Properties

Label 220.3.i.a.43.20
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.20
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.17390 - 1.61925i) q^{2} +(-2.04929 + 2.04929i) q^{3} +(-1.24394 + 3.80166i) q^{4} +(-1.54252 + 4.75612i) q^{5} +(5.72396 + 0.912660i) q^{6} +(-0.191923 + 0.191923i) q^{7} +(7.61609 - 2.44850i) q^{8} +0.600827i q^{9} +(9.51209 - 3.08546i) q^{10} +(2.04378 - 10.8085i) q^{11} +(-5.24151 - 10.3399i) q^{12} +(-11.7111 + 11.7111i) q^{13} +(0.536069 + 0.0854739i) q^{14} +(-6.58560 - 12.9077i) q^{15} +(-12.9052 - 9.45807i) q^{16} +(-3.02352 - 3.02352i) q^{17} +(0.972889 - 0.705308i) q^{18} -29.9372i q^{19} +(-16.1623 - 11.7804i) q^{20} -0.786612i q^{21} +(-19.9008 + 9.37862i) q^{22} +(-16.8498 + 16.8498i) q^{23} +(-10.5899 + 20.6253i) q^{24} +(-20.2413 - 14.6728i) q^{25} +(32.7108 + 5.21560i) q^{26} +(-19.6749 - 19.6749i) q^{27} +(-0.490885 - 0.968367i) q^{28} +11.2003 q^{29} +(-13.1700 + 25.8160i) q^{30} +12.8505i q^{31} +(-0.165600 + 31.9996i) q^{32} +(17.9614 + 26.3380i) q^{33} +(-1.34654 + 8.44512i) q^{34} +(-0.616764 - 1.20885i) q^{35} +(-2.28414 - 0.747393i) q^{36} +(9.72307 - 9.72307i) q^{37} +(-48.4758 + 35.1431i) q^{38} -47.9989i q^{39} +(-0.102599 + 39.9999i) q^{40} -23.8309i q^{41} +(-1.27372 + 0.923400i) q^{42} +(-49.2420 - 49.2420i) q^{43} +(38.5478 + 21.2148i) q^{44} +(-2.85760 - 0.926786i) q^{45} +(47.0640 + 7.50415i) q^{46} +(4.51450 + 4.51450i) q^{47} +(45.8289 - 7.06421i) q^{48} +48.9263i q^{49} +(0.00225408 + 50.0000i) q^{50} +12.3921 q^{51} +(-29.9537 - 59.0895i) q^{52} +(-23.7927 - 23.7927i) q^{53} +(-8.76230 + 54.9548i) q^{54} +(48.2538 + 26.3927i) q^{55} +(-0.991780 + 1.93163i) q^{56} +(61.3500 + 61.3500i) q^{57} +(-13.1480 - 18.1361i) q^{58} +14.6598 q^{59} +(57.2628 - 8.97976i) q^{60} -66.0194i q^{61} +(20.8082 - 15.0852i) q^{62} +(-0.115313 - 0.115313i) q^{63} +(52.0097 - 37.2960i) q^{64} +(-37.6348 - 73.7640i) q^{65} +(21.5630 - 60.0020i) q^{66} +(-35.2878 - 35.2878i) q^{67} +(15.2555 - 7.73331i) q^{68} -69.0604i q^{69} +(-1.23342 + 2.41776i) q^{70} +107.125i q^{71} +(1.47113 + 4.57595i) q^{72} +(-52.4871 + 52.4871i) q^{73} +(-27.1579 - 4.33021i) q^{74} +(71.5490 - 11.4115i) q^{75} +(113.811 + 37.2401i) q^{76} +(1.68215 + 2.46664i) q^{77} +(-77.7222 + 56.3457i) q^{78} -122.830i q^{79} +(64.8902 - 46.7895i) q^{80} +75.2316 q^{81} +(-38.5882 + 27.9750i) q^{82} +(81.9671 + 81.9671i) q^{83} +(2.99043 + 0.978498i) q^{84} +(19.0440 - 9.71638i) q^{85} +(-21.9302 + 137.540i) q^{86} +(-22.9526 + 22.9526i) q^{87} +(-10.8989 - 87.3225i) q^{88} -24.0688i q^{89} +(1.85383 + 5.71512i) q^{90} -4.49526i q^{91} +(-43.0972 - 85.0175i) q^{92} +(-26.3344 - 26.3344i) q^{93} +(2.01056 - 12.6097i) q^{94} +(142.385 + 46.1786i) q^{95} +(-65.2370 - 65.9157i) q^{96} +(-36.5473 + 36.5473i) q^{97} +(79.2240 - 57.4344i) q^{98} +(6.49402 + 1.22796i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.17390 1.61925i −0.586948 0.809625i
\(3\) −2.04929 + 2.04929i −0.683096 + 0.683096i −0.960697 0.277600i \(-0.910461\pi\)
0.277600 + 0.960697i \(0.410461\pi\)
\(4\) −1.24394 + 3.80166i −0.310985 + 0.950415i
\(5\) −1.54252 + 4.75612i −0.308503 + 0.951223i
\(6\) 5.72396 + 0.912660i 0.953994 + 0.152110i
\(7\) −0.191923 + 0.191923i −0.0274176 + 0.0274176i −0.720683 0.693265i \(-0.756172\pi\)
0.693265 + 0.720683i \(0.256172\pi\)
\(8\) 7.61609 2.44850i 0.952011 0.306062i
\(9\) 0.600827i 0.0667586i
\(10\) 9.51209 3.08546i 0.951209 0.308546i
\(11\) 2.04378 10.8085i 0.185798 0.982588i
\(12\) −5.24151 10.3399i −0.436792 0.861658i
\(13\) −11.7111 + 11.7111i −0.900854 + 0.900854i −0.995510 0.0946558i \(-0.969825\pi\)
0.0946558 + 0.995510i \(0.469825\pi\)
\(14\) 0.536069 + 0.0854739i 0.0382907 + 0.00610528i
\(15\) −6.58560 12.9077i −0.439040 0.860515i
\(16\) −12.9052 9.45807i −0.806577 0.591130i
\(17\) −3.02352 3.02352i −0.177854 0.177854i 0.612566 0.790420i \(-0.290137\pi\)
−0.790420 + 0.612566i \(0.790137\pi\)
\(18\) 0.972889 0.705308i 0.0540494 0.0391838i
\(19\) 29.9372i 1.57564i −0.615904 0.787821i \(-0.711209\pi\)
0.615904 0.787821i \(-0.288791\pi\)
\(20\) −16.1623 11.7804i −0.808117 0.589022i
\(21\) 0.786612i 0.0374577i
\(22\) −19.9008 + 9.37862i −0.904581 + 0.426301i
\(23\) −16.8498 + 16.8498i −0.732602 + 0.732602i −0.971134 0.238533i \(-0.923334\pi\)
0.238533 + 0.971134i \(0.423334\pi\)
\(24\) −10.5899 + 20.6253i −0.441245 + 0.859386i
\(25\) −20.2413 14.6728i −0.809651 0.586911i
\(26\) 32.7108 + 5.21560i 1.25811 + 0.200600i
\(27\) −19.6749 19.6749i −0.728699 0.728699i
\(28\) −0.490885 0.968367i −0.0175316 0.0345845i
\(29\) 11.2003 0.386217 0.193109 0.981177i \(-0.438143\pi\)
0.193109 + 0.981177i \(0.438143\pi\)
\(30\) −13.1700 + 25.8160i −0.439001 + 0.860535i
\(31\) 12.8505i 0.414533i 0.978285 + 0.207267i \(0.0664567\pi\)
−0.978285 + 0.207267i \(0.933543\pi\)
\(32\) −0.165600 + 31.9996i −0.00517502 + 0.999987i
\(33\) 17.9614 + 26.3380i 0.544284 + 0.798120i
\(34\) −1.34654 + 8.44512i −0.0396041 + 0.248386i
\(35\) −0.616764 1.20885i −0.0176218 0.0345387i
\(36\) −2.28414 0.747393i −0.0634483 0.0207609i
\(37\) 9.72307 9.72307i 0.262786 0.262786i −0.563399 0.826185i \(-0.690507\pi\)
0.826185 + 0.563399i \(0.190507\pi\)
\(38\) −48.4758 + 35.1431i −1.27568 + 0.924820i
\(39\) 47.9989i 1.23074i
\(40\) −0.102599 + 39.9999i −0.00256498 + 0.999997i
\(41\) 23.8309i 0.581242i −0.956838 0.290621i \(-0.906138\pi\)
0.956838 0.290621i \(-0.0938619\pi\)
\(42\) −1.27372 + 0.923400i −0.0303267 + 0.0219857i
\(43\) −49.2420 49.2420i −1.14516 1.14516i −0.987492 0.157671i \(-0.949601\pi\)
−0.157671 0.987492i \(-0.550399\pi\)
\(44\) 38.5478 + 21.2148i 0.876086 + 0.482156i
\(45\) −2.85760 0.926786i −0.0635023 0.0205952i
\(46\) 47.0640 + 7.50415i 1.02313 + 0.163134i
\(47\) 4.51450 + 4.51450i 0.0960533 + 0.0960533i 0.753501 0.657447i \(-0.228364\pi\)
−0.657447 + 0.753501i \(0.728364\pi\)
\(48\) 45.8289 7.06421i 0.954768 0.147171i
\(49\) 48.9263i 0.998497i
\(50\) 0.00225408 + 50.0000i 4.50817e−5 + 1.00000i
\(51\) 12.3921 0.242983
\(52\) −29.9537 59.0895i −0.576033 1.13634i
\(53\) −23.7927 23.7927i −0.448918 0.448918i 0.446076 0.894995i \(-0.352821\pi\)
−0.894995 + 0.446076i \(0.852821\pi\)
\(54\) −8.76230 + 54.9548i −0.162265 + 1.01768i
\(55\) 48.2538 + 26.3927i 0.877341 + 0.479867i
\(56\) −0.991780 + 1.93163i −0.0177104 + 0.0344934i
\(57\) 61.3500 + 61.3500i 1.07632 + 1.07632i
\(58\) −13.1480 18.1361i −0.226689 0.312691i
\(59\) 14.6598 0.248471 0.124235 0.992253i \(-0.460352\pi\)
0.124235 + 0.992253i \(0.460352\pi\)
\(60\) 57.2628 8.97976i 0.954381 0.149663i
\(61\) 66.0194i 1.08228i −0.840931 0.541142i \(-0.817992\pi\)
0.840931 0.541142i \(-0.182008\pi\)
\(62\) 20.8082 15.0852i 0.335616 0.243309i
\(63\) −0.115313 0.115313i −0.00183036 0.00183036i
\(64\) 52.0097 37.2960i 0.812652 0.582750i
\(65\) −37.6348 73.7640i −0.578997 1.13483i
\(66\) 21.5630 60.0020i 0.326712 0.909121i
\(67\) −35.2878 35.2878i −0.526684 0.526684i 0.392898 0.919582i \(-0.371473\pi\)
−0.919582 + 0.392898i \(0.871473\pi\)
\(68\) 15.2555 7.73331i 0.224345 0.113725i
\(69\) 69.0604i 1.00088i
\(70\) −1.23342 + 2.41776i −0.0176203 + 0.0345395i
\(71\) 107.125i 1.50881i 0.656410 + 0.754404i \(0.272074\pi\)
−0.656410 + 0.754404i \(0.727926\pi\)
\(72\) 1.47113 + 4.57595i 0.0204323 + 0.0635549i
\(73\) −52.4871 + 52.4871i −0.719001 + 0.719001i −0.968401 0.249399i \(-0.919767\pi\)
0.249399 + 0.968401i \(0.419767\pi\)
\(74\) −27.1579 4.33021i −0.366999 0.0585164i
\(75\) 71.5490 11.4115i 0.953987 0.152153i
\(76\) 113.811 + 37.2401i 1.49751 + 0.490001i
\(77\) 1.68215 + 2.46664i 0.0218461 + 0.0320343i
\(78\) −77.7222 + 56.3457i −0.996438 + 0.722380i
\(79\) 122.830i 1.55480i −0.629004 0.777402i \(-0.716537\pi\)
0.629004 0.777402i \(-0.283463\pi\)
\(80\) 64.8902 46.7895i 0.811128 0.584869i
\(81\) 75.2316 0.928785
\(82\) −38.5882 + 27.9750i −0.470588 + 0.341159i
\(83\) 81.9671 + 81.9671i 0.987556 + 0.987556i 0.999924 0.0123677i \(-0.00393686\pi\)
−0.0123677 + 0.999924i \(0.503937\pi\)
\(84\) 2.99043 + 0.978498i 0.0356004 + 0.0116488i
\(85\) 19.0440 9.71638i 0.224047 0.114310i
\(86\) −21.9302 + 137.540i −0.255002 + 1.59930i
\(87\) −22.9526 + 22.9526i −0.263824 + 0.263824i
\(88\) −10.8989 87.3225i −0.123851 0.992301i
\(89\) 24.0688i 0.270435i −0.990816 0.135218i \(-0.956827\pi\)
0.990816 0.135218i \(-0.0431734\pi\)
\(90\) 1.85383 + 5.71512i 0.0205981 + 0.0635014i
\(91\) 4.49526i 0.0493985i
\(92\) −43.0972 85.0175i −0.468447 0.924104i
\(93\) −26.3344 26.3344i −0.283166 0.283166i
\(94\) 2.01056 12.6097i 0.0213889 0.134145i
\(95\) 142.385 + 46.1786i 1.49879 + 0.486091i
\(96\) −65.2370 65.9157i −0.679552 0.686622i
\(97\) −36.5473 + 36.5473i −0.376777 + 0.376777i −0.869938 0.493161i \(-0.835841\pi\)
0.493161 + 0.869938i \(0.335841\pi\)
\(98\) 79.2240 57.4344i 0.808408 0.586065i
\(99\) 6.49402 + 1.22796i 0.0655962 + 0.0124036i
\(100\) 80.9598 58.6984i 0.809598 0.586984i
\(101\) 147.722i 1.46260i 0.682057 + 0.731299i \(0.261086\pi\)
−0.682057 + 0.731299i \(0.738914\pi\)
\(102\) −14.5471 20.0659i −0.142618 0.196725i
\(103\) −15.3839 + 15.3839i −0.149358 + 0.149358i −0.777831 0.628473i \(-0.783680\pi\)
0.628473 + 0.777831i \(0.283680\pi\)
\(104\) −60.5182 + 117.867i −0.581906 + 1.13334i
\(105\) 3.74122 + 1.21336i 0.0356306 + 0.0115558i
\(106\) −10.5962 + 66.4564i −0.0999640 + 0.626947i
\(107\) −66.6257 + 66.6257i −0.622670 + 0.622670i −0.946213 0.323543i \(-0.895126\pi\)
0.323543 + 0.946213i \(0.395126\pi\)
\(108\) 99.2715 50.3228i 0.919181 0.465952i
\(109\) −147.808 −1.35604 −0.678018 0.735045i \(-0.737161\pi\)
−0.678018 + 0.735045i \(0.737161\pi\)
\(110\) −13.9085 109.117i −0.126441 0.991974i
\(111\) 39.8508i 0.359016i
\(112\) 4.29203 0.661588i 0.0383217 0.00590704i
\(113\) 101.361 + 101.361i 0.896998 + 0.896998i 0.995170 0.0981712i \(-0.0312993\pi\)
−0.0981712 + 0.995170i \(0.531299\pi\)
\(114\) 27.3225 171.359i 0.239671 1.50315i
\(115\) −54.1486 106.131i −0.470858 0.922878i
\(116\) −13.9325 + 42.5797i −0.120108 + 0.367066i
\(117\) −7.03635 7.03635i −0.0601397 0.0601397i
\(118\) −17.2090 23.7378i −0.145839 0.201168i
\(119\) 1.16057 0.00975266
\(120\) −81.7610 82.1816i −0.681342 0.684846i
\(121\) −112.646 44.1803i −0.930958 0.365126i
\(122\) −106.902 + 77.4998i −0.876245 + 0.635244i
\(123\) 48.8364 + 48.8364i 0.397044 + 0.397044i
\(124\) −48.8533 15.9853i −0.393978 0.128914i
\(125\) 101.008 73.6369i 0.808064 0.589095i
\(126\) −0.0513550 + 0.322085i −0.000407579 + 0.00255623i
\(127\) −128.689 + 128.689i −1.01330 + 1.01330i −0.0133851 + 0.999910i \(0.504261\pi\)
−0.999910 + 0.0133851i \(0.995739\pi\)
\(128\) −121.445 40.4351i −0.948793 0.315899i
\(129\) 201.822 1.56451
\(130\) −75.2630 + 147.531i −0.578946 + 1.13486i
\(131\) −122.974 −0.938730 −0.469365 0.883004i \(-0.655517\pi\)
−0.469365 + 0.883004i \(0.655517\pi\)
\(132\) −122.471 + 35.5202i −0.927810 + 0.269092i
\(133\) 5.74564 + 5.74564i 0.0432003 + 0.0432003i
\(134\) −15.7156 + 98.5640i −0.117281 + 0.735552i
\(135\) 123.925 63.2272i 0.917961 0.468349i
\(136\) −30.4305 15.6243i −0.223753 0.114885i
\(137\) −158.269 + 158.269i −1.15525 + 1.15525i −0.169766 + 0.985484i \(0.554301\pi\)
−0.985484 + 0.169766i \(0.945699\pi\)
\(138\) −111.826 + 81.0697i −0.810333 + 0.587461i
\(139\) 101.883i 0.732970i 0.930424 + 0.366485i \(0.119439\pi\)
−0.930424 + 0.366485i \(0.880561\pi\)
\(140\) 5.36287 0.840986i 0.0383062 0.00600704i
\(141\) −18.5030 −0.131227
\(142\) 173.463 125.754i 1.22157 0.885591i
\(143\) 102.644 + 150.514i 0.717791 + 1.05255i
\(144\) 5.68267 7.75381i 0.0394630 0.0538459i
\(145\) −17.2766 + 53.2699i −0.119149 + 0.367379i
\(146\) 146.604 + 23.3754i 1.00414 + 0.160105i
\(147\) −100.264 100.264i −0.682069 0.682069i
\(148\) 24.8689 + 49.0587i 0.168033 + 0.331478i
\(149\) 87.1478 0.584885 0.292442 0.956283i \(-0.405532\pi\)
0.292442 + 0.956283i \(0.405532\pi\)
\(150\) −102.469 102.460i −0.683127 0.683066i
\(151\) −192.284 −1.27340 −0.636701 0.771111i \(-0.719701\pi\)
−0.636701 + 0.771111i \(0.719701\pi\)
\(152\) −73.3012 228.005i −0.482245 1.50003i
\(153\) 1.81661 1.81661i 0.0118733 0.0118733i
\(154\) 2.01945 5.61940i 0.0131133 0.0364896i
\(155\) −61.1186 19.8222i −0.394314 0.127885i
\(156\) 182.475 + 59.7077i 1.16971 + 0.382742i
\(157\) 149.928 149.928i 0.954956 0.954956i −0.0440723 0.999028i \(-0.514033\pi\)
0.999028 + 0.0440723i \(0.0140332\pi\)
\(158\) −198.892 + 144.189i −1.25881 + 0.912588i
\(159\) 97.5162 0.613309
\(160\) −151.938 50.1475i −0.949614 0.313422i
\(161\) 6.46775i 0.0401723i
\(162\) −88.3140 121.819i −0.545148 0.751967i
\(163\) −20.1712 + 20.1712i −0.123750 + 0.123750i −0.766269 0.642520i \(-0.777889\pi\)
0.642520 + 0.766269i \(0.277889\pi\)
\(164\) 90.5970 + 29.6442i 0.552421 + 0.180758i
\(165\) −152.972 + 44.7996i −0.927104 + 0.271513i
\(166\) 36.5044 228.946i 0.219906 1.37919i
\(167\) −56.4559 + 56.4559i −0.338059 + 0.338059i −0.855636 0.517577i \(-0.826834\pi\)
0.517577 + 0.855636i \(0.326834\pi\)
\(168\) −1.92602 5.99091i −0.0114644 0.0356602i
\(169\) 105.300i 0.623077i
\(170\) −38.0889 19.4310i −0.224053 0.114300i
\(171\) 17.9871 0.105188
\(172\) 248.455 125.947i 1.44451 0.732251i
\(173\) 128.028 128.028i 0.740047 0.740047i −0.232540 0.972587i \(-0.574704\pi\)
0.972587 + 0.232540i \(0.0747037\pi\)
\(174\) 64.1101 + 10.2221i 0.368449 + 0.0587475i
\(175\) 6.70082 1.06873i 0.0382904 0.00610700i
\(176\) −128.603 + 120.155i −0.730697 + 0.682702i
\(177\) −30.0421 + 30.0421i −0.169729 + 0.169729i
\(178\) −38.9733 + 28.2542i −0.218951 + 0.158731i
\(179\) −326.200 −1.82234 −0.911172 0.412025i \(-0.864821\pi\)
−0.911172 + 0.412025i \(0.864821\pi\)
\(180\) 7.07801 9.71077i 0.0393223 0.0539487i
\(181\) −7.65453 −0.0422902 −0.0211451 0.999776i \(-0.506731\pi\)
−0.0211451 + 0.999776i \(0.506731\pi\)
\(182\) −7.27896 + 5.27697i −0.0399943 + 0.0289943i
\(183\) 135.293 + 135.293i 0.739305 + 0.739305i
\(184\) −87.0731 + 169.587i −0.473223 + 0.921667i
\(185\) 31.2461 + 61.2421i 0.168898 + 0.331038i
\(186\) −11.7282 + 73.5559i −0.0630547 + 0.395462i
\(187\) −38.8590 + 26.5002i −0.207802 + 0.141712i
\(188\) −22.7784 + 11.5468i −0.121162 + 0.0614193i
\(189\) 7.55213 0.0399583
\(190\) −92.3701 284.766i −0.486159 1.49877i
\(191\) 28.8142i 0.150860i 0.997151 + 0.0754299i \(0.0240329\pi\)
−0.997151 + 0.0754299i \(0.975967\pi\)
\(192\) −30.1526 + 183.013i −0.157045 + 0.953194i
\(193\) 124.886 124.886i 0.647078 0.647078i −0.305208 0.952286i \(-0.598726\pi\)
0.952286 + 0.305208i \(0.0987260\pi\)
\(194\) 102.082 + 16.2765i 0.526196 + 0.0838996i
\(195\) 228.288 + 74.0391i 1.17071 + 0.379688i
\(196\) −186.001 60.8614i −0.948986 0.310517i
\(197\) −159.965 159.965i −0.812005 0.812005i 0.172930 0.984934i \(-0.444677\pi\)
−0.984934 + 0.172930i \(0.944677\pi\)
\(198\) −5.63493 11.9569i −0.0284592 0.0603886i
\(199\) 246.680 1.23960 0.619800 0.784760i \(-0.287214\pi\)
0.619800 + 0.784760i \(0.287214\pi\)
\(200\) −190.086 62.1884i −0.950429 0.310942i
\(201\) 144.630 0.719552
\(202\) 239.199 173.411i 1.18416 0.858468i
\(203\) −2.14960 + 2.14960i −0.0105891 + 0.0105891i
\(204\) −15.4151 + 47.1106i −0.0755640 + 0.230934i
\(205\) 113.343 + 36.7596i 0.552891 + 0.179315i
\(206\) 42.9694 + 6.85127i 0.208589 + 0.0332586i
\(207\) −10.1238 10.1238i −0.0489074 0.0489074i
\(208\) 261.899 40.3700i 1.25913 0.194086i
\(209\) −323.575 61.1851i −1.54821 0.292752i
\(210\) −2.42706 7.48233i −0.0115574 0.0356301i
\(211\) −154.668 −0.733025 −0.366512 0.930413i \(-0.619448\pi\)
−0.366512 + 0.930413i \(0.619448\pi\)
\(212\) 120.048 60.8550i 0.566266 0.287052i
\(213\) −219.531 219.531i −1.03066 1.03066i
\(214\) 186.095 + 29.6721i 0.869604 + 0.138655i
\(215\) 310.157 158.244i 1.44259 0.736019i
\(216\) −198.020 101.672i −0.916757 0.470702i
\(217\) −2.46631 2.46631i −0.0113655 0.0113655i
\(218\) 173.511 + 239.338i 0.795922 + 1.09788i
\(219\) 215.123i 0.982295i
\(220\) −160.361 + 150.613i −0.728913 + 0.684606i
\(221\) 70.8175 0.320441
\(222\) 64.5284 46.7806i 0.290668 0.210724i
\(223\) 104.480 104.480i 0.468519 0.468519i −0.432916 0.901434i \(-0.642515\pi\)
0.901434 + 0.432916i \(0.142515\pi\)
\(224\) −6.10968 6.17324i −0.0272753 0.0275591i
\(225\) 8.81580 12.1615i 0.0391813 0.0540512i
\(226\) 45.1415 283.115i 0.199741 1.25272i
\(227\) 56.0911 56.0911i 0.247097 0.247097i −0.572681 0.819778i \(-0.694097\pi\)
0.819778 + 0.572681i \(0.194097\pi\)
\(228\) −309.548 + 156.916i −1.35766 + 0.688228i
\(229\) 295.729i 1.29139i 0.763595 + 0.645696i \(0.223433\pi\)
−0.763595 + 0.645696i \(0.776567\pi\)
\(230\) −108.288 + 212.267i −0.470816 + 0.922899i
\(231\) −8.50207 1.60766i −0.0368055 0.00695958i
\(232\) 85.3025 27.4239i 0.367683 0.118207i
\(233\) 138.848 138.848i 0.595913 0.595913i −0.343309 0.939222i \(-0.611548\pi\)
0.939222 + 0.343309i \(0.111548\pi\)
\(234\) −3.13367 + 19.6535i −0.0133918 + 0.0839895i
\(235\) −28.4352 + 14.5078i −0.121001 + 0.0617354i
\(236\) −18.2359 + 55.7314i −0.0772706 + 0.236150i
\(237\) 251.713 + 251.713i 1.06208 + 1.06208i
\(238\) −1.36238 1.87925i −0.00572430 0.00789599i
\(239\) 330.896i 1.38450i −0.721656 0.692251i \(-0.756619\pi\)
0.721656 0.692251i \(-0.243381\pi\)
\(240\) −37.0936 + 228.864i −0.154557 + 0.953600i
\(241\) 353.916i 1.46853i 0.678863 + 0.734265i \(0.262473\pi\)
−0.678863 + 0.734265i \(0.737527\pi\)
\(242\) 60.6956 + 234.265i 0.250808 + 0.968037i
\(243\) 22.9026 22.9026i 0.0942494 0.0942494i
\(244\) 250.983 + 82.1241i 1.02862 + 0.336574i
\(245\) −232.699 75.4697i −0.949793 0.308040i
\(246\) 21.7495 136.407i 0.0884128 0.554501i
\(247\) 350.598 + 350.598i 1.41942 + 1.41942i
\(248\) 31.4645 + 97.8708i 0.126873 + 0.394640i
\(249\) −335.949 −1.34919
\(250\) −237.809 77.1151i −0.951237 0.308460i
\(251\) 15.6105i 0.0621931i 0.999516 + 0.0310965i \(0.00989993\pi\)
−0.999516 + 0.0310965i \(0.990100\pi\)
\(252\) 0.581821 0.294937i 0.00230881 0.00117039i
\(253\) 147.684 + 216.558i 0.583729 + 0.855962i
\(254\) 359.446 + 57.3120i 1.41514 + 0.225638i
\(255\) −19.1151 + 58.9384i −0.0749610 + 0.231131i
\(256\) 77.0897 + 244.117i 0.301132 + 0.953583i
\(257\) 276.648 276.648i 1.07645 1.07645i 0.0796260 0.996825i \(-0.474627\pi\)
0.996825 0.0796260i \(-0.0253726\pi\)
\(258\) −236.918 326.801i −0.918287 1.26667i
\(259\) 3.73216i 0.0144099i
\(260\) 327.241 51.3168i 1.25862 0.197372i
\(261\) 6.72944i 0.0257833i
\(262\) 144.358 + 199.125i 0.550986 + 0.760020i
\(263\) −85.2580 85.2580i −0.324175 0.324175i 0.526191 0.850366i \(-0.323620\pi\)
−0.850366 + 0.526191i \(0.823620\pi\)
\(264\) 201.284 + 156.614i 0.762439 + 0.593235i
\(265\) 149.861 76.4601i 0.565515 0.288529i
\(266\) 2.55885 16.0484i 0.00961973 0.0603324i
\(267\) 49.3238 + 49.3238i 0.184733 + 0.184733i
\(268\) 178.048 90.2564i 0.664359 0.336777i
\(269\) 426.434i 1.58526i 0.609705 + 0.792628i \(0.291288\pi\)
−0.609705 + 0.792628i \(0.708712\pi\)
\(270\) −247.855 126.443i −0.917983 0.468308i
\(271\) −268.779 −0.991806 −0.495903 0.868378i \(-0.665163\pi\)
−0.495903 + 0.868378i \(0.665163\pi\)
\(272\) 10.4225 + 67.6158i 0.0383181 + 0.248588i
\(273\) 9.21210 + 9.21210i 0.0337439 + 0.0337439i
\(274\) 442.069 + 70.4860i 1.61339 + 0.257248i
\(275\) −199.959 + 188.789i −0.727124 + 0.686507i
\(276\) 262.544 + 85.9070i 0.951247 + 0.311257i
\(277\) −191.192 191.192i −0.690225 0.690225i 0.272057 0.962281i \(-0.412296\pi\)
−0.962281 + 0.272057i \(0.912296\pi\)
\(278\) 164.974 119.600i 0.593430 0.430215i
\(279\) −7.72095 −0.0276736
\(280\) −7.65721 7.69659i −0.0273472 0.0274878i
\(281\) 109.574i 0.389944i 0.980809 + 0.194972i \(0.0624616\pi\)
−0.980809 + 0.194972i \(0.937538\pi\)
\(282\) 21.7206 + 29.9611i 0.0770235 + 0.106245i
\(283\) −25.6303 25.6303i −0.0905664 0.0905664i 0.660372 0.750939i \(-0.270399\pi\)
−0.750939 + 0.660372i \(0.770399\pi\)
\(284\) −407.254 133.258i −1.43399 0.469217i
\(285\) −386.421 + 197.154i −1.35586 + 0.691770i
\(286\) 123.226 342.894i 0.430861 1.19893i
\(287\) 4.57370 + 4.57370i 0.0159363 + 0.0159363i
\(288\) −19.2262 0.0994973i −0.0667577 0.000345477i
\(289\) 270.717i 0.936736i
\(290\) 106.538 34.5581i 0.367373 0.119166i
\(291\) 149.792i 0.514749i
\(292\) −134.247 264.829i −0.459751 0.906948i
\(293\) −143.187 + 143.187i −0.488691 + 0.488691i −0.907893 0.419202i \(-0.862310\pi\)
0.419202 + 0.907893i \(0.362310\pi\)
\(294\) −44.6531 + 280.052i −0.151881 + 0.952559i
\(295\) −22.6129 + 69.7236i −0.0766540 + 0.236351i
\(296\) 50.2449 97.8587i 0.169746 0.330604i
\(297\) −252.866 + 172.444i −0.851402 + 0.580620i
\(298\) −102.302 141.114i −0.343297 0.473537i
\(299\) 394.660i 1.31993i
\(300\) −45.6201 + 286.200i −0.152067 + 0.954001i
\(301\) 18.9014 0.0627952
\(302\) 225.721 + 311.355i 0.747420 + 1.03098i
\(303\) −302.726 302.726i −0.999095 0.999095i
\(304\) −283.148 + 386.346i −0.931409 + 1.27088i
\(305\) 313.996 + 101.836i 1.02949 + 0.333888i
\(306\) −5.07406 0.809036i −0.0165819 0.00264391i
\(307\) −302.068 + 302.068i −0.983936 + 0.983936i −0.999873 0.0159367i \(-0.994927\pi\)
0.0159367 + 0.999873i \(0.494927\pi\)
\(308\) −11.4698 + 3.32659i −0.0372397 + 0.0108006i
\(309\) 63.0520i 0.204052i
\(310\) 39.6498 + 122.235i 0.127903 + 0.394308i
\(311\) 245.922i 0.790745i 0.918521 + 0.395373i \(0.129385\pi\)
−0.918521 + 0.395373i \(0.870615\pi\)
\(312\) −117.525 365.564i −0.376683 1.17168i
\(313\) −265.176 265.176i −0.847207 0.847207i 0.142576 0.989784i \(-0.454461\pi\)
−0.989784 + 0.142576i \(0.954461\pi\)
\(314\) −418.771 66.7712i −1.33367 0.212647i
\(315\) 0.726312 0.370569i 0.00230575 0.00117641i
\(316\) 466.956 + 152.793i 1.47771 + 0.483521i
\(317\) 161.326 161.326i 0.508916 0.508916i −0.405278 0.914194i \(-0.632825\pi\)
0.914194 + 0.405278i \(0.132825\pi\)
\(318\) −114.474 157.903i −0.359980 0.496550i
\(319\) 22.8909 121.058i 0.0717584 0.379492i
\(320\) 97.1583 + 304.894i 0.303620 + 0.952793i
\(321\) 273.071i 0.850688i
\(322\) −10.4729 + 7.59246i −0.0325245 + 0.0235791i
\(323\) −90.5157 + 90.5157i −0.280234 + 0.280234i
\(324\) −93.5836 + 286.005i −0.288838 + 0.882731i
\(325\) 408.882 65.2134i 1.25810 0.200657i
\(326\) 56.3410 + 8.98333i 0.172825 + 0.0275562i
\(327\) 302.901 302.901i 0.926303 0.926303i
\(328\) −58.3500 181.498i −0.177896 0.553349i
\(329\) −1.73288 −0.00526710
\(330\) 252.115 + 195.110i 0.763985 + 0.591243i
\(331\) 447.273i 1.35128i −0.737232 0.675639i \(-0.763868\pi\)
0.737232 0.675639i \(-0.236132\pi\)
\(332\) −413.573 + 209.649i −1.24570 + 0.631473i
\(333\) 5.84189 + 5.84189i 0.0175432 + 0.0175432i
\(334\) 157.690 + 25.1429i 0.472124 + 0.0752781i
\(335\) 222.265 113.401i 0.663478 0.338510i
\(336\) −7.43983 + 10.1514i −0.0221424 + 0.0302125i
\(337\) −151.689 151.689i −0.450115 0.450115i 0.445278 0.895393i \(-0.353105\pi\)
−0.895393 + 0.445278i \(0.853105\pi\)
\(338\) −170.507 + 123.611i −0.504458 + 0.365713i
\(339\) −415.435 −1.22547
\(340\) 13.2487 + 84.4855i 0.0389668 + 0.248487i
\(341\) 138.895 + 26.2637i 0.407315 + 0.0770195i
\(342\) −21.1150 29.1256i −0.0617396 0.0851625i
\(343\) −18.7943 18.7943i −0.0547940 0.0547940i
\(344\) −495.601 254.463i −1.44070 0.739717i
\(345\) 328.459 + 106.527i 0.952056 + 0.308773i
\(346\) −357.601 57.0179i −1.03353 0.164792i
\(347\) −1.95387 + 1.95387i −0.00563075 + 0.00563075i −0.709917 0.704286i \(-0.751267\pi\)
0.704286 + 0.709917i \(0.251267\pi\)
\(348\) −58.7064 115.810i −0.168697 0.332787i
\(349\) 507.289 1.45355 0.726774 0.686876i \(-0.241019\pi\)
0.726774 + 0.686876i \(0.241019\pi\)
\(350\) −9.59659 9.59572i −0.0274188 0.0274164i
\(351\) 460.829 1.31290
\(352\) 345.528 + 67.1900i 0.981613 + 0.190881i
\(353\) −20.6594 20.6594i −0.0585252 0.0585252i 0.677238 0.735764i \(-0.263177\pi\)
−0.735764 + 0.677238i \(0.763177\pi\)
\(354\) 83.9120 + 13.3794i 0.237039 + 0.0377949i
\(355\) −509.501 165.243i −1.43521 0.465472i
\(356\) 91.5012 + 29.9401i 0.257026 + 0.0841014i
\(357\) −2.37834 + 2.37834i −0.00666200 + 0.00666200i
\(358\) 382.924 + 528.199i 1.06962 + 1.47542i
\(359\) 286.206i 0.797231i −0.917118 0.398615i \(-0.869491\pi\)
0.917118 0.398615i \(-0.130509\pi\)
\(360\) −24.0330 0.0616443i −0.0667584 0.000171234i
\(361\) −535.236 −1.48265
\(362\) 8.98562 + 12.3946i 0.0248222 + 0.0342392i
\(363\) 321.382 140.306i 0.885350 0.386518i
\(364\) 17.0895 + 5.59184i 0.0469491 + 0.0153622i
\(365\) −168.673 330.597i −0.462117 0.905745i
\(366\) 60.2533 377.892i 0.164626 1.03249i
\(367\) 107.002 + 107.002i 0.291558 + 0.291558i 0.837696 0.546138i \(-0.183902\pi\)
−0.546138 + 0.837696i \(0.683902\pi\)
\(368\) 376.818 58.0840i 1.02396 0.157837i
\(369\) 14.3183 0.0388029
\(370\) 62.4866 122.487i 0.168883 0.331046i
\(371\) 9.13273 0.0246165
\(372\) 132.873 67.3561i 0.357186 0.181065i
\(373\) −357.322 + 357.322i −0.957967 + 0.957967i −0.999152 0.0411849i \(-0.986887\pi\)
0.0411849 + 0.999152i \(0.486887\pi\)
\(374\) 88.5268 + 31.8140i 0.236703 + 0.0850641i
\(375\) −56.0912 + 357.898i −0.149577 + 0.954394i
\(376\) 45.4366 + 23.3291i 0.120842 + 0.0620455i
\(377\) −131.168 + 131.168i −0.347925 + 0.347925i
\(378\) −8.86540 12.2288i −0.0234534 0.0323513i
\(379\) −454.313 −1.19872 −0.599358 0.800481i \(-0.704577\pi\)
−0.599358 + 0.800481i \(0.704577\pi\)
\(380\) −352.674 + 483.855i −0.928089 + 1.27330i
\(381\) 527.440i 1.38436i
\(382\) 46.6574 33.8249i 0.122140 0.0885468i
\(383\) 228.002 228.002i 0.595306 0.595306i −0.343754 0.939060i \(-0.611698\pi\)
0.939060 + 0.343754i \(0.111698\pi\)
\(384\) 331.740 166.014i 0.863907 0.432327i
\(385\) −14.3264 + 4.19564i −0.0372114 + 0.0108978i
\(386\) −348.825 55.6186i −0.903691 0.144090i
\(387\) 29.5859 29.5859i 0.0764495 0.0764495i
\(388\) −93.4778 184.403i −0.240922 0.475266i
\(389\) 109.473i 0.281421i 0.990051 + 0.140711i \(0.0449387\pi\)
−0.990051 + 0.140711i \(0.955061\pi\)
\(390\) −148.099 456.570i −0.379740 1.17069i
\(391\) 101.892 0.260592
\(392\) 119.796 + 372.627i 0.305602 + 0.950580i
\(393\) 252.009 252.009i 0.641243 0.641243i
\(394\) −71.2411 + 446.805i −0.180815 + 1.13402i
\(395\) 584.191 + 189.467i 1.47897 + 0.479662i
\(396\) −12.7465 + 23.1605i −0.0321880 + 0.0584862i
\(397\) −107.593 + 107.593i −0.271016 + 0.271016i −0.829509 0.558493i \(-0.811380\pi\)
0.558493 + 0.829509i \(0.311380\pi\)
\(398\) −289.577 399.437i −0.727580 1.00361i
\(399\) −23.5490 −0.0590200
\(400\) 122.442 + 380.799i 0.306105 + 0.951998i
\(401\) −213.669 −0.532841 −0.266421 0.963857i \(-0.585841\pi\)
−0.266421 + 0.963857i \(0.585841\pi\)
\(402\) −169.780 234.192i −0.422339 0.582567i
\(403\) −150.494 150.494i −0.373434 0.373434i
\(404\) −561.590 183.758i −1.39007 0.454846i
\(405\) −116.046 + 357.810i −0.286533 + 0.883482i
\(406\) 6.00413 + 0.957333i 0.0147885 + 0.00235796i
\(407\) −85.2197 124.963i −0.209385 0.307035i
\(408\) 94.3796 30.3421i 0.231322 0.0743679i
\(409\) 165.802 0.405385 0.202692 0.979242i \(-0.435031\pi\)
0.202692 + 0.979242i \(0.435031\pi\)
\(410\) −73.5294 226.682i −0.179340 0.552883i
\(411\) 648.679i 1.57830i
\(412\) −39.3476 77.6208i −0.0955039 0.188400i
\(413\) −2.81355 + 2.81355i −0.00681247 + 0.00681247i
\(414\) −4.50870 + 28.2774i −0.0108906 + 0.0683028i
\(415\) −516.281 + 263.410i −1.24405 + 0.634722i
\(416\) −372.811 376.690i −0.896180 0.905504i
\(417\) −208.787 208.787i −0.500689 0.500689i
\(418\) 280.770 + 595.774i 0.671698 + 1.42530i
\(419\) −53.5275 −0.127751 −0.0638753 0.997958i \(-0.520346\pi\)
−0.0638753 + 0.997958i \(0.520346\pi\)
\(420\) −9.26664 + 12.7135i −0.0220634 + 0.0302702i
\(421\) 226.307 0.537546 0.268773 0.963203i \(-0.413382\pi\)
0.268773 + 0.963203i \(0.413382\pi\)
\(422\) 181.564 + 250.446i 0.430247 + 0.593475i
\(423\) −2.71244 + 2.71244i −0.00641238 + 0.00641238i
\(424\) −239.464 122.951i −0.564773 0.289978i
\(425\) 16.8365 + 105.563i 0.0396152 + 0.248384i
\(426\) −97.7691 + 613.182i −0.229505 + 1.43939i
\(427\) 12.6706 + 12.6706i 0.0296736 + 0.0296736i
\(428\) −170.410 336.167i −0.398154 0.785436i
\(429\) −518.794 98.0992i −1.20931 0.228669i
\(430\) −620.329 316.460i −1.44263 0.735954i
\(431\) 184.190 0.427354 0.213677 0.976904i \(-0.431456\pi\)
0.213677 + 0.976904i \(0.431456\pi\)
\(432\) 67.8223 + 439.995i 0.156996 + 1.01851i
\(433\) 355.695 + 355.695i 0.821467 + 0.821467i 0.986318 0.164851i \(-0.0527143\pi\)
−0.164851 + 0.986318i \(0.552714\pi\)
\(434\) −1.09838 + 6.88877i −0.00253084 + 0.0158727i
\(435\) −73.7606 144.570i −0.169565 0.332346i
\(436\) 183.864 561.915i 0.421707 1.28880i
\(437\) 504.437 + 504.437i 1.15432 + 1.15432i
\(438\) −348.337 + 252.531i −0.795290 + 0.576555i
\(439\) 444.731i 1.01305i 0.862224 + 0.506527i \(0.169071\pi\)
−0.862224 + 0.506527i \(0.830929\pi\)
\(440\) 432.128 + 82.8599i 0.982108 + 0.188318i
\(441\) −29.3963 −0.0666582
\(442\) −83.1323 114.671i −0.188082 0.259437i
\(443\) 335.016 335.016i 0.756244 0.756244i −0.219393 0.975637i \(-0.570408\pi\)
0.975637 + 0.219393i \(0.0704077\pi\)
\(444\) −151.499 49.5720i −0.341214 0.111649i
\(445\) 114.474 + 37.1265i 0.257244 + 0.0834302i
\(446\) −291.827 46.5305i −0.654321 0.104329i
\(447\) −178.591 + 178.591i −0.399533 + 0.399533i
\(448\) −2.82390 + 17.1398i −0.00630335 + 0.0382585i
\(449\) 503.174i 1.12066i −0.828271 0.560328i \(-0.810675\pi\)
0.828271 0.560328i \(-0.189325\pi\)
\(450\) −30.0414 + 0.00135431i −0.0667586 + 3.00959e-6i
\(451\) −257.576 48.7052i −0.571121 0.107994i
\(452\) −511.426 + 259.253i −1.13147 + 0.573567i
\(453\) 394.045 394.045i 0.869856 0.869856i
\(454\) −156.671 24.9804i −0.345090 0.0550230i
\(455\) 21.3800 + 6.93402i 0.0469890 + 0.0152396i
\(456\) 617.463 + 317.032i 1.35408 + 0.695245i
\(457\) 537.579 + 537.579i 1.17632 + 1.17632i 0.980674 + 0.195648i \(0.0626809\pi\)
0.195648 + 0.980674i \(0.437319\pi\)
\(458\) 478.859 347.155i 1.04554 0.757980i
\(459\) 118.975i 0.259204i
\(460\) 470.831 73.8341i 1.02355 0.160509i
\(461\) 95.1876i 0.206481i 0.994656 + 0.103240i \(0.0329211\pi\)
−0.994656 + 0.103240i \(0.967079\pi\)
\(462\) 7.37733 + 15.6542i 0.0159683 + 0.0338836i
\(463\) −494.077 + 494.077i −1.06712 + 1.06712i −0.0695422 + 0.997579i \(0.522154\pi\)
−0.997579 + 0.0695422i \(0.977846\pi\)
\(464\) −144.542 105.933i −0.311514 0.228304i
\(465\) 165.871 84.6284i 0.356712 0.181996i
\(466\) −387.822 61.8365i −0.832236 0.132696i
\(467\) −34.3502 34.3502i −0.0735550 0.0735550i 0.669372 0.742927i \(-0.266563\pi\)
−0.742927 + 0.669372i \(0.766563\pi\)
\(468\) 35.5026 17.9970i 0.0758603 0.0384551i
\(469\) 13.5451 0.0288808
\(470\) 56.8717 + 29.0131i 0.121004 + 0.0617299i
\(471\) 614.492i 1.30465i
\(472\) 111.650 35.8944i 0.236547 0.0760475i
\(473\) −632.870 + 431.591i −1.33799 + 0.912454i
\(474\) 112.102 703.072i 0.236501 1.48327i
\(475\) −439.262 + 605.968i −0.924762 + 1.27572i
\(476\) −1.44367 + 4.41208i −0.00303293 + 0.00926907i
\(477\) 14.2953 14.2953i 0.0299692 0.0299692i
\(478\) −535.804 + 388.437i −1.12093 + 0.812631i
\(479\) 687.002i 1.43424i 0.696949 + 0.717121i \(0.254540\pi\)
−0.696949 + 0.717121i \(0.745460\pi\)
\(480\) 414.132 208.599i 0.862775 0.434581i
\(481\) 227.736i 0.473463i
\(482\) 573.078 415.460i 1.18896 0.861950i
\(483\) 13.2543 + 13.2543i 0.0274416 + 0.0274416i
\(484\) 308.083 373.284i 0.636535 0.771248i
\(485\) −117.448 230.198i −0.242162 0.474635i
\(486\) −63.9703 10.1998i −0.131626 0.0209872i
\(487\) 404.262 + 404.262i 0.830107 + 0.830107i 0.987531 0.157424i \(-0.0503189\pi\)
−0.157424 + 0.987531i \(0.550319\pi\)
\(488\) −161.648 502.810i −0.331247 1.03035i
\(489\) 82.6732i 0.169066i
\(490\) 150.960 + 465.392i 0.308082 + 0.949779i
\(491\) −274.934 −0.559946 −0.279973 0.960008i \(-0.590326\pi\)
−0.279973 + 0.960008i \(0.590326\pi\)
\(492\) −246.409 + 124.910i −0.500832 + 0.253882i
\(493\) −33.8643 33.8643i −0.0686903 0.0686903i
\(494\) 156.140 979.270i 0.316074 1.98233i
\(495\) −15.8575 + 28.9922i −0.0320353 + 0.0585700i
\(496\) 121.541 165.839i 0.245043 0.334353i
\(497\) −20.5598 20.5598i −0.0413679 0.0413679i
\(498\) 394.369 + 543.985i 0.791905 + 1.09234i
\(499\) 181.398 0.363524 0.181762 0.983343i \(-0.441820\pi\)
0.181762 + 0.983343i \(0.441820\pi\)
\(500\) 154.295 + 475.598i 0.308589 + 0.951195i
\(501\) 231.389i 0.461854i
\(502\) 25.2772 18.3250i 0.0503531 0.0365041i
\(503\) 523.663 + 523.663i 1.04108 + 1.04108i 0.999119 + 0.0419598i \(0.0133602\pi\)
0.0419598 + 0.999119i \(0.486640\pi\)
\(504\) −1.16057 0.595889i −0.00230273 0.00118232i
\(505\) −702.585 227.864i −1.39126 0.451216i
\(506\) 177.297 493.353i 0.350389 0.975007i
\(507\) 215.790 + 215.790i 0.425621 + 0.425621i
\(508\) −329.149 649.311i −0.647931 1.27817i
\(509\) 273.380i 0.537093i 0.963267 + 0.268546i \(0.0865433\pi\)
−0.963267 + 0.268546i \(0.913457\pi\)
\(510\) 117.875 38.2354i 0.231128 0.0749714i
\(511\) 20.1470i 0.0394266i
\(512\) 304.791 411.395i 0.595296 0.803507i
\(513\) −589.011 + 589.011i −1.14817 + 1.14817i
\(514\) −772.718 123.206i −1.50334 0.239701i
\(515\) −49.4376 96.8973i −0.0959953 0.188150i
\(516\) −251.055 + 767.259i −0.486540 + 1.48694i
\(517\) 58.0215 39.5682i 0.112227 0.0765343i
\(518\) 6.04331 4.38117i 0.0116666 0.00845786i
\(519\) 524.733i 1.01105i
\(520\) −467.241 469.644i −0.898541 0.903162i
\(521\) −381.228 −0.731723 −0.365861 0.930669i \(-0.619226\pi\)
−0.365861 + 0.930669i \(0.619226\pi\)
\(522\) 10.8966 7.89966i 0.0208748 0.0151334i
\(523\) −450.960 450.960i −0.862256 0.862256i 0.129344 0.991600i \(-0.458713\pi\)
−0.991600 + 0.129344i \(0.958713\pi\)
\(524\) 152.972 467.504i 0.291931 0.892183i
\(525\) −11.5418 + 15.9220i −0.0219843 + 0.0303277i
\(526\) −37.9701 + 238.138i −0.0721864 + 0.452734i
\(527\) 38.8538 38.8538i 0.0737264 0.0737264i
\(528\) 17.3108 509.778i 0.0327856 0.965488i
\(529\) 38.8341i 0.0734105i
\(530\) −299.730 152.907i −0.565528 0.288503i
\(531\) 8.80799i 0.0165875i
\(532\) −28.9902 + 14.6957i −0.0544929 + 0.0276236i
\(533\) 279.086 + 279.086i 0.523614 + 0.523614i
\(534\) 21.9666 137.769i 0.0411360 0.257994i
\(535\) −214.108 419.651i −0.400203 0.784394i
\(536\) −355.158 182.353i −0.662607 0.340211i
\(537\) 668.478 668.478i 1.24484 1.24484i
\(538\) 690.503 500.589i 1.28346 0.930463i
\(539\) 528.819 + 99.9947i 0.981111 + 0.185519i
\(540\) 86.2131 + 549.771i 0.159654 + 1.01809i
\(541\) 684.932i 1.26605i 0.774132 + 0.633024i \(0.218187\pi\)
−0.774132 + 0.633024i \(0.781813\pi\)
\(542\) 315.519 + 435.221i 0.582138 + 0.802991i
\(543\) 15.6864 15.6864i 0.0288883 0.0288883i
\(544\) 97.2520 96.2506i 0.178772 0.176931i
\(545\) 227.996 702.992i 0.418342 1.28989i
\(546\) 4.10265 25.7307i 0.00751401 0.0471259i
\(547\) 8.71058 8.71058i 0.0159243 0.0159243i −0.699100 0.715024i \(-0.746416\pi\)
0.715024 + 0.699100i \(0.246416\pi\)
\(548\) −404.809 798.564i −0.738702 1.45723i
\(549\) 39.6662 0.0722518
\(550\) 540.428 + 102.165i 0.982596 + 0.185754i
\(551\) 335.306i 0.608540i
\(552\) −169.094 525.970i −0.306330 0.952845i
\(553\) 23.5738 + 23.5738i 0.0426290 + 0.0426290i
\(554\) −85.1483 + 534.028i −0.153697 + 0.963949i
\(555\) −189.535 61.4705i −0.341504 0.110758i
\(556\) −387.324 126.736i −0.696625 0.227943i
\(557\) −209.323 209.323i −0.375805 0.375805i 0.493781 0.869586i \(-0.335614\pi\)
−0.869586 + 0.493781i \(0.835614\pi\)
\(558\) 9.06358 + 12.5021i 0.0162430 + 0.0224053i
\(559\) 1153.36 2.06325
\(560\) −3.47394 + 21.4339i −0.00620347 + 0.0382749i
\(561\) 25.3268 133.940i 0.0451458 0.238752i
\(562\) 177.428 128.629i 0.315708 0.228877i
\(563\) 704.567 + 704.567i 1.25145 + 1.25145i 0.955069 + 0.296382i \(0.0957802\pi\)
0.296382 + 0.955069i \(0.404220\pi\)
\(564\) 23.0167 70.3423i 0.0408097 0.124720i
\(565\) −638.435 + 325.733i −1.12997 + 0.576519i
\(566\) −11.4146 + 71.5891i −0.0201671 + 0.126482i
\(567\) −14.4387 + 14.4387i −0.0254650 + 0.0254650i
\(568\) 262.296 + 815.877i 0.461789 + 1.43640i
\(569\) 886.554 1.55809 0.779045 0.626967i \(-0.215704\pi\)
0.779045 + 0.626967i \(0.215704\pi\)
\(570\) 772.860 + 394.274i 1.35589 + 0.691708i
\(571\) 737.017 1.29075 0.645374 0.763867i \(-0.276702\pi\)
0.645374 + 0.763867i \(0.276702\pi\)
\(572\) −699.886 + 202.988i −1.22358 + 0.354874i
\(573\) −59.0487 59.0487i −0.103052 0.103052i
\(574\) 2.03692 12.7750i 0.00354864 0.0222561i
\(575\) 588.296 93.8284i 1.02312 0.163180i
\(576\) 22.4084 + 31.2488i 0.0389036 + 0.0542515i
\(577\) 370.075 370.075i 0.641378 0.641378i −0.309516 0.950894i \(-0.600167\pi\)
0.950894 + 0.309516i \(0.100167\pi\)
\(578\) −438.358 + 317.793i −0.758405 + 0.549815i
\(579\) 511.855i 0.884033i
\(580\) −181.023 131.944i −0.312109 0.227491i
\(581\) −31.4628 −0.0541528
\(582\) −242.551 + 175.840i −0.416754 + 0.302131i
\(583\) −305.789 + 208.535i −0.524510 + 0.357694i
\(584\) −271.232 + 528.261i −0.464438 + 0.904557i
\(585\) 44.3194 22.6120i 0.0757596 0.0386530i
\(586\) 399.941 + 63.7688i 0.682493 + 0.108820i
\(587\) −138.774 138.774i −0.236413 0.236413i 0.578950 0.815363i \(-0.303463\pi\)
−0.815363 + 0.578950i \(0.803463\pi\)
\(588\) 505.893 256.448i 0.860362 0.436135i
\(589\) 384.709 0.653156
\(590\) 139.445 45.2322i 0.236348 0.0766647i
\(591\) 655.629 1.10935
\(592\) −217.440 + 33.5169i −0.367297 + 0.0566164i
\(593\) 90.2407 90.2407i 0.152177 0.152177i −0.626913 0.779089i \(-0.715682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(594\) 576.069 + 207.022i 0.969813 + 0.348523i
\(595\) −1.79019 + 5.51979i −0.00300873 + 0.00927695i
\(596\) −108.407 + 331.306i −0.181890 + 0.555883i
\(597\) −505.520 + 505.520i −0.846766 + 0.846766i
\(598\) −639.054 + 463.290i −1.06865 + 0.774732i
\(599\) 34.1675 0.0570408 0.0285204 0.999593i \(-0.490920\pi\)
0.0285204 + 0.999593i \(0.490920\pi\)
\(600\) 516.983 262.099i 0.861638 0.436831i
\(601\) 912.806i 1.51881i −0.650617 0.759406i \(-0.725490\pi\)
0.650617 0.759406i \(-0.274510\pi\)
\(602\) −22.1882 30.6060i −0.0368575 0.0508406i
\(603\) 21.2019 21.2019i 0.0351607 0.0351607i
\(604\) 239.189 730.997i 0.396009 1.21026i
\(605\) 383.885 467.608i 0.634520 0.772906i
\(606\) −134.820 + 845.557i −0.222476 + 1.39531i
\(607\) 542.713 542.713i 0.894090 0.894090i −0.100815 0.994905i \(-0.532145\pi\)
0.994905 + 0.100815i \(0.0321451\pi\)
\(608\) 957.978 + 4.95762i 1.57562 + 0.00815397i
\(609\) 8.81029i 0.0144668i
\(610\) −203.700 627.982i −0.333935 1.02948i
\(611\) −105.740 −0.173060
\(612\) 4.64638 + 9.16589i 0.00759213 + 0.0149770i
\(613\) 265.278 265.278i 0.432754 0.432754i −0.456810 0.889564i \(-0.651008\pi\)
0.889564 + 0.456810i \(0.151008\pi\)
\(614\) 843.721 + 134.528i 1.37414 + 0.219100i
\(615\) −307.603 + 156.941i −0.500167 + 0.255188i
\(616\) 18.8510 + 14.6674i 0.0306022 + 0.0238108i
\(617\) −615.762 + 615.762i −0.997994 + 0.997994i −0.999998 0.00200418i \(-0.999362\pi\)
0.00200418 + 0.999998i \(0.499362\pi\)
\(618\) −102.097 + 74.0164i −0.165205 + 0.119768i
\(619\) −368.464 −0.595257 −0.297628 0.954682i \(-0.596196\pi\)
−0.297628 + 0.954682i \(0.596196\pi\)
\(620\) 151.385 207.695i 0.244169 0.334991i
\(621\) 663.037 1.06769
\(622\) 398.209 288.686i 0.640207 0.464126i
\(623\) 4.61935 + 4.61935i 0.00741469 + 0.00741469i
\(624\) −453.977 + 619.436i −0.727527 + 0.992687i
\(625\) 194.419 + 593.992i 0.311071 + 0.950387i
\(626\) −118.097 + 740.675i −0.188654 + 1.18319i
\(627\) 788.485 537.714i 1.25755 0.857597i
\(628\) 383.474 + 756.477i 0.610627 + 1.20458i
\(629\) −58.7958 −0.0934750
\(630\) −1.45266 0.741072i −0.00230581 0.00117630i
\(631\) 1158.33i 1.83571i 0.396916 + 0.917855i \(0.370080\pi\)
−0.396916 + 0.917855i \(0.629920\pi\)
\(632\) −300.748 935.481i −0.475867 1.48019i
\(633\) 316.960 316.960i 0.500727 0.500727i
\(634\) −450.608 71.8474i −0.710737 0.113324i
\(635\) −413.553 810.562i −0.651265 1.27648i
\(636\) −121.304 + 370.723i −0.190730 + 0.582898i
\(637\) −572.981 572.981i −0.899500 0.899500i
\(638\) −222.895 + 105.043i −0.349365 + 0.164645i
\(639\) −64.3638 −0.100726
\(640\) 379.646 515.237i 0.593196 0.805058i
\(641\) 460.419 0.718283 0.359142 0.933283i \(-0.383070\pi\)
0.359142 + 0.933283i \(0.383070\pi\)
\(642\) −442.170 + 320.556i −0.688738 + 0.499309i
\(643\) −423.311 + 423.311i −0.658338 + 0.658338i −0.954987 0.296649i \(-0.904131\pi\)
0.296649 + 0.954987i \(0.404131\pi\)
\(644\) 24.5882 + 8.04549i 0.0381804 + 0.0124930i
\(645\) −311.314 + 959.890i −0.482658 + 1.48820i
\(646\) 252.823 + 40.3116i 0.391368 + 0.0624018i
\(647\) −679.923 679.923i −1.05089 1.05089i −0.998634 0.0522523i \(-0.983360\pi\)
−0.0522523 0.998634i \(-0.516640\pi\)
\(648\) 572.970 184.204i 0.884214 0.284266i
\(649\) 29.9613 158.450i 0.0461654 0.244144i
\(650\) −585.582 585.529i −0.900895 0.900814i
\(651\) 10.1084 0.0155275
\(652\) −51.5922 101.776i −0.0791292 0.156098i
\(653\) −441.796 441.796i −0.676564 0.676564i 0.282657 0.959221i \(-0.408784\pi\)
−0.959221 + 0.282657i \(0.908784\pi\)
\(654\) −846.047 134.898i −1.29365 0.206267i
\(655\) 189.689 584.877i 0.289601 0.892942i
\(656\) −225.395 + 307.543i −0.343589 + 0.468816i
\(657\) −31.5357 31.5357i −0.0479995 0.0479995i
\(658\) 2.03421 + 2.80596i 0.00309151 + 0.00426437i
\(659\) 1044.69i 1.58526i 0.609703 + 0.792630i \(0.291289\pi\)
−0.609703 + 0.792630i \(0.708711\pi\)
\(660\) 19.9753 637.276i 0.0302656 0.965570i
\(661\) 476.865 0.721429 0.360715 0.932676i \(-0.382533\pi\)
0.360715 + 0.932676i \(0.382533\pi\)
\(662\) −724.247 + 525.052i −1.09403 + 0.793130i
\(663\) −145.125 + 145.125i −0.218892 + 0.218892i
\(664\) 824.966 + 423.573i 1.24242 + 0.637911i
\(665\) −36.1897 + 18.4642i −0.0544206 + 0.0277657i
\(666\) 2.60171 16.3172i 0.00390647 0.0245004i
\(667\) −188.723 + 188.723i −0.282943 + 0.282943i
\(668\) −144.398 284.854i −0.216165 0.426428i
\(669\) 428.218i 0.640087i
\(670\) −444.540 226.782i −0.663493 0.338480i
\(671\) −713.568 134.929i −1.06344 0.201087i
\(672\) 25.1712 + 0.130263i 0.0374572 + 0.000193844i
\(673\) −25.1247 + 25.1247i −0.0373324 + 0.0373324i −0.725527 0.688194i \(-0.758404\pi\)
0.688194 + 0.725527i \(0.258404\pi\)
\(674\) −67.5553 + 423.689i −0.100230 + 0.628618i
\(675\) 109.560 + 686.930i 0.162311 + 1.01767i
\(676\) 400.315 + 130.987i 0.592181 + 0.193768i
\(677\) −439.457 439.457i −0.649125 0.649125i 0.303657 0.952781i \(-0.401792\pi\)
−0.952781 + 0.303657i \(0.901792\pi\)
\(678\) 487.677 + 672.693i 0.719288 + 0.992173i
\(679\) 14.0286i 0.0206606i
\(680\) 121.251 120.630i 0.178310 0.177397i
\(681\) 229.894i 0.337583i
\(682\) −120.520 255.736i −0.176716 0.374979i
\(683\) 623.294 623.294i 0.912583 0.912583i −0.0838919 0.996475i \(-0.526735\pi\)
0.996475 + 0.0838919i \(0.0267350\pi\)
\(684\) −22.3749 + 68.3808i −0.0327118 + 0.0999719i
\(685\) −508.614 996.880i −0.742503 1.45530i
\(686\) −8.37014 + 52.4953i −0.0122014 + 0.0765237i
\(687\) −606.034 606.034i −0.882145 0.882145i
\(688\) 169.745 + 1101.21i 0.246722 + 1.60060i
\(689\) 557.277 0.808820
\(690\) −213.083 656.909i −0.308816 0.952042i
\(691\) 549.965i 0.795897i −0.917408 0.397948i \(-0.869722\pi\)
0.917408 0.397948i \(-0.130278\pi\)
\(692\) 327.460 + 645.979i 0.473208 + 0.933495i
\(693\) −1.48203 + 1.01068i −0.00213857 + 0.00145841i
\(694\) 5.45744 + 0.870165i 0.00786375 + 0.00125384i
\(695\) −484.566 157.156i −0.697218 0.226124i
\(696\) −118.610 + 231.009i −0.170417 + 0.331909i
\(697\) −72.0532 + 72.0532i −0.103376 + 0.103376i
\(698\) −595.504 821.427i −0.853157 1.17683i
\(699\) 569.078i 0.814132i
\(700\) −4.27248 + 26.8036i −0.00610355 + 0.0382909i
\(701\) 546.768i 0.779982i −0.920819 0.389991i \(-0.872478\pi\)
0.920819 0.389991i \(-0.127522\pi\)
\(702\) −540.965 746.197i −0.770605 1.06296i
\(703\) −291.082 291.082i −0.414056 0.414056i
\(704\) −296.816 638.370i −0.421614 0.906775i
\(705\) 28.5413 88.0026i 0.0404841 0.124826i
\(706\) −9.20075 + 57.7047i −0.0130322 + 0.0817347i
\(707\) −28.3513 28.3513i −0.0401009 0.0401009i
\(708\) −76.8393 151.580i −0.108530 0.214097i
\(709\) 514.197i 0.725242i −0.931937 0.362621i \(-0.881882\pi\)
0.931937 0.362621i \(-0.118118\pi\)
\(710\) 330.531 + 1018.99i 0.465537 + 1.43519i
\(711\) 73.7993 0.103797
\(712\) −58.9323 183.310i −0.0827701 0.257458i
\(713\) −216.529 216.529i −0.303688 0.303688i
\(714\) 6.64304 + 1.05920i 0.00930397 + 0.00148348i
\(715\) −874.193 + 256.017i −1.22265 + 0.358066i
\(716\) 405.773 1240.10i 0.566722 1.73198i
\(717\) 678.102 + 678.102i 0.945749 + 0.945749i
\(718\) −463.439 + 335.976i −0.645458 + 0.467933i
\(719\) 189.750 0.263908 0.131954 0.991256i \(-0.457875\pi\)
0.131954 + 0.991256i \(0.457875\pi\)
\(720\) 28.1124 + 38.9878i 0.0390450 + 0.0541497i
\(721\) 5.90504i 0.00819007i
\(722\) 628.311 + 866.681i 0.870237 + 1.20039i
\(723\) −725.276 725.276i −1.00315 1.00315i
\(724\) 9.52178 29.0999i 0.0131516 0.0401933i
\(725\) −226.708 164.339i −0.312701 0.226675i
\(726\) −604.459 355.694i −0.832589 0.489936i
\(727\) −927.043 927.043i −1.27516 1.27516i −0.943343 0.331819i \(-0.892338\pi\)
−0.331819 0.943343i \(-0.607662\pi\)
\(728\) −11.0067 34.2363i −0.0151190 0.0470279i
\(729\) 770.952i 1.05755i
\(730\) −337.315 + 661.209i −0.462076 + 0.905766i
\(731\) 297.768i 0.407344i
\(732\) −682.633 + 346.041i −0.932559 + 0.472734i
\(733\) −416.046 + 416.046i −0.567594 + 0.567594i −0.931454 0.363860i \(-0.881459\pi\)
0.363860 + 0.931454i \(0.381459\pi\)
\(734\) 47.6537 298.872i 0.0649234 0.407182i
\(735\) 631.527 322.209i 0.859221 0.438380i
\(736\) −536.397 541.978i −0.728801 0.736383i
\(737\) −453.528 + 309.287i −0.615370 + 0.419656i
\(738\) −16.8081 23.1848i −0.0227753 0.0314158i
\(739\) 694.401i 0.939650i −0.882760 0.469825i \(-0.844317\pi\)
0.882760 0.469825i \(-0.155683\pi\)
\(740\) −271.690 + 42.6054i −0.367148 + 0.0575749i
\(741\) −1436.95 −1.93921
\(742\) −10.7209 14.7882i −0.0144486 0.0199302i
\(743\) −641.222 641.222i −0.863018 0.863018i 0.128670 0.991687i \(-0.458929\pi\)
−0.991687 + 0.128670i \(0.958929\pi\)
\(744\) −265.045 136.086i −0.356244 0.182911i
\(745\) −134.427 + 414.485i −0.180439 + 0.556356i
\(746\) 998.051 + 159.135i 1.33787 + 0.213317i
\(747\) −49.2481 + 49.2481i −0.0659278 + 0.0659278i
\(748\) −52.4064 180.693i −0.0700620 0.241569i
\(749\) 25.5740i 0.0341442i
\(750\) 645.371 329.309i 0.860495 0.439078i
\(751\) 530.192i 0.705982i −0.935627 0.352991i \(-0.885165\pi\)
0.935627 0.352991i \(-0.114835\pi\)
\(752\) −15.5622 100.959i −0.0206944 0.134254i
\(753\) −31.9904 31.9904i −0.0424839 0.0424839i
\(754\) 366.371 + 58.4162i 0.485903 + 0.0774751i
\(755\) 296.601 914.523i 0.392849 1.21129i
\(756\) −9.39439 + 28.7106i −0.0124264 + 0.0379770i
\(757\) 558.257 558.257i 0.737459 0.737459i −0.234626 0.972086i \(-0.575387\pi\)
0.972086 + 0.234626i \(0.0753866\pi\)
\(758\) 533.316 + 735.646i 0.703583 + 0.970510i
\(759\) −746.437 141.144i −0.983448 0.185961i
\(760\) 1197.48 + 3.07153i 1.57564 + 0.00404148i
\(761\) 1419.91i 1.86584i 0.360080 + 0.932921i \(0.382749\pi\)
−0.360080 + 0.932921i \(0.617251\pi\)
\(762\) −854.057 + 619.159i −1.12081 + 0.812545i
\(763\) 28.3678 28.3678i 0.0371792 0.0371792i
\(764\) −109.542 35.8432i −0.143379 0.0469151i
\(765\) 5.83786 + 11.4422i 0.00763119 + 0.0149571i
\(766\) −636.844 101.542i −0.831388 0.132561i
\(767\) −171.682 + 171.682i −0.223836 + 0.223836i
\(768\) −658.246 342.288i −0.857091 0.445687i
\(769\) −746.894 −0.971254 −0.485627 0.874166i \(-0.661409\pi\)
−0.485627 + 0.874166i \(0.661409\pi\)
\(770\) 23.6115 + 18.2727i 0.0306642 + 0.0237308i
\(771\) 1133.86i 1.47064i
\(772\)