415.527 −0.964101 −0.482050 0.876143i \(-0.660108\pi\)
−0.482050 + 0.876143i \(0.660108\pi\)
\(432\) −27.6168 161.314i −0.0639279 0.373411i
\(433\) −156.674 156.674i −0.361833 0.361833i 0.502654 0.864488i \(-0.332357\pi\)
−0.864488 + 0.502654i \(0.832357\pi\)
\(434\) −180.089 246.252i −0.414951 0.567401i
\(435\) −108.091 + 62.6480i −0.248485 + 0.144018i
\(436\) 504.023 + 160.298i 1.15602 + 0.367656i
\(437\) 165.147 + 165.147i 0.377911 + 0.377911i
\(438\) −6.31681 + 40.7040i −0.0144219 + 0.0929316i
\(439\) 432.686i 0.985617i 0.870138 + 0.492809i \(0.164030\pi\)
−0.870138 + 0.492809i \(0.835970\pi\)
\(440\) −406.755 + 167.780i −0.924444 + 0.381318i
\(441\) 140.946 0.319606
\(442\) −74.9155 11.6260i −0.169492 0.0263033i
\(443\) 212.241 212.241i 0.479099 0.479099i −0.425745 0.904843i \(-0.639988\pi\)
0.904843 + 0.425745i \(0.139988\pi\)
\(444\) −33.9244 + 106.668i −0.0764063 + 0.240244i
\(445\) 66.7672 250.858i 0.150039 0.563726i
\(446\) 698.637 510.927i 1.56645 1.14558i
\(447\) −29.5170 + 29.5170i −0.0660335 + 0.0660335i
\(448\) 512.101 + 71.3126i 1.14308 + 0.159180i
\(449\) 121.061i 0.269624i −0.990871 0.134812i \(-0.956957\pi\)
0.990871 0.134812i \(-0.0430431\pi\)
\(450\) 270.460 338.443i 0.601022 0.752096i
\(451\) 246.311 + 121.289i 0.546144 + 0.268935i
\(452\) 13.2902 + 25.6861i 0.0294031 + 0.0568277i
\(453\) 89.3392 89.3392i 0.197217 0.197217i
\(454\) 255.724 187.016i 0.563269 0.411929i
\(455\) −85.8886 + 322.701i −0.188766 + 0.709234i
\(456\) 12.6773 + 37.8092i 0.0278011 + 0.0829149i
\(457\) 199.697 + 199.697i 0.436973 + 0.436973i 0.890992 0.454019i \(-0.150010\pi\)
−0.454019 + 0.890992i \(0.650010\pi\)
\(458\) 23.8147 153.457i 0.0519972 0.335058i
\(459\) 46.9015i 0.102182i
\(460\) 529.848 117.012i 1.15184 0.254374i
\(461\) 752.016i 1.63127i −0.578567 0.815635i \(-0.696388\pi\)
0.578567 0.815635i \(-0.303612\pi\)
\(462\) −84.2653 59.0866i −0.182392 0.127893i
\(463\) −54.6196 + 54.6196i −0.117969 + 0.117969i −0.763627 0.645658i \(-0.776583\pi\)
0.645658 + 0.763627i \(0.276583\pi\)
\(464\) 563.579 + 398.817i 1.21461 + 0.859520i
\(465\) −27.4125 47.2968i −0.0589517 0.101714i
\(466\) 567.497 415.021i 1.21780 0.890604i
\(467\) −106.562 106.562i −0.228183 0.228183i 0.583750 0.811933i \(-0.301585\pi\)
−0.811933 + 0.583750i \(0.801585\pi\)
\(468\) −131.669 254.478i −0.281344 0.543756i
\(469\) 75.8548 0.161737
\(470\) 7.48890 + 19.2332i 0.0159338 + 0.0409216i
\(471\) 25.5222i 0.0541872i
\(472\) 310.254 + 154.443i 0.657317 + 0.327209i
\(473\) 359.175 122.156i 0.759356 0.258258i
\(474\) −83.9102 114.738i −0.177026 0.242064i
\(475\) −106.981 + 186.738i −0.225223 + 0.393132i
\(476\) −141.204 44.9079i −0.296646 0.0943444i
\(477\) 396.212 396.212i 0.830633 0.830633i
\(478\) −1.08241 + 6.97480i −0.00226446 + 0.0145916i
\(479\) 395.692i 0.826080i 0.910713 + 0.413040i \(0.135533\pi\)
−0.910713 + 0.413040i \(0.864467\pi\)
\(480\) 89.8922 + 22.4301i 0.187275 + 0.0467295i
\(481\) 399.509i 0.830581i
\(482\) −91.3858 + 588.869i −0.189597 + 1.22172i
\(483\) 89.7449 + 89.7449i 0.185807 + 0.185807i
\(484\) −164.934 455.031i −0.340772 0.940146i
\(485\) −253.021 + 146.647i −0.521693 + 0.302366i
\(486\) −215.977 + 157.948i −0.444398 + 0.324996i
\(487\) −191.487 191.487i −0.393197 0.393197i 0.482629 0.875825i \(-0.339682\pi\)
−0.875825 + 0.482629i \(0.839682\pi\)
\(488\) 388.003 779.443i 0.795087 1.59722i
\(489\) 149.920i 0.306585i
\(490\) −65.4495 + 148.919i −0.133570 + 0.303917i
\(491\) 347.979 0.708714 0.354357 0.935110i \(-0.384700\pi\)
0.354357 + 0.935110i \(0.384700\pi\)
\(492\) −26.5667 51.3456i −0.0539973 0.104361i
\(493\) −139.907 139.907i −0.283787 0.283787i
\(494\) 84.0193 + 114.887i 0.170080 + 0.232566i
\(495\) 359.003 + 313.408i 0.725259 + 0.633147i
\(496\) −174.508 + 246.602i −0.351831 + 0.497182i
\(497\) −113.882 113.882i −0.229140 0.229140i
\(498\) −91.7816 14.2435i −0.184300 0.0286014i
\(499\) −278.582 −0.558280 −0.279140 0.960250i \(-0.590049\pi\)
−0.279140 + 0.960250i \(0.590049\pi\)
\(500\) 231.998 + 442.919i 0.463996 + 0.885837i
\(501\) 14.8665i 0.0296736i
\(502\) −144.650 + 932.089i −0.288147 + 1.85675i
\(503\) −386.161 386.161i −0.767716 0.767716i 0.209988 0.977704i \(-0.432657\pi\)
−0.977704 + 0.209988i \(0.932657\pi\)
\(504\) −178.026 530.951i −0.353226 1.05347i
\(505\) 175.999 661.265i 0.348513 1.30944i
\(506\) 103.256 + 587.877i 0.204064 + 1.16181i
\(507\) −41.2142 41.2142i −0.0812903 0.0812903i
\(508\) −653.409 + 338.079i −1.28624 + 0.665510i
\(509\) 581.387i 1.14221i 0.820876 + 0.571107i \(0.193486\pi\)
−0.820876 + 0.571107i \(0.806514\pi\)
\(510\) −24.3070 10.6828i −0.0476608 0.0209468i
\(511\) 287.345i 0.562319i
\(512\) −94.2567 503.249i −0.184095 0.982908i
\(513\) 62.2636 62.2636i 0.121371 0.121371i
\(514\) 68.4590 50.0653i 0.133189 0.0974034i
\(515\) −724.546 + 419.936i −1.40689 + 0.815410i
\(516\) −76.1266 24.2111i −0.147532 0.0469207i
\(517\) −21.4946 + 7.31035i −0.0415756 + 0.0141399i
\(518\) −119.742 + 771.593i −0.231163 + 1.48956i
\(519\) 97.7406i 0.188325i
\(520\) 330.015 20.9483i 0.634644 0.0402852i
\(521\) −824.656 −1.58283 −0.791417 0.611277i \(-0.790656\pi\)
−0.791417 + 0.611277i \(0.790656\pi\)
\(522\) 114.675 738.938i 0.219683 1.41559i
\(523\) −633.360 633.360i −1.21101 1.21101i −0.970694 0.240320i \(-0.922748\pi\)
−0.240320 0.970694i \(-0.577252\pi\)
\(524\) −230.791 73.3999i −0.440440 0.140076i
\(525\) −58.1359 + 101.478i −0.110735 + 0.193291i
\(526\) −472.475 646.059i −0.898242 1.22825i
\(527\) 61.2183 61.2183i 0.116164 0.116164i
\(528\) −28.9482 + 97.7154i −0.0548261 + 0.185067i
\(529\) 207.076i 0.391448i
\(530\) 234.641 + 602.610i 0.442718 + 1.13700i
\(531\) 375.364i 0.706900i
\(532\) 127.836 + 247.070i 0.240294 + 0.464418i
\(533\) −145.904 145.904i −0.273742 0.273742i
\(534\) −35.4932 48.5331i −0.0664666 0.0908860i
\(535\) −357.983 + 207.482i −0.669127 + 0.387816i
\(536\) −23.8793 71.2184i −0.0445509 0.132870i
\(537\) 33.6922 33.6922i 0.0627415 0.0627415i
\(538\) −97.8763 + 630.692i −0.181926 + 1.17229i
\(539\) −160.527 79.0472i −0.297823 0.146655i
\(540\) −44.1157 199.762i −0.0816958 0.369930i
\(541\) 243.388i 0.449885i 0.974372 + 0.224942i \(0.0722194\pi\)
−0.974372 + 0.224942i \(0.927781\pi\)
\(542\) −990.259 153.677i −1.82705 0.283537i
\(543\) 83.1009 83.1009i 0.153040 0.153040i
\(544\) 2.28818 + 146.710i 0.00420621 + 0.269687i
\(545\) 638.882 + 170.042i 1.17226 + 0.312003i
\(546\) 45.6581 + 62.4325i 0.0836228 + 0.114345i
\(547\) 3.14622 3.14622i 0.00575177 0.00575177i −0.704225 0.709977i \(-0.748705\pi\)
0.709977 + 0.704225i \(0.248705\pi\)
\(548\) 283.235 146.548i 0.516853 0.267424i
\(549\) −943.019 −1.71770
\(550\) −497.843 + 233.778i −0.905170 + 0.425051i
\(551\) 371.464i 0.674164i
\(552\) 56.0076 112.511i 0.101463 0.203825i
\(553\) −701.166 701.166i −1.26793 1.26793i
\(554\) −367.517 502.541i −0.663389 0.907113i
\(555\) −35.9866 + 135.209i −0.0648407 + 0.243620i
\(556\) 261.382 821.861i 0.470112 1.47817i
\(557\) −327.259 327.259i −0.587539 0.587539i 0.349425 0.936964i \(-0.386377\pi\)
−0.936964 + 0.349425i \(0.886377\pi\)
\(558\) 323.333 + 50.1776i 0.579449 + 0.0899240i
\(559\) −285.120 −0.510054
\(560\) 643.654 + 58.4549i 1.14938 + 0.104384i
\(561\) 12.9023 26.2016i 0.0229987 0.0467052i
\(562\) 67.2128 433.104i 0.119596 0.770647i
\(563\) 313.787 + 313.787i 0.557347 + 0.557347i 0.928551 0.371204i \(-0.121055\pi\)
−0.371204 + 0.928551i \(0.621055\pi\)
\(564\) 4.55574 + 1.44889i 0.00807756 + 0.00256896i
\(565\) 18.1279 + 31.2773i 0.0320847 + 0.0553580i
\(566\) 221.209 + 302.480i 0.390829 + 0.534417i
\(567\) −411.643 + 411.643i −0.726002 + 0.726002i
\(568\) −71.0712 + 142.772i −0.125125 + 0.251359i
\(569\) 71.5070 0.125671 0.0628356 0.998024i \(-0.479986\pi\)
0.0628356 + 0.998024i \(0.479986\pi\)
\(570\) 18.0866 + 46.4504i 0.0317309 + 0.0814919i
\(571\) −368.763 −0.645820 −0.322910 0.946430i \(-0.604661\pi\)
−0.322910 + 0.946430i \(0.604661\pi\)
\(572\) 7.24119 + 363.675i 0.0126594 + 0.635796i
\(573\) −118.550 118.550i −0.206894 0.206894i
\(574\) −238.061 325.523i −0.414741 0.567114i
\(575\) 654.565 177.742i 1.13837 0.309117i
\(576\) −442.455 + 334.289i −0.768150 + 0.580363i
\(577\) 104.454 104.454i 0.181029 0.181029i −0.610775 0.791804i \(-0.709142\pi\)
0.791804 + 0.610775i \(0.209142\pi\)
\(578\) −82.1897 + 529.612i −0.142197 + 0.916283i
\(579\) 11.5784i 0.0199972i
\(580\) 727.488 + 464.294i 1.25429 + 0.800506i
\(581\) −647.920 −1.11518
\(582\) −10.3877 + 66.9356i −0.0178482 + 0.115010i
\(583\) −673.464 + 229.046i −1.15517 + 0.392875i
\(584\) 269.782 90.4568i 0.461955 0.154892i
\(585\) −179.596 309.871i −0.307003 0.529693i
\(586\) −279.728 + 204.571i −0.477352 + 0.349097i
\(587\) 650.785 + 650.785i 1.10866 + 1.10866i 0.993326 + 0.115337i \(0.0367947\pi\)
0.115337 + 0.993326i \(0.463205\pi\)
\(588\) 17.3141 + 33.4632i 0.0294458 + 0.0569102i
\(589\) −162.540 −0.275958
\(590\) 396.598 + 174.303i 0.672200 + 0.295430i
\(591\) 214.932 0.363674
\(592\) 762.126 130.476i 1.28738 0.220398i
\(593\) −238.338 + 238.338i −0.401919 + 0.401919i −0.878909 0.476990i \(-0.841728\pi\)
0.476990 + 0.878909i \(0.341728\pi\)
\(594\) 221.640 38.9295i 0.373132 0.0655378i
\(595\) −178.985 47.6377i −0.300815 0.0800634i
\(596\) 274.793 + 87.3944i 0.461063 + 0.146635i
\(597\) 121.579 121.579i 0.203651 0.203651i
\(598\) 68.7909 443.272i 0.115035 0.741258i
\(599\) −154.795 −0.258422 −0.129211 0.991617i \(-0.541244\pi\)
−0.129211 + 0.991617i \(0.541244\pi\)
\(600\) 113.576 + 22.6370i 0.189294 + 0.0377284i
\(601\) 77.7110i 0.129303i −0.997908 0.0646514i \(-0.979406\pi\)
0.997908 0.0646514i \(-0.0205936\pi\)
\(602\) −550.668 85.4574i −0.914730 0.141956i
\(603\) −57.5275 + 57.5275i −0.0954022 + 0.0954022i
\(604\) −831.719 264.517i −1.37702 0.437942i
\(605\) −233.107 558.288i −0.385302 0.922791i
\(606\) −93.5605 127.934i −0.154390 0.211112i
\(607\) 177.528 177.528i 0.292467 0.292467i −0.545587 0.838054i \(-0.683693\pi\)
0.838054 + 0.545587i \(0.183693\pi\)
\(608\) 191.726 197.801i 0.315338 0.325331i
\(609\) 201.862i 0.331465i
\(610\) 437.899 996.364i 0.717867 1.63338i
\(611\) 17.0628 0.0279261
\(612\) 141.145 73.0296i 0.230629 0.119329i
\(613\) −828.826 + 828.826i −1.35208 + 1.35208i −0.468750 + 0.883331i \(0.655295\pi\)
−0.883331 + 0.468750i \(0.844705\pi\)
\(614\) −792.429 + 579.519i −1.29060 + 0.943841i
\(615\) −36.2369 62.5221i −0.0589218 0.101662i
\(616\) −95.0168 + 704.555i −0.154248 + 1.14376i
\(617\) 530.940 530.940i 0.860518 0.860518i −0.130880 0.991398i \(-0.541780\pi\)
0.991398 + 0.130880i \(0.0417803\pi\)
\(618\) −29.7458 + 191.675i −0.0481324 + 0.310154i
\(619\) 833.885 1.34715 0.673574 0.739120i \(-0.264758\pi\)
0.673574 + 0.739120i \(0.264758\pi\)
\(620\) −203.158 + 318.323i −0.327675 + 0.513424i
\(621\) −277.514 −0.446883
\(622\) 88.3719 569.448i 0.142077 0.915512i
\(623\) −296.586 296.586i −0.476061 0.476061i
\(624\) 44.2432 62.5213i 0.0709026 0.100194i
\(625\) 316.119 + 539.160i 0.505790 + 0.862657i
\(626\) −277.158 378.983i −0.442744 0.605405i
\(627\) −51.9120 + 17.6554i −0.0827942 + 0.0281585i
\(628\) −156.585 + 81.0183i −0.249339 + 0.129010i
\(629\) −221.586 −0.352283
\(630\) −253.988 652.298i −0.403156 1.03539i
\(631\) 1069.68i 1.69522i −0.530618 0.847611i \(-0.678040\pi\)
0.530618 0.847611i \(-0.321960\pi\)
\(632\) −437.580 + 879.038i −0.692374 + 1.39088i
\(633\) 57.9023 57.9023i 0.0914729 0.0914729i
\(634\) 396.675 290.096i 0.625670 0.457564i
\(635\) −795.637 + 461.140i −1.25297 + 0.726204i
\(636\) 142.740 + 45.3964i 0.224433 + 0.0713780i
\(637\) 95.0893 + 95.0893i 0.149277 + 0.149277i
\(638\) −545.026 + 777.279i −0.854273 + 1.21831i
\(639\) 172.735 0.270320
\(640\) −147.742 622.714i −0.230847 0.972990i
\(641\) −136.206 −0.212490 −0.106245 0.994340i \(-0.533883\pi\)
−0.106245 + 0.994340i \(0.533883\pi\)
\(642\) −14.6968 + 94.7027i −0.0228922 + 0.147512i
\(643\) −336.492 + 336.492i −0.523316 + 0.523316i −0.918571 0.395255i \(-0.870656\pi\)
0.395255 + 0.918571i \(0.370656\pi\)
\(644\) 265.719 835.496i 0.412606 1.29735i
\(645\) −96.4955 25.6828i −0.149605 0.0398182i
\(646\) −63.7217 + 46.6009i −0.0986405 + 0.0721376i
\(647\) −74.0333 74.0333i −0.114425 0.114425i 0.647576 0.762001i \(-0.275783\pi\)
−0.762001 + 0.647576i \(0.775783\pi\)
\(648\) 516.069 + 256.896i 0.796402 + 0.396445i
\(649\) −210.517 + 427.511i −0.324371 + 0.658722i
\(650\) 410.797 45.8649i 0.631995 0.0705614i
\(651\) −88.3278 −0.135680
\(652\) 919.797 475.911i 1.41073 0.729925i
\(653\) 125.770 + 125.770i 0.192604 + 0.192604i 0.796820 0.604216i \(-0.206514\pi\)
−0.604216 + 0.796820i \(0.706514\pi\)
\(654\) 123.604 90.3936i 0.188996 0.138217i
\(655\) −292.542 77.8617i −0.446630 0.118873i
\(656\) −230.684 + 325.986i −0.351653 + 0.496930i
\(657\) −217.919 217.919i −0.331689 0.331689i
\(658\) 32.9543 + 5.11414i 0.0500825 + 0.00777224i
\(659\) 686.144i 1.04119i 0.853804 + 0.520595i \(0.174290\pi\)
−0.853804 + 0.520595i \(0.825710\pi\)
\(660\) −30.3080 + 123.734i −0.0459213 + 0.187475i
\(661\) 600.757 0.908861 0.454431 0.890782i \(-0.349843\pi\)
0.454431 + 0.890782i \(0.349843\pi\)
\(662\) −63.9715 + 412.218i −0.0966337 + 0.622685i
\(663\) −15.5207 + 15.5207i −0.0234098 + 0.0234098i
\(664\) 203.967 + 608.318i 0.307179 + 0.916142i
\(665\) 174.369 + 300.851i 0.262208 + 0.452407i
\(666\) −494.357 675.980i −0.742277 1.01498i
\(667\) 827.825 827.825i 1.24112 1.24112i
\(668\) 91.2096 47.1926i 0.136541 0.0706476i
\(669\) 250.593i 0.374579i
\(670\) −34.0684 87.4952i −0.0508483 0.130590i
\(671\) 1074.03 + 528.876i 1.60063 + 0.788191i
\(672\) 104.188 107.490i 0.155042 0.159955i
\(673\) 396.755 396.755i 0.589532 0.589532i −0.347972 0.937505i \(-0.613130\pi\)
0.937505 + 0.347972i \(0.113130\pi\)
\(674\) 249.328 + 340.929i 0.369923 + 0.505829i
\(675\) −67.0120 246.783i −0.0992771 0.365605i
\(676\) −122.028 + 383.691i −0.180514 + 0.567590i
\(677\) 809.653 + 809.653i 1.19594 + 1.19594i 0.975371 + 0.220571i \(0.0707920\pi\)
0.220571 + 0.975371i \(0.429208\pi\)
\(678\) 8.27426 + 1.28407i 0.0122039 + 0.00189391i
\(679\) 472.523i 0.695910i
\(680\) 11.6189 + 183.041i 0.0170866 + 0.269178i
\(681\) 91.7253i 0.134692i
\(682\) −340.110 238.484i −0.498695 0.349683i
\(683\) −247.548 + 247.548i −0.362443 + 0.362443i −0.864711 0.502269i \(-0.832499\pi\)
0.502269 + 0.864711i \(0.332499\pi\)
\(684\) −284.325 90.4260i −0.415680 0.132202i
\(685\) 344.888 199.892i 0.503486 0.291813i
\(686\) −312.207 426.909i −0.455112 0.622317i
\(687\) −31.7926 31.7926i −0.0462774 0.0462774i
\(688\) 93.1175 + 543.912i 0.135345 + 0.790569i
\(689\) 534.609 0.775920
\(690\) 63.2100 143.824i 0.0916087 0.208440i
\(691\) 709.600i 1.02692i −0.858114 0.513459i \(-0.828364\pi\)
0.858114 0.513459i \(-0.171636\pi\)
\(692\) −599.663 + 310.270i −0.866565 + 0.448368i
\(693\) 728.995 247.932i 1.05194 0.357767i
\(694\) 59.9398 43.8351i 0.0863686 0.0631630i
\(695\) 277.271 1041.76i 0.398950 1.49894i
\(696\) 189.524 63.5468i 0.272305 0.0913029i
\(697\) 80.9251 80.9251i 0.116105 0.116105i
\(698\) −960.353 149.036i −1.37586 0.213519i
\(699\) 203.555i 0.291208i
\(700\) 807.139 + 34.5443i 1.15306 + 0.0493490i
\(701\) 467.864i 0.667424i −0.942675 0.333712i \(-0.891699\pi\)
0.942675 0.333712i \(-0.108301\pi\)
\(702\) −167.122 25.9354i −0.238065 0.0369450i
\(703\) 294.164 + 294.164i 0.418441 + 0.418441i
\(704\) 691.402 132.586i 0.982105 0.188333i
\(705\) 5.77471 + 1.53697i 0.00819107 + 0.00218010i
\(706\) −526.695 720.199i −0.746027 1.02011i
\(707\) −781.805 781.805i −1.10581 1.10581i
\(708\) 89.1183 46.1105i 0.125873 0.0651279i
\(709\) 798.950i 1.12687i 0.826161 + 0.563435i \(0.190520\pi\)
−0.826161 + 0.563435i \(0.809480\pi\)
\(710\) −80.2108 + 182.506i −0.112973 + 0.257051i
\(711\) 1063.51 1.49580
\(712\) −185.092 + 371.824i −0.259961 + 0.522225i
\(713\) 362.227 + 362.227i 0.508032 + 0.508032i
\(714\) −34.6279 + 25.3240i −0.0484985 + 0.0354678i
\(715\) 30.7608 + 453.642i 0.0430222 + 0.634465i
\(716\) −313.663 99.7565i −0.438077 0.139325i
\(717\) 1.44501 + 1.44501i 0.00201536 + 0.00201536i
\(718\) 71.7309 462.218i 0.0999038 0.643757i
\(719\) 1250.29 1.73893 0.869464 0.493997i \(-0.164465\pi\)
0.869464 + 0.493997i \(0.164465\pi\)
\(720\) −532.472 + 443.809i −0.739545 + 0.616401i
\(721\) 1353.11i 1.87671i
\(722\) −567.002 87.9923i −0.785321 0.121873i
\(723\) 122.000 + 122.000i 0.168741 + 0.168741i
\(724\) −773.643 246.047i −1.06857 0.339844i
\(725\) 936.050 + 536.257i 1.29110 + 0.739664i
\(726\) −134.529 39.2238i −0.185302 0.0540273i
\(727\) −716.466 716.466i −0.985510 0.985510i 0.0143862 0.999897i \(-0.495421\pi\)
−0.999897 + 0.0143862i \(0.995421\pi\)
\(728\) 238.101 478.311i 0.327061 0.657021i
\(729\) 571.065i 0.783354i
\(730\) 331.439 129.054i 0.454027 0.176786i
\(731\) 158.141i 0.216335i
\(732\) −115.842 223.890i −0.158255 0.305861i
\(733\) −151.891 + 151.891i −0.207218 + 0.207218i −0.803084 0.595866i \(-0.796809\pi\)
0.595866 + 0.803084i \(0.296809\pi\)
\(734\) 369.904 + 505.804i 0.503957 + 0.689107i
\(735\) 23.6165 + 40.7472i 0.0321312 + 0.0554383i
\(736\) −868.078 + 13.5391i −1.17945 + 0.0183955i
\(737\) 97.7828 33.2561i 0.132677 0.0451236i
\(738\) 427.417 + 66.3303i 0.579156 + 0.0898785i
\(739\) 552.234i 0.747272i 0.927575 + 0.373636i \(0.121889\pi\)
−0.927575 + 0.373636i \(0.878111\pi\)
\(740\) 943.778 208.425i 1.27538 0.281655i
\(741\) 41.2088 0.0556124
\(742\) 1032.52 + 160.235i 1.39153 + 0.215950i
\(743\) 380.861 + 380.861i 0.512599 + 0.512599i 0.915322 0.402723i \(-0.131936\pi\)
−0.402723 + 0.915322i \(0.631936\pi\)
\(744\) 27.8058 + 82.9290i 0.0373734 + 0.111464i
\(745\) 348.319 + 92.7068i 0.467542 + 0.124439i
\(746\) −855.435 + 625.596i −1.14670 + 0.838600i
\(747\) 491.376 491.376i 0.657800 0.657800i
\(748\) −201.711 + 4.01629i −0.269667 + 0.00536938i
\(749\) 668.541i 0.892579i
\(750\) 143.160 + 21.4809i 0.190881 + 0.0286412i
\(751\) 835.186i 1.11210i 0.831149 + 0.556049i \(0.187683\pi\)
−0.831149 + 0.556049i \(0.812317\pi\)
\(752\) −5.57255 32.5500i −0.00741031 0.0432846i
\(753\) 193.107 + 193.107i 0.256450 + 0.256450i
\(754\) 575.890 421.159i 0.763779 0.558566i
\(755\) −1054.26 280.596i −1.39637 0.371651i
\(756\) −314.997 100.181i −0.416663 0.132514i
\(757\) 1004.56 1004.56i 1.32703 1.32703i 0.419074 0.907952i \(-0.362355\pi\)
0.907952 0.419074i \(-0.137645\pi\)
\(758\) −7.63169 1.18435i −0.0100682 0.00156247i
\(759\) 155.034 + 76.3424i 0.204261 + 0.100583i
\(760\) 227.570 258.419i 0.299434 0.340025i
\(761\) 499.749i 0.656701i 0.944556 + 0.328350i \(0.106493\pi\)
−0.944556 + 0.328350i \(0.893507\pi\)
\(762\) −32.6644 + 210.482i −0.0428667 + 0.276223i
\(763\) 755.342 755.342i 0.989964 0.989964i
\(764\) −351.005 + 1103.66i −0.459431 + 1.44458i
\(765\) 171.868 99.6123i 0.224664 0.130212i
\(766\) 129.305 94.5631i 0.168805 0.123451i
\(767\) 253.239 253.239i 0.330169 0.330169i
\(768\) −133.718 63.9820i −0.174113 0.0833099i
\(769\) 120.210 0.156320 0.0781598 0.996941i \(-0.475096\pi\)
0.0781598 + 0.996941i \(0.475096\pi\)
\(770\) −76.5574 + 885.362i −0.0994252 + 1.14982i
\(771\) 24.5554i 0.0318488i
\(772\) 71.0363 36.7548i 0.0920160 0.0476098i