Properties

Label 220.3.i.a.43.3
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.3
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.97731 - 0.300385i) q^{2} +(3.24619 - 3.24619i) q^{3} +(3.81954 + 1.18791i) q^{4} +(1.98058 - 4.59100i) q^{5} +(-7.39385 + 5.44363i) q^{6} +(7.61337 - 7.61337i) q^{7} +(-7.19559 - 3.49620i) q^{8} -12.0755i q^{9} +(-5.29530 + 8.48291i) q^{10} +(-6.09319 + 9.15823i) q^{11} +(16.2551 - 8.54277i) q^{12} +(4.80206 - 4.80206i) q^{13} +(-17.3410 + 12.7671i) q^{14} +(-8.47392 - 21.3326i) q^{15} +(13.1777 + 9.07454i) q^{16} +(14.5907 + 14.5907i) q^{17} +(-3.62731 + 23.8771i) q^{18} +20.7331i q^{19} +(13.0186 - 15.1827i) q^{20} -49.4289i q^{21} +(14.7991 - 16.2784i) q^{22} +(-29.0675 + 29.0675i) q^{23} +(-34.7076 + 12.0089i) q^{24} +(-17.1546 - 18.1857i) q^{25} +(-10.9376 + 8.05270i) q^{26} +(-9.98374 - 9.98374i) q^{27} +(38.1236 - 20.0356i) q^{28} +1.92818 q^{29} +(10.3476 + 44.7267i) q^{30} -8.59885i q^{31} +(-23.3307 - 21.9016i) q^{32} +(9.94971 + 49.5090i) q^{33} +(-24.4675 - 33.2331i) q^{34} +(-19.8741 - 50.0319i) q^{35} +(14.3446 - 46.1229i) q^{36} +(17.6719 - 17.6719i) q^{37} +(6.22791 - 40.9959i) q^{38} -31.1768i q^{39} +(-30.3025 + 26.1105i) q^{40} -5.50642i q^{41} +(-14.8477 + 97.7365i) q^{42} +(-45.1761 - 45.1761i) q^{43} +(-34.1523 + 27.7420i) q^{44} +(-55.4387 - 23.9166i) q^{45} +(66.2070 - 48.7441i) q^{46} +(16.6738 + 16.6738i) q^{47} +(72.2352 - 13.3198i) q^{48} -66.9268i q^{49} +(28.4573 + 41.1118i) q^{50} +94.7281 q^{51} +(24.0460 - 12.6372i) q^{52} +(31.2455 + 31.2455i) q^{53} +(16.7420 + 22.7399i) q^{54} +(29.9774 + 46.1124i) q^{55} +(-81.4006 + 28.1648i) q^{56} +(67.3036 + 67.3036i) q^{57} +(-3.81261 - 0.579196i) q^{58} -70.3798 q^{59} +(-7.02523 - 91.5470i) q^{60} +27.2372i q^{61} +(-2.58296 + 17.0026i) q^{62} +(-91.9354 - 91.9354i) q^{63} +(39.5531 + 50.3145i) q^{64} +(-12.5354 - 31.5571i) q^{65} +(-4.80193 - 100.884i) q^{66} +(40.1755 + 40.1755i) q^{67} +(38.3972 + 73.0620i) q^{68} +188.717i q^{69} +(24.2685 + 104.899i) q^{70} -18.0249i q^{71} +(-42.2185 + 86.8906i) q^{72} +(-20.1988 + 20.1988i) q^{73} +(-40.2513 + 29.6345i) q^{74} +(-114.721 - 3.34721i) q^{75} +(-24.6291 + 79.1909i) q^{76} +(23.3353 + 116.115i) q^{77} +(-9.36504 + 61.6463i) q^{78} +63.7129i q^{79} +(67.7608 - 42.5261i) q^{80} +43.8614 q^{81} +(-1.65405 + 10.8879i) q^{82} +(60.3034 + 60.3034i) q^{83} +(58.7171 - 188.796i) q^{84} +(95.8837 - 38.0877i) q^{85} +(75.7572 + 102.898i) q^{86} +(6.25923 - 6.25923i) q^{87} +(75.8631 - 44.5958i) q^{88} -158.122i q^{89} +(102.436 + 63.9435i) q^{90} -73.1197i q^{91} +(-145.554 + 76.4948i) q^{92} +(-27.9135 - 27.9135i) q^{93} +(-27.9608 - 37.9780i) q^{94} +(95.1857 + 41.0636i) q^{95} +(-146.833 + 4.63901i) q^{96} +(-42.2823 + 42.2823i) q^{97} +(-20.1038 + 132.335i) q^{98} +(110.590 + 73.5784i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.97731 0.300385i −0.988657 0.150192i
\(3\) 3.24619 3.24619i 1.08206 1.08206i 0.0857470 0.996317i \(-0.472672\pi\)
0.996317 0.0857470i \(-0.0273277\pi\)
\(4\) 3.81954 + 1.18791i 0.954884 + 0.296978i
\(5\) 1.98058 4.59100i 0.396116 0.918200i
\(6\) −7.39385 + 5.44363i −1.23231 + 0.907272i
\(7\) 7.61337 7.61337i 1.08762 1.08762i 0.0918517 0.995773i \(-0.470721\pi\)
0.995773 0.0918517i \(-0.0292786\pi\)
\(8\) −7.19559 3.49620i −0.899449 0.437025i
\(9\) 12.0755i 1.34172i
\(10\) −5.29530 + 8.48291i −0.529530 + 0.848291i
\(11\) −6.09319 + 9.15823i −0.553926 + 0.832566i
\(12\) 16.2551 8.54277i 1.35459 0.711897i
\(13\) 4.80206 4.80206i 0.369389 0.369389i −0.497865 0.867254i \(-0.665883\pi\)
0.867254 + 0.497865i \(0.165883\pi\)
\(14\) −17.3410 + 12.7671i −1.23864 + 0.911934i
\(15\) −8.47392 21.3326i −0.564928 1.42217i
\(16\) 13.1777 + 9.07454i 0.823609 + 0.567159i
\(17\) 14.5907 + 14.5907i 0.858274 + 0.858274i 0.991135 0.132861i \(-0.0424163\pi\)
−0.132861 + 0.991135i \(0.542416\pi\)
\(18\) −3.62731 + 23.8771i −0.201517 + 1.32651i
\(19\) 20.7331i 1.09122i 0.838040 + 0.545608i \(0.183701\pi\)
−0.838040 + 0.545608i \(0.816299\pi\)
\(20\) 13.0186 15.1827i 0.650930 0.759137i
\(21\) 49.4289i 2.35376i
\(22\) 14.7991 16.2784i 0.672688 0.739926i
\(23\) −29.0675 + 29.0675i −1.26380 + 1.26380i −0.314569 + 0.949234i \(0.601860\pi\)
−0.949234 + 0.314569i \(0.898140\pi\)
\(24\) −34.7076 + 12.0089i −1.44615 + 0.500372i
\(25\) −17.1546 18.1857i −0.686184 0.727428i
\(26\) −10.9376 + 8.05270i −0.420678 + 0.309719i
\(27\) −9.98374 9.98374i −0.369768 0.369768i
\(28\) 38.1236 20.0356i 1.36156 0.715555i
\(29\) 1.92818 0.0664889 0.0332444 0.999447i \(-0.489416\pi\)
0.0332444 + 0.999447i \(0.489416\pi\)
\(30\) 10.3476 + 44.7267i 0.344920 + 1.49089i
\(31\) 8.59885i 0.277382i −0.990336 0.138691i \(-0.955710\pi\)
0.990336 0.138691i \(-0.0442895\pi\)
\(32\) −23.3307 21.9016i −0.729083 0.684425i
\(33\) 9.94971 + 49.5090i 0.301506 + 1.50027i
\(34\) −24.4675 33.2331i −0.719632 0.977445i
\(35\) −19.8741 50.0319i −0.567831 1.42948i
\(36\) 14.3446 46.1229i 0.398462 1.28119i
\(37\) 17.6719 17.6719i 0.477619 0.477619i −0.426750 0.904369i \(-0.640342\pi\)
0.904369 + 0.426750i \(0.140342\pi\)
\(38\) 6.22791 40.9959i 0.163892 1.07884i
\(39\) 31.1768i 0.799405i
\(40\) −30.3025 + 26.1105i −0.757563 + 0.652762i
\(41\) 5.50642i 0.134303i −0.997743 0.0671515i \(-0.978609\pi\)
0.997743 0.0671515i \(-0.0213911\pi\)
\(42\) −14.8477 + 97.7365i −0.353517 + 2.32706i
\(43\) −45.1761 45.1761i −1.05061 1.05061i −0.998649 0.0519587i \(-0.983454\pi\)
−0.0519587 0.998649i \(-0.516546\pi\)
\(44\) −34.1523 + 27.7420i −0.776189 + 0.630501i
\(45\) −55.4387 23.9166i −1.23197 0.531479i
\(46\) 66.2070 48.7441i 1.43928 1.05965i
\(47\) 16.6738 + 16.6738i 0.354763 + 0.354763i 0.861878 0.507116i \(-0.169288\pi\)
−0.507116 + 0.861878i \(0.669288\pi\)
\(48\) 72.2352 13.3198i 1.50490 0.277495i
\(49\) 66.9268i 1.36585i
\(50\) 28.4573 + 41.1118i 0.569146 + 0.822237i
\(51\) 94.7281 1.85741
\(52\) 24.0460 12.6372i 0.462424 0.243023i
\(53\) 31.2455 + 31.2455i 0.589538 + 0.589538i 0.937506 0.347968i \(-0.113128\pi\)
−0.347968 + 0.937506i \(0.613128\pi\)
\(54\) 16.7420 + 22.7399i 0.310037 + 0.421110i
\(55\) 29.9774 + 46.1124i 0.545043 + 0.838408i
\(56\) −81.4006 + 28.1648i −1.45358 + 0.502943i
\(57\) 67.3036 + 67.3036i 1.18077 + 1.18077i
\(58\) −3.81261 0.579196i −0.0657347 0.00998613i
\(59\) −70.3798 −1.19288 −0.596439 0.802658i \(-0.703418\pi\)
−0.596439 + 0.802658i \(0.703418\pi\)
\(60\) −7.02523 91.5470i −0.117087 1.52578i
\(61\) 27.2372i 0.446511i 0.974760 + 0.223256i \(0.0716685\pi\)
−0.974760 + 0.223256i \(0.928331\pi\)
\(62\) −2.58296 + 17.0026i −0.0416607 + 0.274236i
\(63\) −91.9354 91.9354i −1.45929 1.45929i
\(64\) 39.5531 + 50.3145i 0.618018 + 0.786164i
\(65\) −12.5354 31.5571i −0.192852 0.485494i
\(66\) −4.80193 100.884i −0.0727565 1.52854i
\(67\) 40.1755 + 40.1755i 0.599634 + 0.599634i 0.940215 0.340581i \(-0.110624\pi\)
−0.340581 + 0.940215i \(0.610624\pi\)
\(68\) 38.3972 + 73.0620i 0.564664 + 1.07444i
\(69\) 188.717i 2.73503i
\(70\) 24.2685 + 104.899i 0.346693 + 1.49855i
\(71\) 18.0249i 0.253872i −0.991911 0.126936i \(-0.959486\pi\)
0.991911 0.126936i \(-0.0405144\pi\)
\(72\) −42.2185 + 86.8906i −0.586368 + 1.20681i
\(73\) −20.1988 + 20.1988i −0.276695 + 0.276695i −0.831788 0.555093i \(-0.812683\pi\)
0.555093 + 0.831788i \(0.312683\pi\)
\(74\) −40.2513 + 29.6345i −0.543936 + 0.400467i
\(75\) −114.721 3.34721i −1.52962 0.0446294i
\(76\) −24.6291 + 79.1909i −0.324067 + 1.04199i
\(77\) 23.3353 + 116.115i 0.303056 + 1.50798i
\(78\) −9.36504 + 61.6463i −0.120065 + 0.790337i
\(79\) 63.7129i 0.806493i 0.915091 + 0.403246i \(0.132118\pi\)
−0.915091 + 0.403246i \(0.867882\pi\)
\(80\) 67.7608 42.5261i 0.847010 0.531577i
\(81\) 43.8614 0.541499
\(82\) −1.65405 + 10.8879i −0.0201713 + 0.132780i
\(83\) 60.3034 + 60.3034i 0.726547 + 0.726547i 0.969930 0.243383i \(-0.0782572\pi\)
−0.243383 + 0.969930i \(0.578257\pi\)
\(84\) 58.7171 188.796i 0.699014 2.24757i
\(85\) 95.8837 38.0877i 1.12804 0.448091i
\(86\) 75.7572 + 102.898i 0.880897 + 1.19648i
\(87\) 6.25923 6.25923i 0.0719452 0.0719452i
\(88\) 75.8631 44.5958i 0.862081 0.506771i
\(89\) 158.122i 1.77665i −0.459211 0.888327i \(-0.651868\pi\)
0.459211 0.888327i \(-0.348132\pi\)
\(90\) 102.436 + 63.9435i 1.13817 + 0.710483i
\(91\) 73.1197i 0.803513i
\(92\) −145.554 + 76.4948i −1.58211 + 0.831465i
\(93\) −27.9135 27.9135i −0.300145 0.300145i
\(94\) −27.9608 37.9780i −0.297456 0.404021i
\(95\) 95.1857 + 41.0636i 1.00195 + 0.432249i
\(96\) −146.833 + 4.63901i −1.52951 + 0.0483230i
\(97\) −42.2823 + 42.2823i −0.435899 + 0.435899i −0.890629 0.454730i \(-0.849736\pi\)
0.454730 + 0.890629i \(0.349736\pi\)
\(98\) −20.1038 + 132.335i −0.205141 + 1.35036i
\(99\) 110.590 + 73.5784i 1.11707 + 0.743216i
\(100\) −43.9196 89.8391i −0.439196 0.898391i
\(101\) 29.8413i 0.295459i −0.989028 0.147729i \(-0.952804\pi\)
0.989028 0.147729i \(-0.0471965\pi\)
\(102\) −187.307 28.4549i −1.83635 0.278970i
\(103\) 19.5770 19.5770i 0.190068 0.190068i −0.605658 0.795725i \(-0.707090\pi\)
0.795725 + 0.605658i \(0.207090\pi\)
\(104\) −51.3426 + 17.7647i −0.493679 + 0.170814i
\(105\) −226.928 97.8980i −2.16122 0.932362i
\(106\) −52.3965 71.1679i −0.494307 0.671395i
\(107\) −35.0360 + 35.0360i −0.327439 + 0.327439i −0.851612 0.524173i \(-0.824375\pi\)
0.524173 + 0.851612i \(0.324375\pi\)
\(108\) −26.2735 49.9931i −0.243273 0.462899i
\(109\) 158.734 1.45628 0.728140 0.685429i \(-0.240385\pi\)
0.728140 + 0.685429i \(0.240385\pi\)
\(110\) −45.4232 100.184i −0.412938 0.910759i
\(111\) 114.733i 1.03363i
\(112\) 169.415 31.2392i 1.51263 0.278921i
\(113\) −75.0963 75.0963i −0.664569 0.664569i 0.291885 0.956453i \(-0.405718\pi\)
−0.956453 + 0.291885i \(0.905718\pi\)
\(114\) −112.863 153.297i −0.990030 1.34471i
\(115\) 75.8783 + 191.019i 0.659812 + 1.66104i
\(116\) 7.36475 + 2.29050i 0.0634892 + 0.0197457i
\(117\) −57.9873 57.9873i −0.495618 0.495618i
\(118\) 139.163 + 21.1410i 1.17935 + 0.179161i
\(119\) 222.168 1.86696
\(120\) −13.6083 + 183.127i −0.113402 + 1.52606i
\(121\) −46.7462 111.606i −0.386332 0.922360i
\(122\) 8.18165 53.8565i 0.0670627 0.441447i
\(123\) −17.8749 17.8749i −0.145324 0.145324i
\(124\) 10.2147 32.8436i 0.0823763 0.264868i
\(125\) −117.467 + 42.7385i −0.939734 + 0.341908i
\(126\) 154.169 + 209.401i 1.22356 + 1.66191i
\(127\) 90.0794 90.0794i 0.709286 0.709286i −0.257099 0.966385i \(-0.582767\pi\)
0.966385 + 0.257099i \(0.0827666\pi\)
\(128\) −63.0952 111.369i −0.492931 0.870068i
\(129\) −293.301 −2.27365
\(130\) 15.3071 + 66.1637i 0.117747 + 0.508952i
\(131\) −134.972 −1.03032 −0.515161 0.857093i \(-0.672268\pi\)
−0.515161 + 0.857093i \(0.672268\pi\)
\(132\) −20.8090 + 200.921i −0.157644 + 1.52213i
\(133\) 157.849 + 157.849i 1.18683 + 1.18683i
\(134\) −67.3714 91.5076i −0.502772 0.682893i
\(135\) −65.6090 + 26.0617i −0.485992 + 0.193050i
\(136\) −53.9765 156.000i −0.396886 1.14706i
\(137\) 96.1568 96.1568i 0.701874 0.701874i −0.262938 0.964813i \(-0.584692\pi\)
0.964813 + 0.262938i \(0.0846916\pi\)
\(138\) 56.6878 373.153i 0.410781 2.70401i
\(139\) 265.052i 1.90685i 0.301628 + 0.953426i \(0.402470\pi\)
−0.301628 + 0.953426i \(0.597530\pi\)
\(140\) −16.4764 214.707i −0.117689 1.53362i
\(141\) 108.253 0.767752
\(142\) −5.41442 + 35.6410i −0.0381297 + 0.250993i
\(143\) 14.7185 + 73.2381i 0.102927 + 0.512155i
\(144\) 109.580 159.128i 0.760971 1.10506i
\(145\) 3.81891 8.85227i 0.0263373 0.0610501i
\(146\) 46.0067 33.8719i 0.315114 0.231999i
\(147\) −217.257 217.257i −1.47794 1.47794i
\(148\) 88.4912 46.5059i 0.597913 0.314229i
\(149\) −176.929 −1.18744 −0.593721 0.804671i \(-0.702342\pi\)
−0.593721 + 0.804671i \(0.702342\pi\)
\(150\) 225.835 + 41.0791i 1.50556 + 0.273860i
\(151\) −25.9429 −0.171807 −0.0859037 0.996303i \(-0.527378\pi\)
−0.0859037 + 0.996303i \(0.527378\pi\)
\(152\) 72.4872 149.187i 0.476889 0.981493i
\(153\) 176.190 176.190i 1.15157 1.15157i
\(154\) −11.2621 236.605i −0.0731304 1.53639i
\(155\) −39.4773 17.0307i −0.254692 0.109876i
\(156\) 37.0352 119.081i 0.237405 0.763339i
\(157\) 87.1246 87.1246i 0.554934 0.554934i −0.372927 0.927861i \(-0.621646\pi\)
0.927861 + 0.372927i \(0.121646\pi\)
\(158\) 19.1384 125.980i 0.121129 0.797345i
\(159\) 202.858 1.27584
\(160\) −146.759 + 63.7332i −0.917241 + 0.398332i
\(161\) 442.603i 2.74909i
\(162\) −86.7278 13.1753i −0.535357 0.0813291i
\(163\) −3.98479 + 3.98479i −0.0244466 + 0.0244466i −0.719224 0.694778i \(-0.755503\pi\)
0.694778 + 0.719224i \(0.255503\pi\)
\(164\) 6.54114 21.0320i 0.0398850 0.128244i
\(165\) 247.002 + 52.3775i 1.49698 + 0.317440i
\(166\) −101.125 137.353i −0.609184 0.827428i
\(167\) 138.416 138.416i 0.828841 0.828841i −0.158515 0.987357i \(-0.550671\pi\)
0.987357 + 0.158515i \(0.0506707\pi\)
\(168\) −172.814 + 355.670i −1.02865 + 2.11709i
\(169\) 122.881i 0.727104i
\(170\) −201.033 + 46.5094i −1.18255 + 0.273585i
\(171\) 250.363 1.46411
\(172\) −118.887 226.217i −0.691202 1.31522i
\(173\) −142.650 + 142.650i −0.824567 + 0.824567i −0.986759 0.162193i \(-0.948143\pi\)
0.162193 + 0.986759i \(0.448143\pi\)
\(174\) −14.2566 + 10.4963i −0.0819348 + 0.0603235i
\(175\) −269.059 7.85028i −1.53748 0.0448588i
\(176\) −163.401 + 65.3918i −0.928415 + 0.371545i
\(177\) −228.466 + 228.466i −1.29077 + 1.29077i
\(178\) −47.4975 + 312.657i −0.266840 + 1.75650i
\(179\) −128.414 −0.717396 −0.358698 0.933454i \(-0.616779\pi\)
−0.358698 + 0.933454i \(0.616779\pi\)
\(180\) −183.340 157.206i −1.01855 0.873369i
\(181\) 63.5332 0.351012 0.175506 0.984478i \(-0.443844\pi\)
0.175506 + 0.984478i \(0.443844\pi\)
\(182\) −21.9640 + 144.580i −0.120682 + 0.794398i
\(183\) 88.4172 + 88.4172i 0.483154 + 0.483154i
\(184\) 310.784 107.532i 1.68904 0.584413i
\(185\) −46.1311 116.132i −0.249357 0.627743i
\(186\) 46.8090 + 63.5786i 0.251661 + 0.341820i
\(187\) −222.528 + 44.7209i −1.18999 + 0.239149i
\(188\) 43.8793 + 83.4934i 0.233401 + 0.444114i
\(189\) −152.020 −0.804338
\(190\) −175.877 109.788i −0.925669 0.577832i
\(191\) 73.4358i 0.384481i 0.981348 + 0.192240i \(0.0615753\pi\)
−0.981348 + 0.192240i \(0.938425\pi\)
\(192\) 291.728 + 34.9335i 1.51941 + 0.181945i
\(193\) 53.3222 53.3222i 0.276281 0.276281i −0.555342 0.831622i \(-0.687413\pi\)
0.831622 + 0.555342i \(0.187413\pi\)
\(194\) 96.3062 70.9043i 0.496424 0.365486i
\(195\) −143.133 61.7482i −0.734014 0.316657i
\(196\) 79.5031 255.630i 0.405628 1.30423i
\(197\) 12.4442 + 12.4442i 0.0631683 + 0.0631683i 0.737985 0.674817i \(-0.235777\pi\)
−0.674817 + 0.737985i \(0.735777\pi\)
\(198\) −196.570 178.707i −0.992778 0.902562i
\(199\) −134.542 −0.676092 −0.338046 0.941130i \(-0.609766\pi\)
−0.338046 + 0.941130i \(0.609766\pi\)
\(200\) 59.8565 + 190.833i 0.299283 + 0.954165i
\(201\) 260.835 1.29768
\(202\) −8.96389 + 59.0057i −0.0443757 + 0.292107i
\(203\) 14.6799 14.6799i 0.0723149 0.0723149i
\(204\) 361.818 + 112.529i 1.77362 + 0.551611i
\(205\) −25.2800 10.9059i −0.123317 0.0531996i
\(206\) −44.5905 + 32.8292i −0.216459 + 0.159365i
\(207\) 351.005 + 351.005i 1.69568 + 1.69568i
\(208\) 106.857 19.7038i 0.513734 0.0947298i
\(209\) −189.878 126.331i −0.908509 0.604453i
\(210\) 419.301 + 261.741i 1.99667 + 1.24639i
\(211\) −325.918 −1.54464 −0.772318 0.635236i \(-0.780903\pi\)
−0.772318 + 0.635236i \(0.780903\pi\)
\(212\) 82.2266 + 156.460i 0.387861 + 0.738021i
\(213\) −58.5124 58.5124i −0.274706 0.274706i
\(214\) 79.8014 58.7529i 0.372904 0.274546i
\(215\) −296.879 + 117.929i −1.38083 + 0.548506i
\(216\) 36.9337 + 106.744i 0.170990 + 0.494186i
\(217\) −65.4662 65.4662i −0.301688 0.301688i
\(218\) −313.868 47.6814i −1.43976 0.218722i
\(219\) 131.138i 0.598804i
\(220\) 59.7223 + 211.739i 0.271465 + 0.962448i
\(221\) 140.130 0.634074
\(222\) −34.4640 + 226.863i −0.155243 + 1.02190i
\(223\) −83.7285 + 83.7285i −0.375464 + 0.375464i −0.869463 0.493998i \(-0.835535\pi\)
0.493998 + 0.869463i \(0.335535\pi\)
\(224\) −344.370 + 10.8800i −1.53737 + 0.0485714i
\(225\) −219.602 + 207.151i −0.976009 + 0.920670i
\(226\) 125.931 + 171.047i 0.557217 + 0.756843i
\(227\) 201.535 201.535i 0.887819 0.887819i −0.106494 0.994313i \(-0.533963\pi\)
0.994313 + 0.106494i \(0.0339626\pi\)
\(228\) 177.118 + 337.020i 0.776834 + 1.47816i
\(229\) 146.104i 0.638011i 0.947753 + 0.319005i \(0.103349\pi\)
−0.947753 + 0.319005i \(0.896651\pi\)
\(230\) −92.6559 400.498i −0.402852 1.74130i
\(231\) 452.681 + 301.180i 1.95966 + 1.30381i
\(232\) −13.8744 6.74130i −0.0598034 0.0290573i
\(233\) 296.687 296.687i 1.27334 1.27334i 0.329009 0.944327i \(-0.393286\pi\)
0.944327 0.329009i \(-0.106714\pi\)
\(234\) 97.2406 + 132.078i 0.415558 + 0.564434i
\(235\) 109.574 43.5257i 0.466270 0.185216i
\(236\) −268.818 83.6050i −1.13906 0.354258i
\(237\) 206.824 + 206.824i 0.872677 + 0.872677i
\(238\) −439.296 66.7360i −1.84578 0.280403i
\(239\) 102.318i 0.428107i −0.976822 0.214053i \(-0.931333\pi\)
0.976822 0.214053i \(-0.0686667\pi\)
\(240\) 81.9165 358.013i 0.341319 1.49172i
\(241\) 124.284i 0.515702i −0.966185 0.257851i \(-0.916986\pi\)
0.966185 0.257851i \(-0.0830143\pi\)
\(242\) 58.9072 + 234.721i 0.243418 + 0.969921i
\(243\) 232.236 232.236i 0.955705 0.955705i
\(244\) −32.3554 + 104.034i −0.132604 + 0.426367i
\(245\) −307.261 132.554i −1.25413 0.541037i
\(246\) 29.9749 + 40.7137i 0.121849 + 0.165503i
\(247\) 99.5615 + 99.5615i 0.403083 + 0.403083i
\(248\) −30.0633 + 61.8738i −0.121223 + 0.249491i
\(249\) 391.513 1.57234
\(250\) 245.106 49.2221i 0.980426 0.196889i
\(251\) 312.241i 1.24399i −0.783021 0.621995i \(-0.786323\pi\)
0.783021 0.621995i \(-0.213677\pi\)
\(252\) −241.940 460.362i −0.960079 1.82683i
\(253\) −89.0930 443.320i −0.352146 1.75225i
\(254\) −205.174 + 151.057i −0.807770 + 0.594711i
\(255\) 187.617 434.897i 0.735752 1.70548i
\(256\) 91.3055 + 239.164i 0.356662 + 0.934233i
\(257\) −58.8883 + 58.8883i −0.229137 + 0.229137i −0.812332 0.583195i \(-0.801802\pi\)
0.583195 + 0.812332i \(0.301802\pi\)
\(258\) 579.948 + 88.1032i 2.24786 + 0.341485i
\(259\) 269.086i 1.03894i
\(260\) −10.3923 135.424i −0.0399705 0.520863i
\(261\) 23.2838i 0.0892098i
\(262\) 266.882 + 40.5436i 1.01863 + 0.154747i
\(263\) 199.015 + 199.015i 0.756711 + 0.756711i 0.975722 0.219012i \(-0.0702832\pi\)
−0.219012 + 0.975722i \(0.570283\pi\)
\(264\) 101.500 391.033i 0.384468 1.48119i
\(265\) 205.333 81.5639i 0.774840 0.307788i
\(266\) −264.701 359.532i −0.995117 1.35162i
\(267\) −513.295 513.295i −1.92245 1.92245i
\(268\) 105.727 + 201.177i 0.394503 + 0.750659i
\(269\) 498.105i 1.85169i 0.377900 + 0.925846i \(0.376646\pi\)
−0.377900 + 0.925846i \(0.623354\pi\)
\(270\) 137.558 31.8243i 0.509474 0.117868i
\(271\) 95.3382 0.351802 0.175901 0.984408i \(-0.443716\pi\)
0.175901 + 0.984408i \(0.443716\pi\)
\(272\) 59.8684 + 324.675i 0.220104 + 1.19366i
\(273\) −237.360 237.360i −0.869452 0.869452i
\(274\) −219.016 + 161.248i −0.799329 + 0.588497i
\(275\) 271.075 46.2967i 0.985727 0.168352i
\(276\) −224.179 + 720.813i −0.812244 + 2.61164i
\(277\) −230.570 230.570i −0.832384 0.832384i 0.155458 0.987842i \(-0.450315\pi\)
−0.987842 + 0.155458i \(0.950315\pi\)
\(278\) 79.6177 524.092i 0.286395 1.88522i
\(279\) −103.836 −0.372171
\(280\) −31.9158 + 429.493i −0.113985 + 1.53390i
\(281\) 379.926i 1.35205i 0.736878 + 0.676025i \(0.236299\pi\)
−0.736878 + 0.676025i \(0.763701\pi\)
\(282\) −214.050 32.5176i −0.759043 0.115311i
\(283\) −226.175 226.175i −0.799204 0.799204i 0.183766 0.982970i \(-0.441171\pi\)
−0.982970 + 0.183766i \(0.941171\pi\)
\(284\) 21.4120 68.8470i 0.0753944 0.242419i
\(285\) 442.291 175.691i 1.55190 0.616459i
\(286\) −7.10344 149.236i −0.0248372 0.521804i
\(287\) −41.9224 41.9224i −0.146071 0.146071i
\(288\) −264.473 + 281.730i −0.918310 + 0.978229i
\(289\) 136.775i 0.473268i
\(290\) −10.2103 + 16.3566i −0.0352079 + 0.0564019i
\(291\) 274.513i 0.943342i
\(292\) −101.144 + 53.1556i −0.346384 + 0.182040i
\(293\) 90.9722 90.9722i 0.310485 0.310485i −0.534612 0.845097i \(-0.679542\pi\)
0.845097 + 0.534612i \(0.179542\pi\)
\(294\) 364.325 + 494.847i 1.23920 + 1.68315i
\(295\) −139.393 + 323.114i −0.472519 + 1.09530i
\(296\) −188.944 + 65.3753i −0.638326 + 0.220862i
\(297\) 152.266 30.6006i 0.512680 0.103032i
\(298\) 349.844 + 53.1468i 1.17397 + 0.178345i
\(299\) 279.167i 0.933670i
\(300\) −434.207 149.064i −1.44736 0.496878i
\(301\) −687.885 −2.28533
\(302\) 51.2973 + 7.79286i 0.169858 + 0.0258042i
\(303\) −96.8707 96.8707i −0.319705 0.319705i
\(304\) −188.143 + 273.215i −0.618893 + 0.898735i
\(305\) 125.046 + 53.9455i 0.409987 + 0.176871i
\(306\) −401.307 + 295.458i −1.31146 + 0.965548i
\(307\) 108.441 108.441i 0.353229 0.353229i −0.508081 0.861310i \(-0.669645\pi\)
0.861310 + 0.508081i \(0.169645\pi\)
\(308\) −48.8038 + 471.224i −0.158454 + 1.52995i
\(309\) 127.101i 0.411331i
\(310\) 72.9433 + 45.5335i 0.235301 + 0.146882i
\(311\) 183.814i 0.591041i −0.955336 0.295521i \(-0.904507\pi\)
0.955336 0.295521i \(-0.0954931\pi\)
\(312\) −109.000 + 224.335i −0.349360 + 0.719024i
\(313\) 75.3895 + 75.3895i 0.240861 + 0.240861i 0.817206 0.576345i \(-0.195522\pi\)
−0.576345 + 0.817206i \(0.695522\pi\)
\(314\) −198.444 + 146.102i −0.631986 + 0.465292i
\(315\) −604.161 + 239.990i −1.91797 + 0.761873i
\(316\) −75.6853 + 243.354i −0.239510 + 0.770107i
\(317\) 173.507 173.507i 0.547342 0.547342i −0.378329 0.925671i \(-0.623501\pi\)
0.925671 + 0.378329i \(0.123501\pi\)
\(318\) −401.114 60.9355i −1.26136 0.191621i
\(319\) −11.7487 + 17.6587i −0.0368299 + 0.0553564i
\(320\) 309.332 81.9365i 0.966663 0.256051i
\(321\) 227.467i 0.708620i
\(322\) 132.951 875.165i 0.412892 2.71790i
\(323\) −302.510 + 302.510i −0.936562 + 0.936562i
\(324\) 167.530 + 52.1035i 0.517069 + 0.160813i
\(325\) −169.706 4.95149i −0.522173 0.0152353i
\(326\) 9.07615 6.68220i 0.0278409 0.0204976i
\(327\) 515.282 515.282i 1.57579 1.57579i
\(328\) −19.2516 + 39.6220i −0.0586938 + 0.120799i
\(329\) 253.888 0.771697
\(330\) −472.667 177.763i −1.43232 0.538674i
\(331\) 163.386i 0.493612i 0.969065 + 0.246806i \(0.0793811\pi\)
−0.969065 + 0.246806i \(0.920619\pi\)
\(332\) 158.696 + 301.966i 0.478000 + 0.909537i
\(333\) −213.398 213.398i −0.640833 0.640833i
\(334\) −315.271 + 232.115i −0.943925 + 0.694954i
\(335\) 264.016 104.875i 0.788109 0.313059i
\(336\) 448.545 651.361i 1.33495 1.93858i
\(337\) −206.708 206.708i −0.613377 0.613377i 0.330447 0.943824i \(-0.392800\pi\)
−0.943824 + 0.330447i \(0.892800\pi\)
\(338\) 36.9115 242.973i 0.109206 0.718856i
\(339\) −487.554 −1.43821
\(340\) 411.476 31.5763i 1.21022 0.0928714i
\(341\) 78.7502 + 52.3944i 0.230939 + 0.153649i
\(342\) −495.046 75.2053i −1.44750 0.219899i
\(343\) −136.484 136.484i −0.397911 0.397911i
\(344\) 167.124 + 483.014i 0.485826 + 1.40411i
\(345\) 866.401 + 373.770i 2.51131 + 1.08339i
\(346\) 324.914 239.214i 0.939057 0.691370i
\(347\) −21.7171 + 21.7171i −0.0625853 + 0.0625853i −0.737707 0.675121i \(-0.764091\pi\)
0.675121 + 0.737707i \(0.264091\pi\)
\(348\) 31.3428 16.4720i 0.0900655 0.0473332i
\(349\) −315.410 −0.903753 −0.451876 0.892081i \(-0.649245\pi\)
−0.451876 + 0.892081i \(0.649245\pi\)
\(350\) 529.656 + 96.3437i 1.51330 + 0.275268i
\(351\) −95.8849 −0.273176
\(352\) 342.738 80.2170i 0.973687 0.227889i
\(353\) 92.8687 + 92.8687i 0.263084 + 0.263084i 0.826306 0.563222i \(-0.190438\pi\)
−0.563222 + 0.826306i \(0.690438\pi\)
\(354\) 520.378 383.122i 1.46999 1.08227i
\(355\) −82.7526 35.6999i −0.233106 0.100563i
\(356\) 187.835 603.954i 0.527627 1.69650i
\(357\) 721.201 721.201i 2.02017 2.02017i
\(358\) 253.915 + 38.5736i 0.709259 + 0.107748i
\(359\) 265.398i 0.739271i −0.929177 0.369635i \(-0.879483\pi\)
0.929177 0.369635i \(-0.120517\pi\)
\(360\) 315.298 + 365.919i 0.875826 + 1.01644i
\(361\) −68.8617 −0.190753
\(362\) −125.625 19.0844i −0.347031 0.0527194i
\(363\) −514.040 210.546i −1.41609 0.580016i
\(364\) 86.8596 279.283i 0.238625 0.767262i
\(365\) 52.7272 + 132.738i 0.144458 + 0.363665i
\(366\) −148.269 201.388i −0.405107 0.550240i
\(367\) −130.264 130.264i −0.354943 0.354943i 0.507002 0.861945i \(-0.330754\pi\)
−0.861945 + 0.507002i \(0.830754\pi\)
\(368\) −646.818 + 119.270i −1.75766 + 0.324102i
\(369\) −66.4930 −0.180198
\(370\) 56.3312 + 243.487i 0.152247 + 0.658074i
\(371\) 475.768 1.28239
\(372\) −73.4579 139.775i −0.197468 0.375740i
\(373\) −408.820 + 408.820i −1.09603 + 1.09603i −0.101163 + 0.994870i \(0.532256\pi\)
−0.994870 + 0.101163i \(0.967744\pi\)
\(374\) 453.441 21.5832i 1.21241 0.0577092i
\(375\) −242.582 + 520.057i −0.646886 + 1.38682i
\(376\) −61.6830 178.273i −0.164051 0.474131i
\(377\) 9.25922 9.25922i 0.0245603 0.0245603i
\(378\) 300.591 + 45.6645i 0.795214 + 0.120805i
\(379\) 114.598 0.302368 0.151184 0.988506i \(-0.451691\pi\)
0.151184 + 0.988506i \(0.451691\pi\)
\(380\) 314.786 + 269.916i 0.828383 + 0.710306i
\(381\) 584.830i 1.53499i
\(382\) 22.0590 145.206i 0.0577461 0.380119i
\(383\) 107.027 107.027i 0.279443 0.279443i −0.553443 0.832887i \(-0.686686\pi\)
0.832887 + 0.553443i \(0.186686\pi\)
\(384\) −566.343 156.705i −1.47485 0.408086i
\(385\) 579.300 + 122.842i 1.50468 + 0.319071i
\(386\) −121.452 + 89.4175i −0.314642 + 0.231651i
\(387\) −545.526 + 545.526i −1.40963 + 1.40963i
\(388\) −211.726 + 111.271i −0.545686 + 0.286781i
\(389\) 397.311i 1.02136i −0.859770 0.510682i \(-0.829393\pi\)
0.859770 0.510682i \(-0.170607\pi\)
\(390\) 264.470 + 165.090i 0.678128 + 0.423309i
\(391\) −848.228 −2.16938
\(392\) −233.990 + 481.578i −0.596913 + 1.22852i
\(393\) −438.146 + 438.146i −1.11487 + 1.11487i
\(394\) −20.8680 28.3441i −0.0529644 0.0719392i
\(395\) 292.506 + 126.189i 0.740522 + 0.319465i
\(396\) 334.999 + 412.407i 0.845958 + 1.04143i
\(397\) −142.656 + 142.656i −0.359335 + 0.359335i −0.863568 0.504233i \(-0.831775\pi\)
0.504233 + 0.863568i \(0.331775\pi\)
\(398\) 266.032 + 40.4145i 0.668423 + 0.101544i
\(399\) 1024.82 2.56846
\(400\) −61.0318 395.316i −0.152579 0.988291i
\(401\) −101.697 −0.253608 −0.126804 0.991928i \(-0.540472\pi\)
−0.126804 + 0.991928i \(0.540472\pi\)
\(402\) −515.752 78.3508i −1.28296 0.194902i
\(403\) −41.2921 41.2921i −0.102462 0.102462i
\(404\) 35.4488 113.980i 0.0877446 0.282129i
\(405\) 86.8712 201.368i 0.214497 0.497205i
\(406\) −33.4365 + 24.6172i −0.0823558 + 0.0606335i
\(407\) 54.1651 + 269.522i 0.133084 + 0.662215i
\(408\) −681.625 331.189i −1.67065 0.811737i
\(409\) −555.544 −1.35830 −0.679149 0.734000i \(-0.737651\pi\)
−0.679149 + 0.734000i \(0.737651\pi\)
\(410\) 46.7105 + 29.1582i 0.113928 + 0.0711175i
\(411\) 624.287i 1.51895i
\(412\) 98.0308 51.5194i 0.237939 0.125047i
\(413\) −535.828 + 535.828i −1.29740 + 1.29740i
\(414\) −588.611 799.484i −1.42176 1.93112i
\(415\) 396.289 157.417i 0.954913 0.379319i
\(416\) −217.208 + 6.86244i −0.522134 + 0.0164962i
\(417\) 860.411 + 860.411i 2.06334 + 2.06334i
\(418\) 337.501 + 306.832i 0.807420 + 0.734048i
\(419\) −282.912 −0.675208 −0.337604 0.941288i \(-0.609617\pi\)
−0.337604 + 0.941288i \(0.609617\pi\)
\(420\) −750.467 643.496i −1.78683 1.53213i
\(421\) 183.454 0.435759 0.217879 0.975976i \(-0.430086\pi\)
0.217879 + 0.975976i \(0.430086\pi\)
\(422\) 644.442 + 97.9009i 1.52711 + 0.231993i
\(423\) 201.345 201.345i 0.475994 0.475994i
\(424\) −115.589 334.071i −0.272617 0.787903i
\(425\) 15.0447 515.638i 0.0353993 1.21327i
\(426\) 98.1212 + 133.274i 0.230331 + 0.312849i
\(427\) 207.367 + 207.367i 0.485637 + 0.485637i
\(428\) −175.441 + 92.2017i −0.409909 + 0.215424i
\(429\) 285.524 + 189.966i 0.665557 + 0.442811i
\(430\) 622.446 144.004i 1.44755 0.334893i
\(431\) 379.287 0.880016 0.440008 0.897994i \(-0.354976\pi\)
0.440008 + 0.897994i \(0.354976\pi\)
\(432\) −40.9653 222.161i −0.0948270 0.514261i
\(433\) 258.366 + 258.366i 0.596689 + 0.596689i 0.939430 0.342741i \(-0.111355\pi\)
−0.342741 + 0.939430i \(0.611355\pi\)
\(434\) 109.782 + 149.112i 0.252954 + 0.343577i
\(435\) −16.3392 41.1331i −0.0375614 0.0945588i
\(436\) 606.292 + 188.562i 1.39058 + 0.432482i
\(437\) −602.659 602.659i −1.37908 1.37908i
\(438\) 39.3919 259.301i 0.0899359 0.592012i
\(439\) 504.134i 1.14837i 0.818726 + 0.574184i \(0.194681\pi\)
−0.818726 + 0.574184i \(0.805319\pi\)
\(440\) −54.4865 436.613i −0.123833 0.992303i
\(441\) −808.176 −1.83260
\(442\) −277.082 42.0930i −0.626881 0.0952331i
\(443\) −457.618 + 457.618i −1.03300 + 1.03300i −0.0335621 + 0.999437i \(0.510685\pi\)
−0.999437 + 0.0335621i \(0.989315\pi\)
\(444\) 136.292 438.226i 0.306965 0.986996i
\(445\) −725.939 313.174i −1.63132 0.703762i
\(446\) 190.708 140.407i 0.427597 0.314813i
\(447\) −574.345 + 574.345i −1.28489 + 1.28489i
\(448\) 684.196 + 81.9304i 1.52722 + 0.182880i
\(449\) 54.8759i 0.122218i 0.998131 + 0.0611090i \(0.0194637\pi\)
−0.998131 + 0.0611090i \(0.980536\pi\)
\(450\) 496.447 343.637i 1.10322 0.763637i
\(451\) 50.4291 + 33.5517i 0.111816 + 0.0743939i
\(452\) −197.625 376.041i −0.437224 0.831948i
\(453\) −84.2157 + 84.2157i −0.185907 + 0.185907i
\(454\) −459.036 + 337.960i −1.01109 + 0.744405i
\(455\) −335.692 144.819i −0.737786 0.318285i
\(456\) −248.982 719.597i −0.546014 1.57806i
\(457\) −309.442 309.442i −0.677116 0.677116i 0.282230 0.959347i \(-0.408926\pi\)
−0.959347 + 0.282230i \(0.908926\pi\)
\(458\) 43.8876 288.894i 0.0958244 0.630774i
\(459\) 291.339i 0.634725i
\(460\) 62.9062 + 819.743i 0.136753 + 1.78205i
\(461\) 59.6963i 0.129493i −0.997902 0.0647466i \(-0.979376\pi\)
0.997902 0.0647466i \(-0.0206239\pi\)
\(462\) −804.623 731.505i −1.74161 1.58334i
\(463\) 203.614 203.614i 0.439770 0.439770i −0.452164 0.891935i \(-0.649348\pi\)
0.891935 + 0.452164i \(0.149348\pi\)
\(464\) 25.4090 + 17.4973i 0.0547608 + 0.0377097i
\(465\) −183.436 + 72.8660i −0.394486 + 0.156701i
\(466\) −675.764 + 497.523i −1.45014 + 1.06765i
\(467\) −518.064 518.064i −1.10934 1.10934i −0.993237 0.116108i \(-0.962958\pi\)
−0.116108 0.993237i \(-0.537042\pi\)
\(468\) −152.601 290.369i −0.326071 0.620446i
\(469\) 611.741 1.30435
\(470\) −229.736 + 53.1498i −0.488799 + 0.113085i
\(471\) 565.647i 1.20095i
\(472\) 506.425 + 246.062i 1.07293 + 0.521318i
\(473\) 689.000 138.467i 1.45666 0.292741i
\(474\) −346.830 471.084i −0.731708 0.993847i
\(475\) 377.046 355.668i 0.793782 0.748775i
\(476\) 848.580 + 263.916i 1.78273 + 0.554445i
\(477\) 377.306 377.306i 0.790998 0.790998i
\(478\) −30.7347 + 202.314i −0.0642984 + 0.423251i
\(479\) 874.586i 1.82586i −0.408118 0.912929i \(-0.633815\pi\)
0.408118 0.912929i \(-0.366185\pi\)
\(480\) −269.516 + 683.297i −0.561492 + 1.42353i
\(481\) 169.723i 0.352854i
\(482\) −37.3331 + 245.749i −0.0774545 + 0.509852i
\(483\) 1436.77 + 1436.77i 2.97469 + 2.97469i
\(484\) −45.9714 481.812i −0.0949823 0.995479i
\(485\) 110.374 + 277.861i 0.227576 + 0.572910i
\(486\) −528.964 + 389.444i −1.08840 + 0.801325i
\(487\) 218.183 + 218.183i 0.448013 + 0.448013i 0.894694 0.446680i \(-0.147394\pi\)
−0.446680 + 0.894694i \(0.647394\pi\)
\(488\) 95.2268 195.988i 0.195137 0.401614i
\(489\) 25.8708i 0.0529055i
\(490\) 567.734 + 354.398i 1.15864 + 0.723260i
\(491\) −22.4882 −0.0458009 −0.0229004 0.999738i \(-0.507290\pi\)
−0.0229004 + 0.999738i \(0.507290\pi\)
\(492\) −47.0401 89.5077i −0.0956100 0.181926i
\(493\) 28.1334 + 28.1334i 0.0570657 + 0.0570657i
\(494\) −166.958 226.771i −0.337971 0.459051i
\(495\) 556.832 361.992i 1.12491 0.731298i
\(496\) 78.0306 113.313i 0.157320 0.228454i
\(497\) −137.231 137.231i −0.276118 0.276118i
\(498\) −774.144 117.605i −1.55451 0.236154i
\(499\) 544.283 1.09075 0.545374 0.838193i \(-0.316388\pi\)
0.545374 + 0.838193i \(0.316388\pi\)
\(500\) −499.438 + 23.7013i −0.998876 + 0.0474026i
\(501\) 898.653i 1.79372i
\(502\) −93.7926 + 617.399i −0.186838 + 1.22988i
\(503\) −243.400 243.400i −0.483898 0.483898i 0.422476 0.906374i \(-0.361161\pi\)
−0.906374 + 0.422476i \(0.861161\pi\)
\(504\) 340.105 + 982.955i 0.674812 + 1.95031i
\(505\) −137.002 59.1032i −0.271290 0.117036i
\(506\) 42.9981 + 903.345i 0.0849765 + 1.78527i
\(507\) 398.894 + 398.894i 0.786773 + 0.786773i
\(508\) 451.068 237.055i 0.887929 0.466644i
\(509\) 613.385i 1.20508i 0.798089 + 0.602539i \(0.205844\pi\)
−0.798089 + 0.602539i \(0.794156\pi\)
\(510\) −501.614 + 803.571i −0.983557 + 1.57563i
\(511\) 307.561i 0.601881i
\(512\) −108.698 500.329i −0.212302 0.977204i
\(513\) 206.994 206.994i 0.403497 0.403497i
\(514\) 134.130 98.7514i 0.260953 0.192123i
\(515\) −51.1042 128.652i −0.0992314 0.249809i
\(516\) −1120.27 348.415i −2.17107 0.675223i
\(517\) −254.300 + 51.1060i −0.491875 + 0.0988510i
\(518\) −80.8293 + 532.067i −0.156041 + 1.02716i
\(519\) 926.139i 1.78447i
\(520\) −20.1306 + 270.898i −0.0387126 + 0.520958i
\(521\) −70.3446 −0.135018 −0.0675092 0.997719i \(-0.521505\pi\)
−0.0675092 + 0.997719i \(0.521505\pi\)
\(522\) −6.99409 + 46.0393i −0.0133986 + 0.0881978i
\(523\) 232.623 + 232.623i 0.444785 + 0.444785i 0.893616 0.448831i \(-0.148160\pi\)
−0.448831 + 0.893616i \(0.648160\pi\)
\(524\) −515.531 160.335i −0.983839 0.305983i
\(525\) −898.900 + 847.933i −1.71219 + 1.61511i
\(526\) −333.734 453.296i −0.634475 0.861779i
\(527\) 125.463 125.463i 0.238070 0.238070i
\(528\) −318.157 + 742.706i −0.602570 + 1.40664i
\(529\) 1160.84i 2.19440i
\(530\) −430.508 + 99.5987i −0.812278 + 0.187922i
\(531\) 849.873i 1.60052i
\(532\) 415.399 + 790.420i 0.780826 + 1.48575i
\(533\) −26.4422 26.4422i −0.0496100 0.0496100i
\(534\) 860.759 + 1169.13i 1.61191 + 2.18938i
\(535\) 91.4586 + 230.242i 0.170951 + 0.430359i
\(536\) −148.625 429.548i −0.277285 0.801395i
\(537\) −416.856 + 416.856i −0.776269 + 0.776269i
\(538\) 149.623 984.910i 0.278110 1.83069i
\(539\) 612.931 + 407.798i 1.13716 + 0.756582i
\(540\) −281.555 + 21.6062i −0.521398 + 0.0400116i
\(541\) 710.769i 1.31381i 0.753975 + 0.656903i \(0.228134\pi\)
−0.753975 + 0.656903i \(0.771866\pi\)
\(542\) −188.514 28.6382i −0.347811 0.0528379i
\(543\) 206.241 206.241i 0.379818 0.379818i
\(544\) −20.8510 659.969i −0.0383290 1.21318i
\(545\) 314.387 728.750i 0.576856 1.33716i
\(546\) 398.036 + 540.636i 0.729005 + 0.990175i
\(547\) −585.075 + 585.075i −1.06961 + 1.06961i −0.0722178 + 0.997389i \(0.523008\pi\)
−0.997389 + 0.0722178i \(0.976992\pi\)
\(548\) 481.500 253.049i 0.878650 0.461768i
\(549\) 328.903 0.599096
\(550\) −549.907 + 10.1163i −0.999831 + 0.0183932i
\(551\) 39.9771i 0.0725537i
\(552\) 659.794 1357.93i 1.19528 2.46002i
\(553\) 485.070 + 485.070i 0.877161 + 0.877161i
\(554\) 386.650 + 525.170i 0.697924 + 0.947960i
\(555\) −526.739 227.238i −0.949078 0.409437i
\(556\) −314.858 + 1012.38i −0.566292 + 1.82082i
\(557\) 783.137 + 783.137i 1.40599 + 1.40599i 0.779137 + 0.626853i \(0.215657\pi\)
0.626853 + 0.779137i \(0.284343\pi\)
\(558\) 205.315 + 31.1906i 0.367949 + 0.0558972i
\(559\) −433.877 −0.776166
\(560\) 192.121 839.655i 0.343073 1.49938i
\(561\) −577.196 + 867.542i −1.02887 + 1.54642i
\(562\) 114.124 751.233i 0.203068 1.33671i
\(563\) −166.677 166.677i −0.296052 0.296052i 0.543414 0.839465i \(-0.317132\pi\)
−0.839465 + 0.543414i \(0.817132\pi\)
\(564\) 413.476 + 128.595i 0.733114 + 0.228005i
\(565\) −493.501 + 196.033i −0.873454 + 0.346961i
\(566\) 379.279 + 515.158i 0.670104 + 0.910173i
\(567\) 333.933 333.933i 0.588948 0.588948i
\(568\) −63.0189 + 129.700i −0.110949 + 0.228345i
\(569\) −207.863 −0.365313 −0.182656 0.983177i \(-0.558470\pi\)
−0.182656 + 0.983177i \(0.558470\pi\)
\(570\) −927.324 + 214.538i −1.62688 + 0.376382i
\(571\) −281.714 −0.493370 −0.246685 0.969096i \(-0.579341\pi\)
−0.246685 + 0.969096i \(0.579341\pi\)
\(572\) −30.7825 + 297.220i −0.0538156 + 0.519615i
\(573\) 238.387 + 238.387i 0.416033 + 0.416033i
\(574\) 70.3010 + 95.4867i 0.122476 + 0.166353i
\(575\) 1027.25 + 29.9720i 1.78653 + 0.0521252i
\(576\) 607.574 477.625i 1.05482 0.829210i
\(577\) −592.720 + 592.720i −1.02724 + 1.02724i −0.0276261 + 0.999618i \(0.508795\pi\)
−0.999618 + 0.0276261i \(0.991205\pi\)
\(578\) 41.0850 270.446i 0.0710814 0.467900i
\(579\) 346.188i 0.597907i
\(580\) 25.1022 29.2750i 0.0432796 0.0504742i
\(581\) 918.225 1.58042
\(582\) 82.4595 542.797i 0.141683 0.932642i
\(583\) −476.538 + 95.7688i −0.817390 + 0.164269i
\(584\) 215.961 74.7231i 0.369796 0.127951i
\(585\) −381.069 + 151.371i −0.651399 + 0.258754i
\(586\) −207.207 + 152.554i −0.353596 + 0.260331i
\(587\) 685.616 + 685.616i 1.16800 + 1.16800i 0.982678 + 0.185323i \(0.0593332\pi\)
0.185323 + 0.982678i \(0.440667\pi\)
\(588\) −571.740 1087.90i −0.972347 1.85018i
\(589\) 178.281 0.302684
\(590\) 372.682 597.026i 0.631665 1.01191i
\(591\) 80.7923 0.136704
\(592\) 393.240 72.5114i 0.664257 0.122485i
\(593\) −292.276 + 292.276i −0.492877 + 0.492877i −0.909212 0.416334i \(-0.863315\pi\)
0.416334 + 0.909212i \(0.363315\pi\)
\(594\) −310.270 + 14.7684i −0.522340 + 0.0248627i
\(595\) 440.022 1019.97i 0.739533 1.71424i
\(596\) −675.787 210.176i −1.13387 0.352644i
\(597\) −436.750 + 436.750i −0.731575 + 0.731575i
\(598\) 83.8577 552.001i 0.140230 0.923079i
\(599\) −279.936 −0.467340 −0.233670 0.972316i \(-0.575073\pi\)
−0.233670 + 0.972316i \(0.575073\pi\)
\(600\) 813.786 + 425.174i 1.35631 + 0.708624i
\(601\) 426.259i 0.709249i −0.935009 0.354625i \(-0.884609\pi\)
0.935009 0.354625i \(-0.115391\pi\)
\(602\) 1360.17 + 206.630i 2.25941 + 0.343240i
\(603\) 485.140 485.140i 0.804544 0.804544i
\(604\) −99.0899 30.8179i −0.164056 0.0510229i
\(605\) −604.966 6.43211i −0.999943 0.0106316i
\(606\) 162.445 + 220.642i 0.268061 + 0.364096i
\(607\) 366.659 366.659i 0.604051 0.604051i −0.337334 0.941385i \(-0.609525\pi\)
0.941385 + 0.337334i \(0.109525\pi\)
\(608\) 454.088 483.717i 0.746856 0.795587i
\(609\) 95.3077i 0.156499i
\(610\) −231.051 144.229i −0.378772 0.236441i
\(611\) 160.137 0.262091
\(612\) 882.261 463.666i 1.44160 0.757624i
\(613\) 139.096 139.096i 0.226911 0.226911i −0.584490 0.811401i \(-0.698705\pi\)
0.811401 + 0.584490i \(0.198705\pi\)
\(614\) −246.997 + 181.848i −0.402275 + 0.296170i
\(615\) −117.466 + 46.6610i −0.191002 + 0.0758716i
\(616\) 238.049 917.099i 0.386443 1.48880i
\(617\) −0.408616 + 0.408616i −0.000662262 + 0.000662262i −0.707438 0.706776i \(-0.750149\pi\)
0.706776 + 0.707438i \(0.250149\pi\)
\(618\) −38.1793 + 251.319i −0.0617789 + 0.406666i
\(619\) −716.332 −1.15724 −0.578621 0.815597i \(-0.696409\pi\)
−0.578621 + 0.815597i \(0.696409\pi\)
\(620\) −130.554 111.945i −0.210571 0.180556i
\(621\) 580.404 0.934629
\(622\) −55.2149 + 363.458i −0.0887700 + 0.584337i
\(623\) −1203.84 1203.84i −1.93233 1.93233i
\(624\) 282.915 410.840i 0.453389 0.658397i
\(625\) −36.4400 + 623.937i −0.0583040 + 0.998299i
\(626\) −126.423 171.715i −0.201953 0.274305i
\(627\) −1026.48 + 206.288i −1.63712 + 0.329008i
\(628\) 436.272 229.280i 0.694701 0.365095i
\(629\) 515.690 0.819856
\(630\) 1266.71 293.055i 2.01064 0.465166i
\(631\) 713.848i 1.13130i 0.824647 + 0.565648i \(0.191374\pi\)
−0.824647 + 0.565648i \(0.808626\pi\)
\(632\) 222.753 458.452i 0.352458 0.725399i
\(633\) −1057.99 + 1057.99i −1.67139 + 1.67139i
\(634\) −395.197 + 290.959i −0.623340 + 0.458927i
\(635\) −235.145 591.964i −0.370307 0.932227i
\(636\) 774.824 + 240.977i 1.21828 + 0.378895i
\(637\) −321.386 321.386i −0.504531 0.504531i
\(638\) 28.5354 31.3876i 0.0447263 0.0491969i
\(639\) −217.661 −0.340627
\(640\) −636.259 + 69.0953i −0.994155 + 0.107961i
\(641\) 485.650 0.757644 0.378822 0.925469i \(-0.376329\pi\)
0.378822 + 0.925469i \(0.376329\pi\)
\(642\) 68.3277 449.774i 0.106429 0.700582i
\(643\) −846.612 + 846.612i −1.31666 + 1.31666i −0.400257 + 0.916403i \(0.631079\pi\)
−0.916403 + 0.400257i \(0.868921\pi\)
\(644\) −525.773 + 1690.54i −0.816418 + 2.62506i
\(645\) −580.906 + 1346.54i −0.900630 + 2.08767i
\(646\) 689.026 507.287i 1.06660 0.785274i
\(647\) 102.117 + 102.117i 0.157831 + 0.157831i 0.781605 0.623774i \(-0.214401\pi\)
−0.623774 + 0.781605i \(0.714401\pi\)
\(648\) −315.609 153.349i −0.487051 0.236649i
\(649\) 428.837 644.554i 0.660767 0.993150i
\(650\) 334.075 + 60.7678i 0.513961 + 0.0934889i
\(651\) −425.032 −0.652891
\(652\) −19.9536 + 10.4865i −0.0306037 + 0.0160836i
\(653\) −728.793 728.793i −1.11607 1.11607i −0.992313 0.123756i \(-0.960506\pi\)
−0.123756 0.992313i \(-0.539494\pi\)
\(654\) −1173.66 + 864.092i −1.79458 + 1.32124i
\(655\) −267.323 + 619.658i −0.408127 + 0.946042i
\(656\) 49.9683 72.5622i 0.0761711 0.110613i
\(657\) 243.911 + 243.911i 0.371249 + 0.371249i
\(658\) −502.017 76.2642i −0.762943 0.115903i
\(659\) 280.987i 0.426384i 0.977010 + 0.213192i \(0.0683860\pi\)
−0.977010 + 0.213192i \(0.931614\pi\)
\(660\) 881.214 + 493.474i 1.33517 + 0.747688i
\(661\) 284.789 0.430846 0.215423 0.976521i \(-0.430887\pi\)
0.215423 + 0.976521i \(0.430887\pi\)
\(662\) 49.0786 323.065i 0.0741368 0.488013i
\(663\) 454.890 454.890i 0.686108 0.686108i
\(664\) −223.086 644.752i −0.335973 0.971012i
\(665\) 1037.32 412.052i 1.55987 0.619627i
\(666\) 357.852 + 486.055i 0.537316 + 0.729813i
\(667\) −56.0473 + 56.0473i −0.0840289 + 0.0840289i
\(668\) 693.113 364.261i 1.03759 0.545300i
\(669\) 543.598i 0.812553i
\(670\) −553.546 + 128.064i −0.826188 + 0.191140i
\(671\) −249.444 165.961i −0.371750 0.247334i
\(672\) −1082.57 + 1153.21i −1.61097 + 1.71609i
\(673\) 185.497 185.497i 0.275627 0.275627i −0.555733 0.831361i \(-0.687562\pi\)
0.831361 + 0.555733i \(0.187562\pi\)
\(674\) 346.635 + 470.819i 0.514295 + 0.698544i
\(675\) −10.2944 + 352.828i −0.0152510 + 0.522709i
\(676\) −145.971 + 469.347i −0.215934 + 0.694300i
\(677\) 54.6688 + 54.6688i 0.0807516 + 0.0807516i 0.746329 0.665577i \(-0.231815\pi\)
−0.665577 + 0.746329i \(0.731815\pi\)
\(678\) 964.047 + 146.454i 1.42190 + 0.216009i
\(679\) 643.821i 0.948190i
\(680\) −823.103 61.1651i −1.21045 0.0899487i
\(681\) 1308.44i 1.92135i
\(682\) −139.975 127.255i −0.205242 0.186592i
\(683\) −9.87009 + 9.87009i −0.0144511 + 0.0144511i −0.714295 0.699844i \(-0.753253\pi\)
0.699844 + 0.714295i \(0.253253\pi\)
\(684\) 956.271 + 297.409i 1.39806 + 0.434808i
\(685\) −251.010 631.902i −0.366437 0.922485i
\(686\) 228.873 + 310.868i 0.333634 + 0.453161i
\(687\) 474.283 + 474.283i 0.690369 + 0.690369i
\(688\) −185.367 1005.27i −0.269428 1.46115i
\(689\) 300.086 0.435538
\(690\) −1600.87 999.315i −2.32010 1.44828i
\(691\) 500.999i 0.725034i 0.931977 + 0.362517i \(0.118083\pi\)
−0.931977 + 0.362517i \(0.881917\pi\)
\(692\) −714.313 + 375.402i −1.03224 + 0.542488i
\(693\) 1402.15 281.786i 2.02330 0.406617i
\(694\) 49.4650 36.4180i 0.0712753 0.0524756i
\(695\) 1216.86 + 524.958i 1.75087 + 0.755335i
\(696\) −66.9225 + 23.1553i −0.0961530 + 0.0332692i
\(697\) 80.3424 80.3424i 0.115269 0.115269i
\(698\) 623.664 + 94.7443i 0.893501 + 0.135737i
\(699\) 1926.21i 2.75566i
\(700\) −1018.35 349.602i −1.45479 0.499432i
\(701\) 588.564i 0.839606i 0.907615 + 0.419803i \(0.137901\pi\)
−0.907615 + 0.419803i \(0.862099\pi\)
\(702\) 189.595 + 28.8024i 0.270078 + 0.0410290i
\(703\) 366.394 + 366.394i 0.521186 + 0.521186i
\(704\) −701.796 + 55.6608i −0.996870 + 0.0790636i
\(705\) 214.404 496.990i 0.304119 0.704950i
\(706\) −155.734 211.527i −0.220587 0.299613i
\(707\) −227.193 227.193i −0.321348 0.321348i
\(708\) −1144.03 + 601.239i −1.61587 + 0.849207i
\(709\) 656.320i 0.925698i −0.886437 0.462849i \(-0.846827\pi\)
0.886437 0.462849i \(-0.153173\pi\)
\(710\) 152.904 + 95.4475i 0.215358 + 0.134433i
\(711\) 769.367 1.08209
\(712\) −552.827 + 1137.78i −0.776443 + 1.59801i
\(713\) 249.947 + 249.947i 0.350557 + 0.350557i
\(714\) −1642.68 + 1209.40i −2.30067 + 1.69384i
\(715\) 365.388 + 77.4815i 0.511031 + 0.108366i
\(716\) −490.482 152.544i −0.685031 0.213051i
\(717\) −332.142 332.142i −0.463239 0.463239i
\(718\) −79.7216 + 524.776i −0.111033 + 0.730885i
\(719\) −1219.17 −1.69565 −0.847827 0.530274i \(-0.822089\pi\)
−0.847827 + 0.530274i \(0.822089\pi\)
\(720\) −513.525 818.247i −0.713230 1.13645i
\(721\) 298.094i 0.413445i
\(722\) 136.161 + 20.6850i 0.188589 + 0.0286496i
\(723\) −403.450 403.450i −0.558022 0.558022i
\(724\) 242.668 + 75.4718i 0.335176 + 0.104243i
\(725\) −33.0771 35.0653i −0.0456236 0.0483659i
\(726\) 953.173 + 570.725i 1.31291 + 0.786123i
\(727\) −451.881 451.881i −0.621570 0.621570i 0.324363 0.945933i \(-0.394850\pi\)
−0.945933 + 0.324363i \(0.894850\pi\)
\(728\) −255.641 + 526.139i −0.351155 + 0.722719i
\(729\) 1113.01i 1.52677i
\(730\) −64.3858 278.303i −0.0881998 0.381237i
\(731\) 1318.30i 1.80342i
\(732\) 232.681 + 442.744i 0.317870 + 0.604842i
\(733\) 529.659 529.659i 0.722591 0.722591i −0.246541 0.969132i \(-0.579294\pi\)
0.969132 + 0.246541i \(0.0792942\pi\)
\(734\) 218.443 + 296.702i 0.297607 + 0.404226i
\(735\) −1427.72 + 567.133i −1.94248 + 0.771609i
\(736\) 1314.79 41.5393i 1.78640 0.0564392i
\(737\) −612.733 + 123.139i −0.831388 + 0.167082i
\(738\) 131.477 + 19.9735i 0.178154 + 0.0270643i
\(739\) 515.272i 0.697255i −0.937261 0.348628i \(-0.886648\pi\)
0.937261 0.348628i \(-0.113352\pi\)
\(740\) −38.2446 498.372i −0.0516818 0.673475i
\(741\) 646.392 0.872323
\(742\) −940.742 142.913i −1.26785 0.192606i
\(743\) 944.478 + 944.478i 1.27117 + 1.27117i 0.945476 + 0.325692i \(0.105597\pi\)
0.325692 + 0.945476i \(0.394403\pi\)
\(744\) 103.263 + 298.446i 0.138794 + 0.401136i
\(745\) −350.422 + 812.281i −0.470365 + 1.09031i
\(746\) 931.169 685.562i 1.24822 0.918984i
\(747\) 728.195 728.195i 0.974827 0.974827i
\(748\) −903.079 93.5302i −1.20732 0.125040i
\(749\) 533.484i 0.712262i
\(750\) 635.878 955.447i 0.847838 1.27393i
\(751\) 26.2915i 0.0350086i −0.999847 0.0175043i \(-0.994428\pi\)
0.999847 0.0175043i \(-0.00557208\pi\)
\(752\) 68.4161 + 371.031i 0.0909788 + 0.493392i
\(753\) −1013.60 1013.60i −1.34608 1.34608i
\(754\) −21.0897 + 15.5270i −0.0279704 + 0.0205929i
\(755\) −51.3821 + 119.104i −0.0680557 + 0.157754i
\(756\) −580.645 180.586i −0.768049 0.238870i
\(757\) 222.887 222.887i 0.294434 0.294434i −0.544395 0.838829i \(-0.683241\pi\)
0.838829 + 0.544395i \(0.183241\pi\)
\(758\) −226.595 34.4234i −0.298939 0.0454135i
\(759\) −1728.32 1149.89i −2.27710 1.51501i
\(760\) −541.351 628.266i −0.712304 0.826665i
\(761\) 290.544i 0.381793i 0.981610 + 0.190897i \(0.0611395\pi\)
−0.981610 + 0.190897i \(0.938861\pi\)
\(762\) −175.674 + 1156.39i −0.230543 + 1.51757i
\(763\) 1208.50 1208.50i 1.58388 1.58388i
\(764\) −87.2352 + 280.491i −0.114182 + 0.367135i
\(765\) −459.929 1157.85i −0.601215 1.51352i
\(766\) −243.775 + 179.476i −0.318244 + 0.234303i
\(767\) −337.968 + 337.968i −0.440636 + 0.440636i
\(768\) 1072.77 + 479.976i 1.39683 + 0.624969i
\(769\) −342.290 −0.445111 −0.222555 0.974920i \(-0.571440\pi\)
−0.222555 + 0.974920i \(0.571440\pi\)
\(770\) −1108.56 416.911i −1.43969 0.541442i
\(771\) 382.325i 0.495882i
\(772\) 267.008 140.324i 0.345865 0.181767i