Properties

Label 220.3.i.a.43.2
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.2
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.99978 - 0.0293959i) q^{2} +(1.37211 - 1.37211i) q^{3} +(3.99827 + 0.117571i) q^{4} +(-3.60976 - 3.45972i) q^{5} +(-2.78426 + 2.70359i) q^{6} +(-5.40554 + 5.40554i) q^{7} +(-7.99222 - 0.352649i) q^{8} +5.23463i q^{9} +(7.11703 + 7.02480i) q^{10} +(9.66660 + 5.24946i) q^{11} +(5.64738 - 5.32474i) q^{12} +(-13.3652 + 13.3652i) q^{13} +(10.9688 - 10.6510i) q^{14} +(-9.70009 + 0.205868i) q^{15} +(15.9724 + 0.940160i) q^{16} +(15.7700 + 15.7700i) q^{17} +(0.153877 - 10.4681i) q^{18} -23.8438i q^{19} +(-14.0260 - 14.2573i) q^{20} +14.8340i q^{21} +(-19.1768 - 10.7819i) q^{22} +(12.0954 - 12.0954i) q^{23} +(-11.4501 + 10.4823i) q^{24} +(1.06069 + 24.9775i) q^{25} +(27.1204 - 26.3346i) q^{26} +(19.5315 + 19.5315i) q^{27} +(-22.2484 + 20.9773i) q^{28} +2.11593 q^{29} +(19.4041 - 0.126548i) q^{30} +42.9394i q^{31} +(-31.9136 - 2.34964i) q^{32} +(20.4665 - 6.06080i) q^{33} +(-31.0730 - 32.0002i) q^{34} +(38.2144 - 0.811033i) q^{35} +(-0.615440 + 20.9295i) q^{36} +(-44.9716 + 44.9716i) q^{37} +(-0.700909 + 47.6824i) q^{38} +36.6770i q^{39} +(27.6299 + 28.9238i) q^{40} +13.2125i q^{41} +(0.436058 - 29.6648i) q^{42} +(-7.16475 - 7.16475i) q^{43} +(38.0325 + 22.1253i) q^{44} +(18.1104 - 18.8958i) q^{45} +(-24.5436 + 23.8325i) q^{46} +(26.0810 + 26.0810i) q^{47} +(23.2058 - 20.6258i) q^{48} -9.43982i q^{49} +(-1.38691 - 49.9808i) q^{50} +43.2763 q^{51} +(-55.0090 + 51.8663i) q^{52} +(-58.6533 - 58.6533i) q^{53} +(-38.4846 - 39.6329i) q^{54} +(-16.7324 - 52.3930i) q^{55} +(45.1086 - 41.2961i) q^{56} +(-32.7163 - 32.7163i) q^{57} +(-4.23141 - 0.0621997i) q^{58} -9.53643 q^{59} +(-38.8078 - 0.317333i) q^{60} -26.3635i q^{61} +(1.26224 - 85.8695i) q^{62} +(-28.2961 - 28.2961i) q^{63} +(63.7513 + 5.63690i) q^{64} +(94.4848 - 2.00528i) q^{65} +(-41.1067 + 11.5187i) q^{66} +(-48.5492 - 48.5492i) q^{67} +(61.1987 + 64.9069i) q^{68} -33.1923i q^{69} +(-76.4443 + 0.498547i) q^{70} +87.4983i q^{71} +(1.84599 - 41.8364i) q^{72} +(-64.7527 + 64.7527i) q^{73} +(91.2554 - 88.6114i) q^{74} +(35.7272 + 32.8165i) q^{75} +(2.80333 - 95.3339i) q^{76} +(-80.6294 + 23.8771i) q^{77} +(1.07815 - 73.3460i) q^{78} -33.6837i q^{79} +(-54.4036 - 58.6536i) q^{80} +6.48689 q^{81} +(0.388394 - 26.4222i) q^{82} +(24.7484 + 24.7484i) q^{83} +(-1.74404 + 59.3103i) q^{84} +(-2.36609 - 111.486i) q^{85} +(14.1173 + 14.5386i) q^{86} +(2.90329 - 2.90329i) q^{87} +(-75.4064 - 45.3637i) q^{88} -90.0902i q^{89} +(-36.7723 + 37.2551i) q^{90} -144.492i q^{91} +(49.7826 - 46.9384i) q^{92} +(58.9175 + 58.9175i) q^{93} +(-51.3897 - 52.9231i) q^{94} +(-82.4928 + 86.0703i) q^{95} +(-47.0129 + 40.5650i) q^{96} +(-76.9803 + 76.9803i) q^{97} +(-0.277492 + 18.8776i) q^{98} +(-27.4790 + 50.6011i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.99978 0.0293959i −0.999892 0.0146979i
\(3\) 1.37211 1.37211i 0.457370 0.457370i −0.440422 0.897791i \(-0.645171\pi\)
0.897791 + 0.440422i \(0.145171\pi\)
\(4\) 3.99827 + 0.117571i 0.999568 + 0.0293927i
\(5\) −3.60976 3.45972i −0.721951 0.691944i
\(6\) −2.78426 + 2.70359i −0.464043 + 0.450598i
\(7\) −5.40554 + 5.40554i −0.772221 + 0.772221i −0.978494 0.206274i \(-0.933866\pi\)
0.206274 + 0.978494i \(0.433866\pi\)
\(8\) −7.99222 0.352649i −0.999028 0.0440811i
\(9\) 5.23463i 0.581626i
\(10\) 7.11703 + 7.02480i 0.711703 + 0.702480i
\(11\) 9.66660 + 5.24946i 0.878782 + 0.477223i
\(12\) 5.64738 5.32474i 0.470615 0.443729i
\(13\) −13.3652 + 13.3652i −1.02809 + 1.02809i −0.0284970 + 0.999594i \(0.509072\pi\)
−0.999594 + 0.0284970i \(0.990928\pi\)
\(14\) 10.9688 10.6510i 0.783487 0.760787i
\(15\) −9.70009 + 0.205868i −0.646673 + 0.0137245i
\(16\) 15.9724 + 0.940160i 0.998272 + 0.0587600i
\(17\) 15.7700 + 15.7700i 0.927648 + 0.927648i 0.997554 0.0699058i \(-0.0222699\pi\)
−0.0699058 + 0.997554i \(0.522270\pi\)
\(18\) 0.153877 10.4681i 0.00854870 0.581563i
\(19\) 23.8438i 1.25494i −0.778642 0.627468i \(-0.784091\pi\)
0.778642 0.627468i \(-0.215909\pi\)
\(20\) −14.0260 14.2573i −0.701301 0.712865i
\(21\) 14.8340i 0.706381i
\(22\) −19.1768 10.7819i −0.871673 0.490088i
\(23\) 12.0954 12.0954i 0.525885 0.525885i −0.393458 0.919343i \(-0.628721\pi\)
0.919343 + 0.393458i \(0.128721\pi\)
\(24\) −11.4501 + 10.4823i −0.477086 + 0.436764i
\(25\) 1.06069 + 24.9775i 0.0424274 + 0.999100i
\(26\) 27.1204 26.3346i 1.04309 1.01287i
\(27\) 19.5315 + 19.5315i 0.723388 + 0.723388i
\(28\) −22.2484 + 20.9773i −0.794585 + 0.749189i
\(29\) 2.11593 0.0729633 0.0364816 0.999334i \(-0.488385\pi\)
0.0364816 + 0.999334i \(0.488385\pi\)
\(30\) 19.4041 0.126548i 0.646805 0.00421827i
\(31\) 42.9394i 1.38514i 0.721350 + 0.692571i \(0.243522\pi\)
−0.721350 + 0.692571i \(0.756478\pi\)
\(32\) −31.9136 2.34964i −0.997301 0.0734262i
\(33\) 20.4665 6.06080i 0.620196 0.183661i
\(34\) −31.0730 32.0002i −0.913913 0.941182i
\(35\) 38.2144 0.811033i 1.09184 0.0231724i
\(36\) −0.615440 + 20.9295i −0.0170956 + 0.581375i
\(37\) −44.9716 + 44.9716i −1.21545 + 1.21545i −0.246239 + 0.969209i \(0.579195\pi\)
−0.969209 + 0.246239i \(0.920805\pi\)
\(38\) −0.700909 + 47.6824i −0.0184450 + 1.25480i
\(39\) 36.6770i 0.940435i
\(40\) 27.6299 + 28.9238i 0.690748 + 0.723096i
\(41\) 13.2125i 0.322257i 0.986933 + 0.161128i \(0.0515133\pi\)
−0.986933 + 0.161128i \(0.948487\pi\)
\(42\) 0.436058 29.6648i 0.0103823 0.706304i
\(43\) −7.16475 7.16475i −0.166622 0.166622i 0.618871 0.785493i \(-0.287590\pi\)
−0.785493 + 0.618871i \(0.787590\pi\)
\(44\) 38.0325 + 22.1253i 0.864375 + 0.502847i
\(45\) 18.1104 18.8958i 0.402453 0.419906i
\(46\) −24.5436 + 23.8325i −0.533557 + 0.518099i
\(47\) 26.0810 + 26.0810i 0.554915 + 0.554915i 0.927855 0.372940i \(-0.121650\pi\)
−0.372940 + 0.927855i \(0.621650\pi\)
\(48\) 23.2058 20.6258i 0.483454 0.429704i
\(49\) 9.43982i 0.192649i
\(50\) −1.38691 49.9808i −0.0277381 0.999615i
\(51\) 43.2763 0.848556
\(52\) −55.0090 + 51.8663i −1.05787 + 0.997428i
\(53\) −58.6533 58.6533i −1.10667 1.10667i −0.993586 0.113080i \(-0.963928\pi\)
−0.113080 0.993586i \(-0.536072\pi\)
\(54\) −38.4846 39.6329i −0.712677 0.733942i
\(55\) −16.7324 52.3930i −0.304226 0.952600i
\(56\) 45.1086 41.2961i 0.805510 0.737430i
\(57\) −32.7163 32.7163i −0.573970 0.573970i
\(58\) −4.23141 0.0621997i −0.0729554 0.00107241i
\(59\) −9.53643 −0.161634 −0.0808172 0.996729i \(-0.525753\pi\)
−0.0808172 + 0.996729i \(0.525753\pi\)
\(60\) −38.8078 0.317333i −0.646797 0.00528888i
\(61\) 26.3635i 0.432188i −0.976373 0.216094i \(-0.930668\pi\)
0.976373 0.216094i \(-0.0693318\pi\)
\(62\) 1.26224 85.8695i 0.0203587 1.38499i
\(63\) −28.2961 28.2961i −0.449144 0.449144i
\(64\) 63.7513 + 5.63690i 0.996114 + 0.0880765i
\(65\) 94.4848 2.00528i 1.45361 0.0308504i
\(66\) −41.1067 + 11.5187i −0.622828 + 0.174525i
\(67\) −48.5492 48.5492i −0.724615 0.724615i 0.244926 0.969542i \(-0.421236\pi\)
−0.969542 + 0.244926i \(0.921236\pi\)
\(68\) 61.1987 + 64.9069i 0.899981 + 0.954513i
\(69\) 33.1923i 0.481047i
\(70\) −76.4443 + 0.498547i −1.09206 + 0.00712210i
\(71\) 87.4983i 1.23237i 0.787601 + 0.616185i \(0.211323\pi\)
−0.787601 + 0.616185i \(0.788677\pi\)
\(72\) 1.84599 41.8364i 0.0256387 0.581061i
\(73\) −64.7527 + 64.7527i −0.887024 + 0.887024i −0.994236 0.107212i \(-0.965808\pi\)
0.107212 + 0.994236i \(0.465808\pi\)
\(74\) 91.2554 88.6114i 1.23318 1.19745i
\(75\) 35.7272 + 32.8165i 0.476363 + 0.437553i
\(76\) 2.80333 95.3339i 0.0368860 1.25439i
\(77\) −80.6294 + 23.8771i −1.04714 + 0.310092i
\(78\) 1.07815 73.3460i 0.0138225 0.940333i
\(79\) 33.6837i 0.426376i −0.977011 0.213188i \(-0.931615\pi\)
0.977011 0.213188i \(-0.0683846\pi\)
\(80\) −54.4036 58.6536i −0.680045 0.733170i
\(81\) 6.48689 0.0800850
\(82\) 0.388394 26.4222i 0.00473651 0.322222i
\(83\) 24.7484 + 24.7484i 0.298173 + 0.298173i 0.840298 0.542125i \(-0.182380\pi\)
−0.542125 + 0.840298i \(0.682380\pi\)
\(84\) −1.74404 + 59.3103i −0.0207624 + 0.706075i
\(85\) −2.36609 111.486i −0.0278364 1.31160i
\(86\) 14.1173 + 14.5386i 0.164155 + 0.169053i
\(87\) 2.90329 2.90329i 0.0333712 0.0333712i
\(88\) −75.4064 45.3637i −0.856891 0.515497i
\(89\) 90.0902i 1.01225i −0.862460 0.506125i \(-0.831077\pi\)
0.862460 0.506125i \(-0.168923\pi\)
\(90\) −36.7723 + 37.2551i −0.408581 + 0.413945i
\(91\) 144.492i 1.58783i
\(92\) 49.7826 46.9384i 0.541115 0.510200i
\(93\) 58.9175 + 58.9175i 0.633522 + 0.633522i
\(94\) −51.3897 52.9231i −0.546699 0.563011i
\(95\) −82.4928 + 86.0703i −0.868345 + 0.906003i
\(96\) −47.0129 + 40.5650i −0.489718 + 0.422552i
\(97\) −76.9803 + 76.9803i −0.793612 + 0.793612i −0.982079 0.188468i \(-0.939648\pi\)
0.188468 + 0.982079i \(0.439648\pi\)
\(98\) −0.277492 + 18.8776i −0.00283155 + 0.192629i
\(99\) −27.4790 + 50.6011i −0.277566 + 0.511123i
\(100\) 1.30429 + 99.9915i 0.0130429 + 0.999915i
\(101\) 66.4437i 0.657858i 0.944355 + 0.328929i \(0.106688\pi\)
−0.944355 + 0.328929i \(0.893312\pi\)
\(102\) −86.5433 1.27215i −0.848464 0.0124720i
\(103\) 120.065 120.065i 1.16568 1.16568i 0.182469 0.983212i \(-0.441591\pi\)
0.983212 0.182469i \(-0.0584090\pi\)
\(104\) 111.531 102.104i 1.07241 0.981772i
\(105\) 51.3214 53.5471i 0.488776 0.509972i
\(106\) 115.570 + 119.018i 1.09028 + 1.12281i
\(107\) 100.381 100.381i 0.938136 0.938136i −0.0600584 0.998195i \(-0.519129\pi\)
0.998195 + 0.0600584i \(0.0191287\pi\)
\(108\) 75.7958 + 80.3884i 0.701813 + 0.744337i
\(109\) 131.082 1.20259 0.601293 0.799029i \(-0.294652\pi\)
0.601293 + 0.799029i \(0.294652\pi\)
\(110\) 31.9211 + 105.267i 0.290192 + 0.956968i
\(111\) 123.412i 1.11182i
\(112\) −91.4213 + 81.2572i −0.816262 + 0.725511i
\(113\) 18.1645 + 18.1645i 0.160748 + 0.160748i 0.782898 0.622150i \(-0.213741\pi\)
−0.622150 + 0.782898i \(0.713741\pi\)
\(114\) 64.4638 + 66.3872i 0.565472 + 0.582344i
\(115\) −85.5078 + 1.81475i −0.743546 + 0.0157805i
\(116\) 8.46008 + 0.248772i 0.0729317 + 0.00214459i
\(117\) −69.9618 69.9618i −0.597964 0.597964i
\(118\) 19.0708 + 0.280332i 0.161617 + 0.00237569i
\(119\) −170.491 −1.43270
\(120\) 77.5979 + 1.77539i 0.646649 + 0.0147949i
\(121\) 65.8864 + 101.489i 0.544516 + 0.838751i
\(122\) −0.774978 + 52.7213i −0.00635228 + 0.432142i
\(123\) 18.1290 + 18.1290i 0.147390 + 0.147390i
\(124\) −5.04842 + 171.683i −0.0407131 + 1.38454i
\(125\) 82.5863 93.8323i 0.660690 0.750659i
\(126\) 55.7542 + 57.4178i 0.442494 + 0.455697i
\(127\) −28.3396 + 28.3396i −0.223147 + 0.223147i −0.809822 0.586675i \(-0.800436\pi\)
0.586675 + 0.809822i \(0.300436\pi\)
\(128\) −127.323 13.1466i −0.994712 0.102708i
\(129\) −19.6616 −0.152416
\(130\) −189.008 + 1.23266i −1.45391 + 0.00948197i
\(131\) −118.186 −0.902180 −0.451090 0.892478i \(-0.648965\pi\)
−0.451090 + 0.892478i \(0.648965\pi\)
\(132\) 82.5430 21.8265i 0.625326 0.165352i
\(133\) 128.889 + 128.889i 0.969088 + 0.969088i
\(134\) 95.6608 + 98.5151i 0.713887 + 0.735187i
\(135\) −2.93045 138.077i −0.0217070 1.02279i
\(136\) −120.476 131.599i −0.885854 0.967638i
\(137\) 79.6269 79.6269i 0.581218 0.581218i −0.354020 0.935238i \(-0.615185\pi\)
0.935238 + 0.354020i \(0.115185\pi\)
\(138\) −0.975716 + 66.3774i −0.00707040 + 0.480996i
\(139\) 197.163i 1.41844i 0.704987 + 0.709220i \(0.250953\pi\)
−0.704987 + 0.709220i \(0.749047\pi\)
\(140\) 152.887 + 1.25016i 1.09205 + 0.00892972i
\(141\) 71.5720 0.507603
\(142\) 2.57209 174.978i 0.0181133 1.23224i
\(143\) −199.356 + 59.0360i −1.39410 + 0.412839i
\(144\) −4.92139 + 83.6094i −0.0341763 + 0.580621i
\(145\) −7.63801 7.32054i −0.0526759 0.0504865i
\(146\) 131.395 127.588i 0.899965 0.873891i
\(147\) −12.9525 12.9525i −0.0881120 0.0881120i
\(148\) −185.096 + 174.521i −1.25065 + 1.17920i
\(149\) −200.045 −1.34258 −0.671292 0.741193i \(-0.734260\pi\)
−0.671292 + 0.741193i \(0.734260\pi\)
\(150\) −70.4820 66.6761i −0.469880 0.444507i
\(151\) −20.3944 −0.135062 −0.0675312 0.997717i \(-0.521512\pi\)
−0.0675312 + 0.997717i \(0.521512\pi\)
\(152\) −8.40848 + 190.565i −0.0553190 + 1.25372i
\(153\) −82.5503 + 82.5503i −0.539544 + 0.539544i
\(154\) 161.943 45.3788i 1.05158 0.294668i
\(155\) 148.558 155.001i 0.958441 1.00001i
\(156\) −4.31214 + 146.644i −0.0276419 + 0.940029i
\(157\) 58.6993 58.6993i 0.373881 0.373881i −0.495008 0.868889i \(-0.664835\pi\)
0.868889 + 0.495008i \(0.164835\pi\)
\(158\) −0.990161 + 67.3601i −0.00626684 + 0.426330i
\(159\) −160.957 −1.01231
\(160\) 107.071 + 118.894i 0.669196 + 0.743086i
\(161\) 130.764i 0.812198i
\(162\) −12.9724 0.190688i −0.0800764 0.00117708i
\(163\) 69.4946 69.4946i 0.426347 0.426347i −0.461035 0.887382i \(-0.652522\pi\)
0.887382 + 0.461035i \(0.152522\pi\)
\(164\) −1.55341 + 52.8273i −0.00947199 + 0.322117i
\(165\) −94.8476 48.9302i −0.574834 0.296546i
\(166\) −48.7639 50.2189i −0.293759 0.302524i
\(167\) 9.68845 9.68845i 0.0580147 0.0580147i −0.677504 0.735519i \(-0.736938\pi\)
0.735519 + 0.677504i \(0.236938\pi\)
\(168\) 5.23119 118.557i 0.0311380 0.705694i
\(169\) 188.256i 1.11394i
\(170\) 1.45445 + 223.017i 0.00855559 + 1.31186i
\(171\) 124.814 0.729904
\(172\) −27.8043 29.4890i −0.161653 0.171448i
\(173\) 147.049 147.049i 0.849997 0.849997i −0.140136 0.990132i \(-0.544754\pi\)
0.990132 + 0.140136i \(0.0447538\pi\)
\(174\) −5.89130 + 5.72061i −0.0338581 + 0.0328771i
\(175\) −140.751 129.283i −0.804289 0.738762i
\(176\) 149.463 + 92.9343i 0.849222 + 0.528036i
\(177\) −13.0850 + 13.0850i −0.0739266 + 0.0739266i
\(178\) −2.64828 + 180.161i −0.0148780 + 1.01214i
\(179\) 10.0156 0.0559533 0.0279767 0.999609i \(-0.491094\pi\)
0.0279767 + 0.999609i \(0.491094\pi\)
\(180\) 74.6318 73.4211i 0.414621 0.407895i
\(181\) −129.338 −0.714576 −0.357288 0.933994i \(-0.616299\pi\)
−0.357288 + 0.933994i \(0.616299\pi\)
\(182\) −4.24747 + 288.953i −0.0233378 + 1.58765i
\(183\) −36.1736 36.1736i −0.197670 0.197670i
\(184\) −100.934 + 92.4033i −0.548555 + 0.502192i
\(185\) 317.925 6.74741i 1.71852 0.0364725i
\(186\) −116.090 119.554i −0.624142 0.642765i
\(187\) 69.6584 + 235.226i 0.372505 + 1.25790i
\(188\) 101.213 + 107.345i 0.538365 + 0.570986i
\(189\) −211.156 −1.11723
\(190\) 167.498 169.697i 0.881568 0.893142i
\(191\) 309.845i 1.62223i −0.584888 0.811114i \(-0.698862\pi\)
0.584888 0.811114i \(-0.301138\pi\)
\(192\) 95.2081 79.7393i 0.495876 0.415309i
\(193\) −13.6957 + 13.6957i −0.0709620 + 0.0709620i −0.741697 0.670735i \(-0.765979\pi\)
0.670735 + 0.741697i \(0.265979\pi\)
\(194\) 156.207 151.681i 0.805190 0.781862i
\(195\) 126.892 132.395i 0.650728 0.678948i
\(196\) 1.10985 37.7430i 0.00566249 0.192566i
\(197\) 238.001 + 238.001i 1.20813 + 1.20813i 0.971632 + 0.236496i \(0.0759991\pi\)
0.236496 + 0.971632i \(0.424001\pi\)
\(198\) 56.4395 100.384i 0.285048 0.506988i
\(199\) 29.7932 0.149715 0.0748573 0.997194i \(-0.476150\pi\)
0.0748573 + 0.997194i \(0.476150\pi\)
\(200\) 0.331048 200.000i 0.00165524 0.999999i
\(201\) −133.230 −0.662834
\(202\) 1.95317 132.873i 0.00966916 0.657787i
\(203\) −11.4378 + 11.4378i −0.0563437 + 0.0563437i
\(204\) 173.031 + 5.08803i 0.848189 + 0.0249413i
\(205\) 45.7116 47.6940i 0.222984 0.232654i
\(206\) −243.634 + 236.575i −1.18269 + 1.14842i
\(207\) 63.3147 + 63.3147i 0.305868 + 0.305868i
\(208\) −226.039 + 200.908i −1.08673 + 0.965904i
\(209\) 125.167 230.488i 0.598885 1.10282i
\(210\) −104.206 + 105.574i −0.496218 + 0.502733i
\(211\) 209.002 0.990530 0.495265 0.868742i \(-0.335071\pi\)
0.495265 + 0.868742i \(0.335071\pi\)
\(212\) −227.616 241.408i −1.07366 1.13872i
\(213\) 120.057 + 120.057i 0.563649 + 0.563649i
\(214\) −203.690 + 197.789i −0.951824 + 0.924246i
\(215\) 1.07498 + 50.6510i 0.00499991 + 0.235586i
\(216\) −149.212 162.988i −0.690797 0.754572i
\(217\) −232.111 232.111i −1.06964 1.06964i
\(218\) −262.135 3.85327i −1.20246 0.0176755i
\(219\) 177.696i 0.811395i
\(220\) −60.7409 211.449i −0.276095 0.961130i
\(221\) −421.538 −1.90741
\(222\) 3.62780 246.797i 0.0163414 1.11170i
\(223\) 16.9302 16.9302i 0.0759202 0.0759202i −0.668127 0.744047i \(-0.732904\pi\)
0.744047 + 0.668127i \(0.232904\pi\)
\(224\) 185.212 159.809i 0.826837 0.713435i
\(225\) −130.748 + 5.55230i −0.581102 + 0.0246769i
\(226\) −35.7912 36.8591i −0.158368 0.163093i
\(227\) −3.69520 + 3.69520i −0.0162784 + 0.0162784i −0.715199 0.698921i \(-0.753664\pi\)
0.698921 + 0.715199i \(0.253664\pi\)
\(228\) −126.962 134.655i −0.556851 0.590592i
\(229\) 210.110i 0.917509i 0.888563 + 0.458755i \(0.151704\pi\)
−0.888563 + 0.458755i \(0.848296\pi\)
\(230\) 171.050 1.11554i 0.743698 0.00485018i
\(231\) −77.8704 + 143.394i −0.337101 + 0.620755i
\(232\) −16.9110 0.746182i −0.0728923 0.00321630i
\(233\) 133.713 133.713i 0.573875 0.573875i −0.359334 0.933209i \(-0.616996\pi\)
0.933209 + 0.359334i \(0.116996\pi\)
\(234\) 137.852 + 141.965i 0.589111 + 0.606689i
\(235\) −3.91313 184.379i −0.0166516 0.784592i
\(236\) −38.1292 1.12120i −0.161565 0.00475087i
\(237\) −46.2177 46.2177i −0.195011 0.195011i
\(238\) 340.945 + 5.01173i 1.43254 + 0.0210577i
\(239\) 11.3879i 0.0476482i −0.999716 0.0238241i \(-0.992416\pi\)
0.999716 0.0238241i \(-0.00758416\pi\)
\(240\) −155.127 5.83144i −0.646362 0.0242977i
\(241\) 105.735i 0.438736i −0.975642 0.219368i \(-0.929600\pi\)
0.975642 0.219368i \(-0.0703995\pi\)
\(242\) −128.775 204.893i −0.532129 0.846663i
\(243\) −166.882 + 166.882i −0.686759 + 0.686759i
\(244\) 3.09958 105.408i 0.0127032 0.432002i
\(245\) −32.6591 + 34.0755i −0.133303 + 0.139084i
\(246\) −35.7212 36.7870i −0.145208 0.149541i
\(247\) 318.677 + 318.677i 1.29019 + 1.29019i
\(248\) 15.1425 343.181i 0.0610586 1.38380i
\(249\) 67.9149 0.272751
\(250\) −167.913 + 185.217i −0.671652 + 0.740867i
\(251\) 114.817i 0.457440i 0.973492 + 0.228720i \(0.0734540\pi\)
−0.973492 + 0.228720i \(0.926546\pi\)
\(252\) −109.809 116.462i −0.435748 0.462151i
\(253\) 180.415 53.4269i 0.713103 0.211174i
\(254\) 57.5062 55.8401i 0.226402 0.219843i
\(255\) −156.217 149.724i −0.612616 0.587153i
\(256\) 254.232 + 30.0331i 0.993095 + 0.117317i
\(257\) −214.818 + 214.818i −0.835869 + 0.835869i −0.988312 0.152443i \(-0.951286\pi\)
0.152443 + 0.988312i \(0.451286\pi\)
\(258\) 39.3190 + 0.577971i 0.152399 + 0.00224020i
\(259\) 486.192i 1.87719i
\(260\) 378.012 + 3.09101i 1.45389 + 0.0118885i
\(261\) 11.0761i 0.0424373i
\(262\) 236.346 + 3.47417i 0.902083 + 0.0132602i
\(263\) 62.0971 + 62.0971i 0.236111 + 0.236111i 0.815238 0.579127i \(-0.196606\pi\)
−0.579127 + 0.815238i \(0.696606\pi\)
\(264\) −165.710 + 41.2218i −0.627689 + 0.156143i
\(265\) 8.80019 + 414.648i 0.0332082 + 1.56471i
\(266\) −253.961 261.538i −0.954739 0.983227i
\(267\) −123.614 123.614i −0.462972 0.462972i
\(268\) −188.405 199.821i −0.703004 0.745600i
\(269\) 141.951i 0.527699i −0.964564 0.263849i \(-0.915008\pi\)
0.964564 0.263849i \(-0.0849922\pi\)
\(270\) 1.80137 + 276.211i 0.00667172 + 1.02300i
\(271\) −57.6866 −0.212866 −0.106433 0.994320i \(-0.533943\pi\)
−0.106433 + 0.994320i \(0.533943\pi\)
\(272\) 237.058 + 266.711i 0.871536 + 0.980554i
\(273\) −198.259 198.259i −0.726223 0.726223i
\(274\) −161.577 + 156.896i −0.589698 + 0.572613i
\(275\) −120.865 + 247.015i −0.439509 + 0.898238i
\(276\) 3.90244 132.712i 0.0141393 0.480840i
\(277\) 287.942 + 287.942i 1.03950 + 1.03950i 0.999187 + 0.0403151i \(0.0128362\pi\)
0.0403151 + 0.999187i \(0.487164\pi\)
\(278\) 5.79578 394.284i 0.0208481 1.41829i
\(279\) −224.772 −0.805635
\(280\) −305.704 6.99429i −1.09180 0.0249796i
\(281\) 257.615i 0.916778i −0.888752 0.458389i \(-0.848427\pi\)
0.888752 0.458389i \(-0.151573\pi\)
\(282\) −143.129 2.10392i −0.507548 0.00746071i
\(283\) 182.273 + 182.273i 0.644074 + 0.644074i 0.951554 0.307480i \(-0.0994858\pi\)
−0.307480 + 0.951554i \(0.599486\pi\)
\(284\) −10.2872 + 349.842i −0.0362227 + 1.23184i
\(285\) 4.90866 + 231.287i 0.0172234 + 0.811533i
\(286\) 400.404 112.199i 1.40001 0.392304i
\(287\) −71.4209 71.4209i −0.248853 0.248853i
\(288\) 12.2995 167.056i 0.0427066 0.580056i
\(289\) 208.387i 0.721061i
\(290\) 15.0592 + 14.8640i 0.0519282 + 0.0512553i
\(291\) 211.251i 0.725948i
\(292\) −266.512 + 251.286i −0.912713 + 0.860569i
\(293\) 70.5399 70.5399i 0.240750 0.240750i −0.576410 0.817161i \(-0.695547\pi\)
0.817161 + 0.576410i \(0.195547\pi\)
\(294\) 25.5214 + 26.2829i 0.0868074 + 0.0893975i
\(295\) 34.4242 + 32.9934i 0.116692 + 0.111842i
\(296\) 375.282 343.564i 1.26784 1.16069i
\(297\) 86.2733 + 291.333i 0.290483 + 0.980918i
\(298\) 400.047 + 5.88049i 1.34244 + 0.0197332i
\(299\) 323.313i 1.08131i
\(300\) 138.989 + 135.410i 0.463296 + 0.451365i
\(301\) 77.4588 0.257338
\(302\) 40.7844 + 0.599512i 0.135048 + 0.00198514i
\(303\) 91.1679 + 91.1679i 0.300884 + 0.300884i
\(304\) 22.4170 380.841i 0.0737400 1.25277i
\(305\) −91.2103 + 95.1658i −0.299050 + 0.312019i
\(306\) 167.509 162.656i 0.547416 0.531556i
\(307\) 130.177 130.177i 0.424030 0.424030i −0.462558 0.886589i \(-0.653068\pi\)
0.886589 + 0.462558i \(0.153068\pi\)
\(308\) −325.186 + 85.9874i −1.05580 + 0.279180i
\(309\) 329.485i 1.06629i
\(310\) −301.641 + 305.601i −0.973035 + 0.985810i
\(311\) 429.813i 1.38203i 0.722838 + 0.691017i \(0.242837\pi\)
−0.722838 + 0.691017i \(0.757163\pi\)
\(312\) 12.9341 293.131i 0.0414554 0.939521i
\(313\) 154.139 + 154.139i 0.492456 + 0.492456i 0.909079 0.416623i \(-0.136787\pi\)
−0.416623 + 0.909079i \(0.636787\pi\)
\(314\) −119.111 + 115.660i −0.379336 + 0.368345i
\(315\) 4.24546 + 200.038i 0.0134777 + 0.635042i
\(316\) 3.96022 134.677i 0.0125323 0.426192i
\(317\) 150.396 150.396i 0.474435 0.474435i −0.428911 0.903347i \(-0.641103\pi\)
0.903347 + 0.428911i \(0.141103\pi\)
\(318\) 321.880 + 4.73148i 1.01220 + 0.0148789i
\(319\) 20.4539 + 11.1075i 0.0641188 + 0.0348198i
\(320\) −210.625 240.909i −0.658202 0.752842i
\(321\) 275.466i 0.858150i
\(322\) 3.84392 261.500i 0.0119376 0.812111i
\(323\) 376.017 376.017i 1.16414 1.16414i
\(324\) 25.9363 + 0.762668i 0.0800504 + 0.00235391i
\(325\) −348.005 319.652i −1.07078 0.983546i
\(326\) −141.017 + 136.931i −0.432567 + 0.420034i
\(327\) 179.859 179.859i 0.550026 0.550026i
\(328\) 4.65938 105.597i 0.0142054 0.321943i
\(329\) −281.964 −0.857034
\(330\) 188.236 + 100.638i 0.570413 + 0.304963i
\(331\) 70.1476i 0.211926i 0.994370 + 0.105963i \(0.0337926\pi\)
−0.994370 + 0.105963i \(0.966207\pi\)
\(332\) 96.0411 + 101.860i 0.289280 + 0.306809i
\(333\) −235.410 235.410i −0.706936 0.706936i
\(334\) −19.6596 + 19.0900i −0.0588611 + 0.0571557i
\(335\) 7.28419 + 343.218i 0.0217439 + 1.02453i
\(336\) −13.9463 + 236.934i −0.0415069 + 0.705160i
\(337\) 240.883 + 240.883i 0.714785 + 0.714785i 0.967532 0.252747i \(-0.0813340\pi\)
−0.252747 + 0.967532i \(0.581334\pi\)
\(338\) −5.53395 + 376.472i −0.0163726 + 1.11382i
\(339\) 49.8475 0.147043
\(340\) 3.64719 446.028i 0.0107270 1.31185i
\(341\) −225.409 + 415.078i −0.661022 + 1.21724i
\(342\) −249.600 3.66900i −0.729825 0.0107281i
\(343\) −213.844 213.844i −0.623453 0.623453i
\(344\) 54.7357 + 59.7890i 0.159115 + 0.173805i
\(345\) −114.836 + 119.816i −0.332858 + 0.347293i
\(346\) −298.390 + 289.744i −0.862398 + 0.837412i
\(347\) 364.291 364.291i 1.04983 1.04983i 0.0511387 0.998692i \(-0.483715\pi\)
0.998692 0.0511387i \(-0.0162851\pi\)
\(348\) 11.9495 11.2668i 0.0343376 0.0323759i
\(349\) −258.483 −0.740639 −0.370319 0.928905i \(-0.620752\pi\)
−0.370319 + 0.928905i \(0.620752\pi\)
\(350\) 277.670 + 262.676i 0.793343 + 0.750504i
\(351\) −522.083 −1.48742
\(352\) −296.162 190.242i −0.841369 0.540461i
\(353\) −42.8688 42.8688i −0.121441 0.121441i 0.643774 0.765216i \(-0.277368\pi\)
−0.765216 + 0.643774i \(0.777368\pi\)
\(354\) 26.5518 25.7826i 0.0750052 0.0728321i
\(355\) 302.720 315.848i 0.852732 0.889712i
\(356\) 10.5920 360.205i 0.0297528 1.01181i
\(357\) −233.932 + 233.932i −0.655272 + 0.655272i
\(358\) −20.0291 0.294419i −0.0559473 0.000822398i
\(359\) 424.185i 1.18157i −0.806828 0.590787i \(-0.798817\pi\)
0.806828 0.590787i \(-0.201183\pi\)
\(360\) −151.406 + 144.633i −0.420571 + 0.401757i
\(361\) −207.526 −0.574865
\(362\) 258.649 + 3.80201i 0.714499 + 0.0105028i
\(363\) 229.657 + 48.8504i 0.632664 + 0.134574i
\(364\) 16.9881 577.719i 0.0466705 1.58714i
\(365\) 457.768 9.71533i 1.25416 0.0266173i
\(366\) 71.2760 + 73.4027i 0.194743 + 0.200554i
\(367\) 334.946 + 334.946i 0.912659 + 0.912659i 0.996481 0.0838218i \(-0.0267127\pi\)
−0.0838218 + 0.996481i \(0.526713\pi\)
\(368\) 204.563 181.820i 0.555877 0.494075i
\(369\) −69.1627 −0.187433
\(370\) −635.981 + 4.14768i −1.71887 + 0.0112099i
\(371\) 634.106 1.70918
\(372\) 228.641 + 242.495i 0.614627 + 0.651869i
\(373\) −161.062 + 161.062i −0.431802 + 0.431802i −0.889241 0.457439i \(-0.848767\pi\)
0.457439 + 0.889241i \(0.348767\pi\)
\(374\) −132.387 472.450i −0.353976 1.26323i
\(375\) −15.4308 242.066i −0.0411488 0.645508i
\(376\) −199.248 217.643i −0.529915 0.578837i
\(377\) −28.2799 + 28.2799i −0.0750129 + 0.0750129i
\(378\) 422.267 + 6.20713i 1.11711 + 0.0164210i
\(379\) −111.445 −0.294050 −0.147025 0.989133i \(-0.546970\pi\)
−0.147025 + 0.989133i \(0.546970\pi\)
\(380\) −339.948 + 334.434i −0.894600 + 0.880088i
\(381\) 77.7701i 0.204121i
\(382\) −9.10818 + 619.624i −0.0238434 + 1.62205i
\(383\) −157.375 + 157.375i −0.410902 + 0.410902i −0.882053 0.471151i \(-0.843839\pi\)
0.471151 + 0.882053i \(0.343839\pi\)
\(384\) −192.740 + 156.663i −0.501926 + 0.407975i
\(385\) 373.661 + 192.765i 0.970547 + 0.500688i
\(386\) 27.7910 26.9858i 0.0719973 0.0699113i
\(387\) 37.5049 37.5049i 0.0969118 0.0969118i
\(388\) −316.839 + 298.738i −0.816595 + 0.769942i
\(389\) 36.5877i 0.0940559i 0.998894 + 0.0470279i \(0.0149750\pi\)
−0.998894 + 0.0470279i \(0.985025\pi\)
\(390\) −257.648 + 261.031i −0.660637 + 0.669311i
\(391\) 381.488 0.975672
\(392\) −3.32894 + 75.4452i −0.00849220 + 0.192462i
\(393\) −162.164 + 162.164i −0.412630 + 0.412630i
\(394\) −468.955 482.948i −1.19024 1.22576i
\(395\) −116.536 + 121.590i −0.295028 + 0.307823i
\(396\) −115.818 + 199.086i −0.292469 + 0.502743i
\(397\) 359.312 359.312i 0.905067 0.905067i −0.0908021 0.995869i \(-0.528943\pi\)
0.995869 + 0.0908021i \(0.0289431\pi\)
\(398\) −59.5800 0.875797i −0.149698 0.00220049i
\(399\) 353.699 0.886462
\(400\) −6.54119 + 399.947i −0.0163530 + 0.999866i
\(401\) 324.116 0.808269 0.404134 0.914700i \(-0.367573\pi\)
0.404134 + 0.914700i \(0.367573\pi\)
\(402\) 266.430 + 3.91640i 0.662762 + 0.00974229i
\(403\) −573.893 573.893i −1.42405 1.42405i
\(404\) −7.81183 + 265.660i −0.0193362 + 0.657574i
\(405\) −23.4161 22.4428i −0.0578175 0.0554143i
\(406\) 23.2093 22.5369i 0.0571658 0.0555095i
\(407\) −670.799 + 198.646i −1.64815 + 0.488074i
\(408\) −345.874 15.2614i −0.847731 0.0374053i
\(409\) 91.6119 0.223990 0.111995 0.993709i \(-0.464276\pi\)
0.111995 + 0.993709i \(0.464276\pi\)
\(410\) −92.8154 + 94.0340i −0.226379 + 0.229351i
\(411\) 218.514i 0.531663i
\(412\) 494.169 465.937i 1.19944 1.13091i
\(413\) 51.5496 51.5496i 0.124817 0.124817i
\(414\) −124.755 128.477i −0.301340 0.310331i
\(415\) −3.71318 174.958i −0.00894742 0.421586i
\(416\) 457.935 395.128i 1.10080 0.949827i
\(417\) 270.529 + 270.529i 0.648751 + 0.648751i
\(418\) −257.082 + 457.248i −0.615029 + 1.09389i
\(419\) 225.194 0.537455 0.268728 0.963216i \(-0.413397\pi\)
0.268728 + 0.963216i \(0.413397\pi\)
\(420\) 211.493 208.062i 0.503554 0.495386i
\(421\) 683.540 1.62361 0.811805 0.583928i \(-0.198485\pi\)
0.811805 + 0.583928i \(0.198485\pi\)
\(422\) −417.959 6.14379i −0.990423 0.0145587i
\(423\) −136.525 + 136.525i −0.322753 + 0.322753i
\(424\) 448.086 + 489.454i 1.05681 + 1.15437i
\(425\) −377.168 + 410.622i −0.887455 + 0.966170i
\(426\) −236.559 243.618i −0.555304 0.571873i
\(427\) 142.509 + 142.509i 0.333745 + 0.333745i
\(428\) 413.151 389.547i 0.965306 0.910157i
\(429\) −192.534 + 354.542i −0.448798 + 0.826437i
\(430\) −0.660797 101.323i −0.00153674 0.235634i
\(431\) −515.599 −1.19629 −0.598143 0.801390i \(-0.704094\pi\)
−0.598143 + 0.801390i \(0.704094\pi\)
\(432\) 293.601 + 330.326i 0.679632 + 0.764644i
\(433\) −113.047 113.047i −0.261078 0.261078i 0.564414 0.825492i \(-0.309102\pi\)
−0.825492 + 0.564414i \(0.809102\pi\)
\(434\) 457.348 + 470.995i 1.05380 + 1.08524i
\(435\) −20.5248 + 0.435602i −0.0471833 + 0.00100138i
\(436\) 524.101 + 15.4114i 1.20207 + 0.0353472i
\(437\) −288.399 288.399i −0.659952 0.659952i
\(438\) 5.22352 355.353i 0.0119258 0.811308i
\(439\) 651.024i 1.48297i 0.670969 + 0.741486i \(0.265878\pi\)
−0.670969 + 0.741486i \(0.734122\pi\)
\(440\) 115.253 + 424.637i 0.261939 + 0.965085i
\(441\) 49.4140 0.112050
\(442\) 842.985 + 12.3915i 1.90721 + 0.0280350i
\(443\) −13.9233 + 13.9233i −0.0314295 + 0.0314295i −0.722647 0.691217i \(-0.757075\pi\)
0.691217 + 0.722647i \(0.257075\pi\)
\(444\) −14.5096 + 493.434i −0.0326793 + 1.11134i
\(445\) −311.687 + 325.204i −0.700420 + 0.730795i
\(446\) −34.3544 + 33.3591i −0.0770279 + 0.0747961i
\(447\) −274.483 + 274.483i −0.614057 + 0.614057i
\(448\) −375.081 + 314.140i −0.837234 + 0.701205i
\(449\) 6.37868i 0.0142064i 0.999975 + 0.00710321i \(0.00226104\pi\)
−0.999975 + 0.00710321i \(0.997739\pi\)
\(450\) 261.631 7.25995i 0.581402 0.0161332i
\(451\) −69.3586 + 127.720i −0.153788 + 0.283193i
\(452\) 70.4911 + 74.7624i 0.155954 + 0.165404i
\(453\) −27.9834 + 27.9834i −0.0617734 + 0.0617734i
\(454\) 7.49822 7.28098i 0.0165159 0.0160374i
\(455\) −499.902 + 521.582i −1.09869 + 1.14633i
\(456\) 249.938 + 273.013i 0.548111 + 0.598713i
\(457\) 11.7490 + 11.7490i 0.0257091 + 0.0257091i 0.719844 0.694135i \(-0.244213\pi\)
−0.694135 + 0.719844i \(0.744213\pi\)
\(458\) 6.17635 420.174i 0.0134855 0.917410i
\(459\) 616.023i 1.34210i
\(460\) −342.097 2.79734i −0.743689 0.00608117i
\(461\) 383.674i 0.832265i 0.909304 + 0.416133i \(0.136615\pi\)
−0.909304 + 0.416133i \(0.863385\pi\)
\(462\) 159.939 284.469i 0.346189 0.615733i
\(463\) 92.7118 92.7118i 0.200241 0.200241i −0.599862 0.800103i \(-0.704778\pi\)
0.800103 + 0.599862i \(0.204778\pi\)
\(464\) 33.7965 + 1.98932i 0.0728372 + 0.00428732i
\(465\) −8.83983 416.516i −0.0190104 0.895734i
\(466\) −271.328 + 263.466i −0.582248 + 0.565378i
\(467\) −514.758 514.758i −1.10227 1.10227i −0.994137 0.108128i \(-0.965514\pi\)
−0.108128 0.994137i \(-0.534486\pi\)
\(468\) −271.501 287.952i −0.580130 0.615282i
\(469\) 524.870 1.11913
\(470\) 2.40542 + 368.833i 0.00511792 + 0.784752i
\(471\) 161.084i 0.342003i
\(472\) 76.2173 + 3.36301i 0.161477 + 0.00712502i
\(473\) −31.6478 106.870i −0.0669086 0.225941i
\(474\) 91.0668 + 93.7840i 0.192124 + 0.197857i
\(475\) 595.558 25.2908i 1.25381 0.0532437i
\(476\) −681.669 20.0448i −1.43208 0.0421108i
\(477\) 307.029 307.029i 0.643666 0.643666i
\(478\) −0.334758 + 22.7734i −0.000700330 + 0.0476431i
\(479\) 300.009i 0.626324i −0.949700 0.313162i \(-0.898612\pi\)
0.949700 0.313162i \(-0.101388\pi\)
\(480\) 310.049 + 16.2217i 0.645935 + 0.0337952i
\(481\) 1202.11i 2.49918i
\(482\) −3.10818 + 211.448i −0.00644851 + 0.438688i
\(483\) 179.422 + 179.422i 0.371475 + 0.371475i
\(484\) 251.500 + 413.526i 0.519627 + 0.854393i
\(485\) 544.211 11.5499i 1.12208 0.0238143i
\(486\) 338.635 328.823i 0.696779 0.676591i
\(487\) −603.738 603.738i −1.23971 1.23971i −0.960120 0.279587i \(-0.909802\pi\)
−0.279587 0.960120i \(-0.590198\pi\)
\(488\) −9.29705 + 210.703i −0.0190513 + 0.431768i
\(489\) 190.708i 0.389996i
\(490\) 66.3129 67.1835i 0.135332 0.137109i
\(491\) 628.029 1.27908 0.639541 0.768757i \(-0.279124\pi\)
0.639541 + 0.768757i \(0.279124\pi\)
\(492\) 70.3533 + 74.6162i 0.142995 + 0.151659i
\(493\) 33.3683 + 33.3683i 0.0676842 + 0.0676842i
\(494\) −627.917 646.652i −1.27109 1.30901i
\(495\) 274.258 87.5882i 0.554057 0.176946i
\(496\) −40.3699 + 685.843i −0.0813909 + 1.38275i
\(497\) −472.976 472.976i −0.951662 0.951662i
\(498\) −135.815 1.99642i −0.272721 0.00400887i
\(499\) −260.768 −0.522582 −0.261291 0.965260i \(-0.584148\pi\)
−0.261291 + 0.965260i \(0.584148\pi\)
\(500\) 341.234 365.457i 0.682469 0.730915i
\(501\) 26.5872i 0.0530683i
\(502\) 3.37516 229.610i 0.00672342 0.457390i
\(503\) −210.359 210.359i −0.418209 0.418209i 0.466377 0.884586i \(-0.345559\pi\)
−0.884586 + 0.466377i \(0.845559\pi\)
\(504\) 216.170 + 236.127i 0.428908 + 0.468506i
\(505\) 229.876 239.845i 0.455201 0.474942i
\(506\) −362.362 + 101.539i −0.716129 + 0.200670i
\(507\) −258.308 258.308i −0.509483 0.509483i
\(508\) −116.641 + 109.978i −0.229609 + 0.216491i
\(509\) 349.415i 0.686473i 0.939249 + 0.343236i \(0.111523\pi\)
−0.939249 + 0.343236i \(0.888477\pi\)
\(510\) 307.999 + 304.008i 0.603920 + 0.596094i
\(511\) 700.048i 1.36996i
\(512\) −507.527 67.5331i −0.991263 0.131901i
\(513\) 465.704 465.704i 0.907805 0.907805i
\(514\) 435.905 423.275i 0.848064 0.823493i
\(515\) −848.797 + 18.0142i −1.64815 + 0.0349791i
\(516\) −78.6126 2.31163i −0.152350 0.00447991i
\(517\) 115.204 + 389.026i 0.222831 + 0.752468i
\(518\) −14.2920 + 972.278i −0.0275908 + 1.87699i
\(519\) 403.536i 0.777525i
\(520\) −755.851 17.2933i −1.45356 0.0332564i
\(521\) −377.707 −0.724965 −0.362483 0.931991i \(-0.618071\pi\)
−0.362483 + 0.931991i \(0.618071\pi\)
\(522\) 0.325593 22.1499i 0.000623741 0.0424328i
\(523\) 179.347 + 179.347i 0.342919 + 0.342919i 0.857464 0.514545i \(-0.172039\pi\)
−0.514545 + 0.857464i \(0.672039\pi\)
\(524\) −472.538 13.8952i −0.901791 0.0265175i
\(525\) −370.516 + 15.7342i −0.705744 + 0.0299699i
\(526\) −122.355 126.006i −0.232615 0.239556i
\(527\) −677.155 + 677.155i −1.28492 + 1.28492i
\(528\) 332.596 77.5636i 0.629916 0.146901i
\(529\) 236.405i 0.446890i
\(530\) −5.40953 829.465i −0.0102067 1.56503i
\(531\) 49.9197i 0.0940108i
\(532\) 500.178 + 530.485i 0.940185 + 0.997153i
\(533\) −176.588 176.588i −0.331309 0.331309i
\(534\) 243.567 + 250.834i 0.456118 + 0.469727i
\(535\) −709.638 + 15.0608i −1.32643 + 0.0281511i
\(536\) 370.895 + 405.137i 0.691969 + 0.755853i
\(537\) 13.7426 13.7426i 0.0255913 0.0255913i
\(538\) −4.17277 + 283.871i −0.00775608 + 0.527642i
\(539\) 49.5539 91.2510i 0.0919368 0.169297i
\(540\) 4.51711 552.415i 0.00836503 1.02299i
\(541\) 769.268i 1.42194i −0.703224 0.710968i \(-0.748257\pi\)
0.703224 0.710968i \(-0.251743\pi\)
\(542\) 115.361 + 1.69575i 0.212843 + 0.00312868i
\(543\) −177.466 + 177.466i −0.326825 + 0.326825i
\(544\) −466.224 540.332i −0.857030 0.993257i
\(545\) −473.174 453.507i −0.868209 0.832122i
\(546\) 390.647 + 402.303i 0.715471 + 0.736819i
\(547\) 430.049 430.049i 0.786196 0.786196i −0.194672 0.980868i \(-0.562364\pi\)
0.980868 + 0.194672i \(0.0623642\pi\)
\(548\) 327.732 309.008i 0.598051 0.563884i
\(549\) 138.003 0.251372
\(550\) 248.965 490.425i 0.452664 0.891681i
\(551\) 50.4519i 0.0915642i
\(552\) −11.7052 + 265.280i −0.0212051 + 0.480580i
\(553\) 182.079 + 182.079i 0.329256 + 0.329256i
\(554\) −567.358 584.286i −1.02411 1.05467i
\(555\) 426.970 445.486i 0.769315 0.802678i
\(556\) −23.1806 + 788.312i −0.0416918 + 1.41783i
\(557\) −40.6884 40.6884i −0.0730492 0.0730492i 0.669638 0.742687i \(-0.266449\pi\)
−0.742687 + 0.669638i \(0.766449\pi\)
\(558\) 449.496 + 6.60737i 0.805548 + 0.0118412i
\(559\) 191.516 0.342605
\(560\) 611.136 + 22.9735i 1.09131 + 0.0410241i
\(561\) 418.335 + 227.177i 0.745696 + 0.404951i
\(562\) −7.57281 + 515.174i −0.0134747 + 0.916679i
\(563\) 356.621 + 356.621i 0.633429 + 0.633429i 0.948927 0.315497i \(-0.102171\pi\)
−0.315497 + 0.948927i \(0.602171\pi\)
\(564\) 286.164 + 8.41477i 0.507383 + 0.0149198i
\(565\) −2.72536 128.414i −0.00482364 0.227281i
\(566\) −359.149 369.865i −0.634538 0.653471i
\(567\) −35.0651 + 35.0651i −0.0618433 + 0.0618433i
\(568\) 30.8562 699.306i 0.0543243 1.23117i
\(569\) −65.3391 −0.114832 −0.0574158 0.998350i \(-0.518286\pi\)
−0.0574158 + 0.998350i \(0.518286\pi\)
\(570\) −3.01738 462.668i −0.00529366 0.811698i
\(571\) −989.702 −1.73328 −0.866640 0.498935i \(-0.833725\pi\)
−0.866640 + 0.498935i \(0.833725\pi\)
\(572\) −804.020 + 212.603i −1.40563 + 0.371684i
\(573\) −425.142 425.142i −0.741958 0.741958i
\(574\) 140.727 + 144.926i 0.245169 + 0.252484i
\(575\) 314.941 + 289.282i 0.547723 + 0.503099i
\(576\) −29.5071 + 333.715i −0.0512276 + 0.579366i
\(577\) 601.472 601.472i 1.04241 1.04241i 0.0433523 0.999060i \(-0.486196\pi\)
0.999060 0.0433523i \(-0.0138038\pi\)
\(578\) 6.12571 416.728i 0.0105981 0.720983i
\(579\) 37.5839i 0.0649117i
\(580\) −29.6782 30.1675i −0.0511692 0.0520130i
\(581\) −267.557 −0.460511
\(582\) 6.20990 422.456i 0.0106699 0.725869i
\(583\) −259.080 874.876i −0.444391 1.50065i
\(584\) 540.353 494.683i 0.925263 0.847061i
\(585\) 10.4969 + 494.594i 0.0179434 + 0.845459i
\(586\) −143.138 + 138.991i −0.244263 + 0.237186i
\(587\) 540.157 + 540.157i 0.920199 + 0.920199i 0.997043 0.0768444i \(-0.0244845\pi\)
−0.0768444 + 0.997043i \(0.524484\pi\)
\(588\) −50.2646 53.3103i −0.0854841 0.0906638i
\(589\) 1023.84 1.73826
\(590\) −67.8710 66.9915i −0.115036 0.113545i
\(591\) 653.128 1.10512
\(592\) −760.582 + 676.021i −1.28477 + 1.14193i
\(593\) −498.341 + 498.341i −0.840372 + 0.840372i −0.988907 0.148535i \(-0.952544\pi\)
0.148535 + 0.988907i \(0.452544\pi\)
\(594\) −163.964 585.138i −0.276034 0.985081i
\(595\) 615.431 + 589.851i 1.03434 + 0.991346i
\(596\) −799.834 23.5194i −1.34200 0.0394621i
\(597\) 40.8795 40.8795i 0.0684749 0.0684749i
\(598\) 9.50407 646.556i 0.0158931 1.08120i
\(599\) 382.377 0.638359 0.319179 0.947694i \(-0.396593\pi\)
0.319179 + 0.947694i \(0.396593\pi\)
\(600\) −273.967 274.876i −0.456612 0.458126i
\(601\) 298.411i 0.496525i 0.968693 + 0.248262i \(0.0798595\pi\)
−0.968693 + 0.248262i \(0.920140\pi\)
\(602\) −154.901 2.27697i −0.257310 0.00378234i
\(603\) 254.137 254.137i 0.421455 0.421455i
\(604\) −81.5425 2.39779i −0.135004 0.00396985i
\(605\) 113.289 594.298i 0.187254 0.982311i
\(606\) −179.636 184.996i −0.296429 0.305274i
\(607\) −257.024 + 257.024i −0.423433 + 0.423433i −0.886384 0.462951i \(-0.846791\pi\)
0.462951 + 0.886384i \(0.346791\pi\)
\(608\) −56.0243 + 760.942i −0.0921452 + 1.25155i
\(609\) 31.3878i 0.0515398i
\(610\) 185.198 187.630i 0.303604 0.307590i
\(611\) −697.155 −1.14101
\(612\) −339.764 + 320.353i −0.555170 + 0.523452i
\(613\) 30.8327 30.8327i 0.0502980 0.0502980i −0.681510 0.731808i \(-0.738677\pi\)
0.731808 + 0.681510i \(0.238677\pi\)
\(614\) −264.153 + 256.500i −0.430217 + 0.417752i
\(615\) −2.72003 128.163i −0.00442281 0.208395i
\(616\) 652.829 162.397i 1.05979 0.263632i
\(617\) −175.339 + 175.339i −0.284181 + 0.284181i −0.834774 0.550593i \(-0.814402\pi\)
0.550593 + 0.834774i \(0.314402\pi\)
\(618\) −9.68549 + 658.898i −0.0156723 + 1.06618i
\(619\) −310.013 −0.500829 −0.250415 0.968139i \(-0.580567\pi\)
−0.250415 + 0.968139i \(0.580567\pi\)
\(620\) 612.200 602.269i 0.987419 0.971402i
\(621\) 472.480 0.760837
\(622\) 12.6347 859.533i 0.0203131 1.38189i
\(623\) 486.987 + 486.987i 0.781680 + 0.781680i
\(624\) −34.4822 + 585.818i −0.0552599 + 0.938810i
\(625\) −622.750 + 52.9865i −0.996400 + 0.0847784i
\(626\) −303.713 312.775i −0.485165 0.499641i
\(627\) −144.513 487.998i −0.230483 0.778306i
\(628\) 241.597 227.794i 0.384708 0.362730i
\(629\) −1418.40 −2.25502
\(630\) −2.60971 400.158i −0.00414240 0.635172i
\(631\) 260.205i 0.412370i −0.978513 0.206185i \(-0.933895\pi\)
0.978513 0.206185i \(-0.0661048\pi\)
\(632\) −11.8785 + 269.208i −0.0187951 + 0.425961i
\(633\) 286.773 286.773i 0.453038 0.453038i
\(634\) −305.180 + 296.338i −0.481357 + 0.467411i
\(635\) 200.346 4.25200i 0.315506 0.00669607i
\(636\) −643.552 18.9239i −1.01187 0.0297545i
\(637\) 126.165 + 126.165i 0.198061 + 0.198061i
\(638\) −40.5769 22.8139i −0.0636001 0.0357584i
\(639\) −458.022 −0.716779
\(640\) 414.122 + 487.958i 0.647065 + 0.762435i
\(641\) −272.859 −0.425677 −0.212839 0.977087i \(-0.568271\pi\)
−0.212839 + 0.977087i \(0.568271\pi\)
\(642\) −8.09757 + 550.873i −0.0126130 + 0.858058i
\(643\) 126.133 126.133i 0.196163 0.196163i −0.602190 0.798353i \(-0.705705\pi\)
0.798353 + 0.602190i \(0.205705\pi\)
\(644\) −15.3740 + 522.830i −0.0238727 + 0.811847i
\(645\) 70.9737 + 68.0238i 0.110037 + 0.105463i
\(646\) −763.006 + 740.899i −1.18112 + 1.14690i
\(647\) 513.203 + 513.203i 0.793204 + 0.793204i 0.982014 0.188810i \(-0.0604631\pi\)
−0.188810 + 0.982014i \(0.560463\pi\)
\(648\) −51.8446 2.28759i −0.0800072 0.00353023i
\(649\) −92.1848 50.0611i −0.142041 0.0771357i
\(650\) 686.538 + 649.466i 1.05621 + 0.999178i
\(651\) −636.963 −0.978437
\(652\) 286.029 269.688i 0.438694 0.413631i
\(653\) 376.550 + 376.550i 0.576647 + 0.576647i 0.933978 0.357331i \(-0.116313\pi\)
−0.357331 + 0.933978i \(0.616313\pi\)
\(654\) −364.965 + 354.391i −0.558051 + 0.541883i
\(655\) 426.621 + 408.889i 0.651330 + 0.624258i
\(656\) −12.4219 + 211.035i −0.0189358 + 0.321700i
\(657\) −338.957 338.957i −0.515916 0.515916i
\(658\) 563.867 + 8.28858i 0.856941 + 0.0125966i
\(659\) 594.010i 0.901382i −0.892680 0.450691i \(-0.851178\pi\)
0.892680 0.450691i \(-0.148822\pi\)
\(660\) −373.474 206.787i −0.565869 0.313314i
\(661\) 318.260 0.481483 0.240742 0.970589i \(-0.422609\pi\)
0.240742 + 0.970589i \(0.422609\pi\)
\(662\) 2.06205 140.280i 0.00311488 0.211904i
\(663\) −578.396 + 578.396i −0.872393 + 0.872393i
\(664\) −189.067 206.522i −0.284740 0.311027i
\(665\) −19.3381 911.175i −0.0290799 1.37019i
\(666\) 463.849 + 477.689i 0.696469 + 0.717250i
\(667\) 25.5930 25.5930i 0.0383703 0.0383703i
\(668\) 39.8761 37.5980i 0.0596948 0.0562844i
\(669\) 46.4602i 0.0694472i
\(670\) −4.47764 686.575i −0.00668304 1.02474i
\(671\) 138.394 254.845i 0.206250 0.379799i
\(672\) 34.8545 473.406i 0.0518668 0.704474i
\(673\) −470.399 + 470.399i −0.698959 + 0.698959i −0.964186 0.265227i \(-0.914553\pi\)
0.265227 + 0.964186i \(0.414553\pi\)
\(674\) −474.632 488.794i −0.704202 0.725214i
\(675\) −467.130 + 508.564i −0.692045 + 0.753428i
\(676\) 22.1334 752.699i 0.0327417 1.11346i
\(677\) −468.594 468.594i −0.692163 0.692163i 0.270545 0.962707i \(-0.412796\pi\)
−0.962707 + 0.270545i \(0.912796\pi\)
\(678\) −99.6841 1.46531i −0.147027 0.00216122i
\(679\) 832.241i 1.22569i
\(680\) −20.4050 + 891.853i −0.0300073 + 1.31155i
\(681\) 10.1404i 0.0148905i
\(682\) 462.970 823.441i 0.678842 1.20739i
\(683\) −345.217 + 345.217i −0.505442 + 0.505442i −0.913124 0.407682i \(-0.866337\pi\)
0.407682 + 0.913124i \(0.366337\pi\)
\(684\) 499.038 + 14.6744i 0.729588 + 0.0214538i
\(685\) −562.921 + 11.9470i −0.821782 + 0.0174409i
\(686\) 421.356 + 433.929i 0.614222 + 0.632549i
\(687\) 288.293 + 288.293i 0.419641 + 0.419641i
\(688\) −107.702 121.174i −0.156544 0.176125i
\(689\) 1567.82 2.27551
\(690\) 233.169 236.230i 0.337926 0.342363i
\(691\) 1319.79i 1.90997i −0.296660 0.954983i \(-0.595873\pi\)
0.296660 0.954983i \(-0.404127\pi\)
\(692\) 605.232 570.655i 0.874613 0.824646i
\(693\) −124.988 422.066i −0.180358 0.609041i
\(694\) −739.212 + 717.795i −1.06515 + 1.03429i
\(695\) 682.129 711.711i 0.981481 1.02404i
\(696\) −24.2276 + 22.1799i −0.0348098 + 0.0318677i
\(697\) −208.362 + 208.362i −0.298941 + 0.298941i
\(698\) 516.910 + 7.59833i 0.740559 + 0.0108859i
\(699\) 366.937i 0.524946i
\(700\) −547.559 533.458i −0.782227 0.762083i
\(701\) 108.292i 0.154482i −0.997012 0.0772411i \(-0.975389\pi\)
0.997012 0.0772411i \(-0.0246111\pi\)
\(702\) 1044.05 + 15.3471i 1.48726 + 0.0218620i
\(703\) 1072.29 + 1072.29i 1.52531 + 1.52531i
\(704\) 586.668 + 389.149i 0.833335 + 0.552769i
\(705\) −258.357 247.619i −0.366464 0.351233i
\(706\) 84.4682 + 86.9885i 0.119643 + 0.123213i
\(707\) −359.164 359.164i −0.508012 0.508012i
\(708\) −53.8559 + 50.7790i −0.0760676 + 0.0717218i
\(709\) 844.657i 1.19134i 0.803231 + 0.595668i \(0.203113\pi\)
−0.803231 + 0.595668i \(0.796887\pi\)
\(710\) −614.659 + 622.728i −0.865716 + 0.877082i
\(711\) 176.322 0.247991
\(712\) −31.7702 + 720.021i −0.0446211 + 1.01127i
\(713\) 519.367 + 519.367i 0.728425 + 0.728425i
\(714\) 474.691 460.937i 0.664833 0.645570i
\(715\) 923.874 + 476.610i 1.29213 + 0.666587i
\(716\) 40.0453 + 1.17755i 0.0559291 + 0.00164462i
\(717\) −15.6255 15.6255i −0.0217928 0.0217928i
\(718\) −12.4693 + 848.278i −0.0173667 + 1.18145i
\(719\) 459.476 0.639049 0.319524 0.947578i \(-0.396477\pi\)
0.319524 + 0.947578i \(0.396477\pi\)
\(720\) 307.030 284.783i 0.426431 0.395532i
\(721\) 1298.03i 1.80033i
\(722\) 415.008 + 6.10041i 0.574803 + 0.00844933i
\(723\) −145.080 145.080i −0.200664 0.200664i
\(724\) −517.129 15.2064i −0.714267 0.0210033i
\(725\) 2.24434 + 52.8507i 0.00309564 + 0.0728976i
\(726\) −457.828 104.441i −0.630618 0.143858i
\(727\) −77.1065 77.1065i −0.106061 0.106061i 0.652085 0.758146i \(-0.273895\pi\)
−0.758146 + 0.652085i \(0.773895\pi\)
\(728\) −50.9550 + 1154.81i −0.0699931 + 1.58628i
\(729\) 516.344i 0.708291i
\(730\) −915.723 + 5.97207i −1.25441 + 0.00818092i
\(731\) 225.977i 0.309133i
\(732\) −140.379 148.885i −0.191774 0.203395i
\(733\) −908.588 + 908.588i −1.23955 + 1.23955i −0.279361 + 0.960186i \(0.590123\pi\)
−0.960186 + 0.279361i \(0.909877\pi\)
\(734\) −659.973 679.665i −0.899146 0.925975i
\(735\) 1.94335 + 91.5671i 0.00264402 + 0.124581i
\(736\) −414.426 + 357.587i −0.563079 + 0.485852i
\(737\) −214.449 724.163i −0.290976 0.982582i
\(738\) 138.311 + 2.03310i 0.187413 + 0.00275488i
\(739\) 377.105i 0.510291i 0.966903 + 0.255146i \(0.0821234\pi\)
−0.966903 + 0.255146i \(0.917877\pi\)
\(740\) 1271.95 + 10.4007i 1.71885 + 0.0140551i
\(741\) 874.518 1.18019
\(742\) −1268.08 18.6401i −1.70900 0.0251214i
\(743\) 36.1901 + 36.1901i 0.0487080 + 0.0487080i 0.731041 0.682333i \(-0.239035\pi\)
−0.682333 + 0.731041i \(0.739035\pi\)
\(744\) −450.105 491.659i −0.604980 0.660832i
\(745\) 722.113 + 692.099i 0.969280 + 0.928992i
\(746\) 326.824 317.355i 0.438102 0.425409i
\(747\) −129.549 + 129.549i −0.173425 + 0.173425i
\(748\) 250.858 + 948.689i 0.335371 + 1.26830i
\(749\) 1085.22i 1.44890i
\(750\) 23.7425 + 484.532i 0.0316567 + 0.646043i
\(751\) 1317.50i 1.75433i 0.480187 + 0.877166i \(0.340569\pi\)
−0.480187 + 0.877166i \(0.659431\pi\)
\(752\) 392.055 + 441.096i 0.521350 + 0.586563i
\(753\) 157.542 + 157.542i 0.209219 + 0.209219i
\(754\) 57.3849 55.7223i 0.0761073 0.0739022i
\(755\) 73.6189 + 70.5590i 0.0975085 + 0.0934556i
\(756\) −844.261 24.8258i −1.11675 0.0328384i
\(757\) 218.159 218.159i 0.288189 0.288189i −0.548175 0.836364i \(-0.684677\pi\)
0.836364 + 0.548175i \(0.184677\pi\)
\(758\) 222.866 + 3.27602i 0.294018 + 0.00432193i
\(759\) 174.241 320.857i 0.229567 0.422736i
\(760\) 689.654 658.802i 0.907439 0.866845i
\(761\) 1116.86i 1.46762i 0.679353 + 0.733812i \(0.262261\pi\)
−0.679353 + 0.733812i \(0.737739\pi\)
\(762\) 2.28612 155.523i 0.00300016 0.204099i
\(763\) −708.569 + 708.569i −0.928662 + 0.928662i
\(764\) 36.4288 1238.85i 0.0476816 1.62153i
\(765\) 583.587 12.3856i 0.762859 0.0161904i
\(766\) 319.343 310.091i 0.416897 0.404818i
\(767\) 127.456 127.456i 0.166175 0.166175i
\(768\) 390.043 307.626i 0.507868 0.400554i
\(769\) 1167.60 1.51833 0.759167 0.650896i \(-0.225607\pi\)
0.759167 + 0.650896i \(0.225607\pi\)
\(770\) −741.574 396.472i −0.963083 0.514899i
\(771\) 589.508i 0.764602i
\(772\) −56.3692 + 53.1488i −0.0730171 + 0.0688456i