Properties

Label 220.3.i.a.43.19
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.19
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33338 + 1.49067i) q^{2} +(3.87627 - 3.87627i) q^{3} +(-0.444207 - 3.97526i) q^{4} +(3.64792 + 3.41945i) q^{5} +(0.609714 + 10.9468i) q^{6} +(5.44609 - 5.44609i) q^{7} +(6.51810 + 4.63836i) q^{8} -21.0509i q^{9} +(-9.96134 + 0.878432i) q^{10} +(7.73363 + 7.82247i) q^{11} +(-17.1310 - 13.6873i) q^{12} +(-14.7946 + 14.7946i) q^{13} +(0.856637 + 15.3800i) q^{14} +(27.3951 - 0.885606i) q^{15} +(-15.6054 + 3.53167i) q^{16} +(-5.69580 - 5.69580i) q^{17} +(31.3800 + 28.0688i) q^{18} -21.1920i q^{19} +(11.9728 - 16.0204i) q^{20} -42.2210i q^{21} +(-21.9726 + 1.09800i) q^{22} +(7.64133 - 7.64133i) q^{23} +(43.2454 - 7.28640i) q^{24} +(1.61467 + 24.9478i) q^{25} +(-2.32710 - 41.7806i) q^{26} +(-46.7126 - 46.7126i) q^{27} +(-24.0688 - 19.2304i) q^{28} +2.11660 q^{29} +(-35.2078 + 42.0179i) q^{30} +23.3398i q^{31} +(15.5433 - 27.9715i) q^{32} +(60.2996 + 0.344346i) q^{33} +(16.0852 - 0.895915i) q^{34} +(38.4895 - 1.24426i) q^{35} +(-83.6829 + 9.35096i) q^{36} +(7.12170 - 7.12170i) q^{37} +(31.5904 + 28.2570i) q^{38} +114.695i q^{39} +(7.91689 + 39.2087i) q^{40} +13.4770i q^{41} +(62.9377 + 56.2965i) q^{42} +(-18.4300 - 18.4300i) q^{43} +(27.6610 - 34.2180i) q^{44} +(71.9827 - 76.7922i) q^{45} +(1.20194 + 21.5795i) q^{46} +(25.7009 + 25.7009i) q^{47} +(-46.8009 + 74.1803i) q^{48} -10.3197i q^{49} +(-39.3420 - 30.8579i) q^{50} -44.1569 q^{51} +(65.3840 + 52.2403i) q^{52} +(-10.8004 - 10.8004i) q^{53} +(131.919 - 7.34763i) q^{54} +(1.46313 + 54.9805i) q^{55} +(60.7590 - 10.2373i) q^{56} +(-82.1460 - 82.1460i) q^{57} +(-2.82223 + 3.15516i) q^{58} -84.0088 q^{59} +(-15.6896 - 108.509i) q^{60} +87.3519i q^{61} +(-34.7919 - 31.1207i) q^{62} +(-114.645 - 114.645i) q^{63} +(20.9713 + 60.4666i) q^{64} +(-104.559 + 3.38009i) q^{65} +(-80.9155 + 89.4278i) q^{66} +(-55.9563 - 55.9563i) q^{67} +(-20.1122 + 25.1724i) q^{68} -59.2397i q^{69} +(-49.4663 + 59.0344i) q^{70} -24.0536i q^{71} +(97.6417 - 137.212i) q^{72} +(69.0302 - 69.0302i) q^{73} +(1.12020 + 20.1120i) q^{74} +(102.963 + 90.4455i) q^{75} +(-84.2438 + 9.41364i) q^{76} +(84.7198 + 0.483800i) q^{77} +(-170.973 - 152.932i) q^{78} +47.8344i q^{79} +(-69.0035 - 40.4785i) q^{80} -172.683 q^{81} +(-20.0898 - 17.9699i) q^{82} +(11.0631 + 11.0631i) q^{83} +(-167.839 + 18.7548i) q^{84} +(-1.30131 - 40.2543i) q^{85} +(52.0472 - 2.89893i) q^{86} +(8.20451 - 8.20451i) q^{87} +(14.1252 + 86.8590i) q^{88} +90.4306i q^{89} +(18.4918 + 209.696i) q^{90} +161.145i q^{91} +(-33.7706 - 26.9819i) q^{92} +(90.4712 + 90.4712i) q^{93} +(-72.5807 + 4.04261i) q^{94} +(72.4652 - 77.3069i) q^{95} +(-48.1752 - 168.675i) q^{96} +(-88.2136 + 88.2136i) q^{97} +(15.3833 + 13.7601i) q^{98} +(164.670 - 162.800i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33338 + 1.49067i −0.666689 + 0.745336i
\(3\) 3.87627 3.87627i 1.29209 1.29209i 0.358598 0.933492i \(-0.383255\pi\)
0.933492 0.358598i \(-0.116745\pi\)
\(4\) −0.444207 3.97526i −0.111052 0.993815i
\(5\) 3.64792 + 3.41945i 0.729584 + 0.683891i
\(6\) 0.609714 + 10.9468i 0.101619 + 1.82446i
\(7\) 5.44609 5.44609i 0.778012 0.778012i −0.201480 0.979493i \(-0.564575\pi\)
0.979493 + 0.201480i \(0.0645752\pi\)
\(8\) 6.51810 + 4.63836i 0.814763 + 0.579794i
\(9\) 21.0509i 2.33899i
\(10\) −9.96134 + 0.878432i −0.996134 + 0.0878432i
\(11\) 7.73363 + 7.82247i 0.703057 + 0.711133i
\(12\) −17.1310 13.6873i −1.42759 1.14061i
\(13\) −14.7946 + 14.7946i −1.13804 + 1.13804i −0.149242 + 0.988801i \(0.547683\pi\)
−0.988801 + 0.149242i \(0.952317\pi\)
\(14\) 0.856637 + 15.3800i 0.0611884 + 1.09857i
\(15\) 27.3951 0.885606i 1.82634 0.0590404i
\(16\) −15.6054 + 3.53167i −0.975335 + 0.220729i
\(17\) −5.69580 5.69580i −0.335047 0.335047i 0.519452 0.854499i \(-0.326136\pi\)
−0.854499 + 0.519452i \(0.826136\pi\)
\(18\) 31.3800 + 28.0688i 1.74334 + 1.55938i
\(19\) 21.1920i 1.11537i −0.830053 0.557685i \(-0.811690\pi\)
0.830053 0.557685i \(-0.188310\pi\)
\(20\) 11.9728 16.0204i 0.598639 0.801019i
\(21\) 42.2210i 2.01052i
\(22\) −21.9726 + 1.09800i −0.998754 + 0.0499093i
\(23\) 7.64133 7.64133i 0.332232 0.332232i −0.521202 0.853434i \(-0.674516\pi\)
0.853434 + 0.521202i \(0.174516\pi\)
\(24\) 43.2454 7.28640i 1.80189 0.303600i
\(25\) 1.61467 + 24.9478i 0.0645869 + 0.997912i
\(26\) −2.32710 41.7806i −0.0895037 1.60694i
\(27\) −46.7126 46.7126i −1.73010 1.73010i
\(28\) −24.0688 19.2304i −0.859600 0.686801i
\(29\) 2.11660 0.0729862 0.0364931 0.999334i \(-0.488381\pi\)
0.0364931 + 0.999334i \(0.488381\pi\)
\(30\) −35.2078 + 42.0179i −1.17359 + 1.40060i
\(31\) 23.3398i 0.752896i 0.926438 + 0.376448i \(0.122855\pi\)
−0.926438 + 0.376448i \(0.877145\pi\)
\(32\) 15.5433 27.9715i 0.485728 0.874110i
\(33\) 60.2996 + 0.344346i 1.82726 + 0.0104347i
\(34\) 16.0852 0.895915i 0.473095 0.0263505i
\(35\) 38.4895 1.24426i 1.09970 0.0355503i
\(36\) −83.6829 + 9.35096i −2.32452 + 0.259749i
\(37\) 7.12170 7.12170i 0.192478 0.192478i −0.604288 0.796766i \(-0.706542\pi\)
0.796766 + 0.604288i \(0.206542\pi\)
\(38\) 31.5904 + 28.2570i 0.831326 + 0.743605i
\(39\) 114.695i 2.94091i
\(40\) 7.91689 + 39.2087i 0.197922 + 0.980218i
\(41\) 13.4770i 0.328707i 0.986401 + 0.164354i \(0.0525538\pi\)
−0.986401 + 0.164354i \(0.947446\pi\)
\(42\) 62.9377 + 56.2965i 1.49852 + 1.34039i
\(43\) −18.4300 18.4300i −0.428604 0.428604i 0.459548 0.888153i \(-0.348011\pi\)
−0.888153 + 0.459548i \(0.848011\pi\)
\(44\) 27.6610 34.2180i 0.628659 0.777681i
\(45\) 71.9827 76.7922i 1.59962 1.70649i
\(46\) 1.20194 + 21.5795i 0.0261291 + 0.469120i
\(47\) 25.7009 + 25.7009i 0.546829 + 0.546829i 0.925522 0.378694i \(-0.123627\pi\)
−0.378694 + 0.925522i \(0.623627\pi\)
\(48\) −46.8009 + 74.1803i −0.975018 + 1.54542i
\(49\) 10.3197i 0.210606i
\(50\) −39.3420 30.8579i −0.786839 0.617158i
\(51\) −44.1569 −0.865821
\(52\) 65.3840 + 52.2403i 1.25739 + 1.00462i
\(53\) −10.8004 10.8004i −0.203782 0.203782i 0.597836 0.801618i \(-0.296027\pi\)
−0.801618 + 0.597836i \(0.796027\pi\)
\(54\) 131.919 7.34763i 2.44294 0.136067i
\(55\) 1.46313 + 54.9805i 0.0266023 + 0.999646i
\(56\) 60.7590 10.2373i 1.08498 0.182808i
\(57\) −82.1460 82.1460i −1.44116 1.44116i
\(58\) −2.82223 + 3.15516i −0.0486591 + 0.0543992i
\(59\) −84.0088 −1.42388 −0.711939 0.702242i \(-0.752183\pi\)
−0.711939 + 0.702242i \(0.752183\pi\)
\(60\) −15.6896 108.509i −0.261493 1.80848i
\(61\) 87.3519i 1.43200i 0.698101 + 0.715999i \(0.254029\pi\)
−0.698101 + 0.715999i \(0.745971\pi\)
\(62\) −34.7919 31.1207i −0.561160 0.501947i
\(63\) −114.645 114.645i −1.81976 1.81976i
\(64\) 20.9713 + 60.4666i 0.327677 + 0.944790i
\(65\) −104.559 + 3.38009i −1.60860 + 0.0520014i
\(66\) −80.9155 + 89.4278i −1.22599 + 1.35497i
\(67\) −55.9563 55.9563i −0.835169 0.835169i 0.153050 0.988218i \(-0.451091\pi\)
−0.988218 + 0.153050i \(0.951091\pi\)
\(68\) −20.1122 + 25.1724i −0.295767 + 0.370182i
\(69\) 59.2397i 0.858547i
\(70\) −49.4663 + 59.0344i −0.706662 + 0.843348i
\(71\) 24.0536i 0.338784i −0.985549 0.169392i \(-0.945820\pi\)
0.985549 0.169392i \(-0.0541804\pi\)
\(72\) 97.6417 137.212i 1.35613 1.90572i
\(73\) 69.0302 69.0302i 0.945619 0.945619i −0.0529764 0.998596i \(-0.516871\pi\)
0.998596 + 0.0529764i \(0.0168708\pi\)
\(74\) 1.12020 + 20.1120i 0.0151379 + 0.271784i
\(75\) 102.963 + 90.4455i 1.37284 + 1.20594i
\(76\) −84.2438 + 9.41364i −1.10847 + 0.123864i
\(77\) 84.7198 + 0.483800i 1.10026 + 0.00628312i
\(78\) −170.973 152.932i −2.19196 1.96067i
\(79\) 47.8344i 0.605499i 0.953070 + 0.302749i \(0.0979045\pi\)
−0.953070 + 0.302749i \(0.902095\pi\)
\(80\) −69.0035 40.4785i −0.862544 0.505982i
\(81\) −172.683 −2.13189
\(82\) −20.0898 17.9699i −0.244997 0.219145i
\(83\) 11.0631 + 11.0631i 0.133290 + 0.133290i 0.770604 0.637314i \(-0.219955\pi\)
−0.637314 + 0.770604i \(0.719955\pi\)
\(84\) −167.839 + 18.7548i −1.99809 + 0.223272i
\(85\) −1.30131 40.2543i −0.0153095 0.473580i
\(86\) 52.0472 2.89893i 0.605200 0.0337085i
\(87\) 8.20451 8.20451i 0.0943047 0.0943047i
\(88\) 14.1252 + 86.8590i 0.160514 + 0.987034i
\(89\) 90.4306i 1.01607i 0.861335 + 0.508037i \(0.169629\pi\)
−0.861335 + 0.508037i \(0.830371\pi\)
\(90\) 18.4918 + 209.696i 0.205465 + 2.32995i
\(91\) 161.145i 1.77082i
\(92\) −33.7706 26.9819i −0.367072 0.293282i
\(93\) 90.4712 + 90.4712i 0.972809 + 0.972809i
\(94\) −72.5807 + 4.04261i −0.772136 + 0.0430065i
\(95\) 72.4652 77.3069i 0.762791 0.813757i
\(96\) −48.1752 168.675i −0.501825 1.75703i
\(97\) −88.2136 + 88.2136i −0.909418 + 0.909418i −0.996225 0.0868070i \(-0.972334\pi\)
0.0868070 + 0.996225i \(0.472334\pi\)
\(98\) 15.3833 + 13.7601i 0.156973 + 0.140409i
\(99\) 164.670 162.800i 1.66333 1.64445i
\(100\) 98.4567 17.5007i 0.984567 0.175007i
\(101\) 52.6106i 0.520897i 0.965488 + 0.260449i \(0.0838704\pi\)
−0.965488 + 0.260449i \(0.916130\pi\)
\(102\) 58.8778 65.8234i 0.577234 0.645328i
\(103\) 53.2977 53.2977i 0.517453 0.517453i −0.399347 0.916800i \(-0.630763\pi\)
0.916800 + 0.399347i \(0.130763\pi\)
\(104\) −165.055 + 27.8100i −1.58707 + 0.267404i
\(105\) 144.373 154.019i 1.37498 1.46685i
\(106\) 30.5010 1.69885i 0.287745 0.0160269i
\(107\) −47.1165 + 47.1165i −0.440341 + 0.440341i −0.892127 0.451786i \(-0.850787\pi\)
0.451786 + 0.892127i \(0.350787\pi\)
\(108\) −164.945 + 206.445i −1.52727 + 1.91153i
\(109\) −178.673 −1.63920 −0.819599 0.572938i \(-0.805804\pi\)
−0.819599 + 0.572938i \(0.805804\pi\)
\(110\) −83.9088 71.1288i −0.762808 0.646625i
\(111\) 55.2113i 0.497399i
\(112\) −65.7544 + 104.222i −0.587092 + 0.930553i
\(113\) −22.6903 22.6903i −0.200799 0.200799i 0.599543 0.800342i \(-0.295349\pi\)
−0.800342 + 0.599543i \(0.795349\pi\)
\(114\) 231.985 12.9211i 2.03495 0.113343i
\(115\) 54.0042 1.74580i 0.469601 0.0151809i
\(116\) −0.940207 8.41403i −0.00810524 0.0725347i
\(117\) 311.439 + 311.439i 2.66187 + 2.66187i
\(118\) 112.015 125.230i 0.949283 1.06127i
\(119\) −62.0396 −0.521341
\(120\) 182.672 + 121.296i 1.52226 + 1.01080i
\(121\) −1.38192 + 120.992i −0.0114208 + 0.999935i
\(122\) −130.213 116.473i −1.06732 0.954698i
\(123\) 52.2405 + 52.2405i 0.424719 + 0.424719i
\(124\) 92.7816 10.3677i 0.748239 0.0836103i
\(125\) −79.4176 + 96.5289i −0.635341 + 0.772232i
\(126\) 323.764 18.0330i 2.56955 0.143119i
\(127\) 0.187577 0.187577i 0.00147699 0.00147699i −0.706368 0.707845i \(-0.749668\pi\)
0.707845 + 0.706368i \(0.249668\pi\)
\(128\) −118.098 49.3634i −0.922644 0.385652i
\(129\) −142.879 −1.10759
\(130\) 134.378 160.370i 1.03367 1.23361i
\(131\) 106.461 0.812681 0.406340 0.913722i \(-0.366805\pi\)
0.406340 + 0.913722i \(0.366805\pi\)
\(132\) −25.4166 239.860i −0.192550 1.81712i
\(133\) −115.414 115.414i −0.867772 0.867772i
\(134\) 158.023 8.80160i 1.17928 0.0656836i
\(135\) −10.6724 330.136i −0.0790546 2.44545i
\(136\) −10.7067 63.5449i −0.0787254 0.467242i
\(137\) 63.3415 63.3415i 0.462347 0.462347i −0.437077 0.899424i \(-0.643986\pi\)
0.899424 + 0.437077i \(0.143986\pi\)
\(138\) 88.3070 + 78.9889i 0.639906 + 0.572384i
\(139\) 224.103i 1.61225i 0.591746 + 0.806124i \(0.298439\pi\)
−0.591746 + 0.806124i \(0.701561\pi\)
\(140\) −22.0436 152.453i −0.157454 1.08895i
\(141\) 199.248 1.41310
\(142\) 35.8561 + 32.0726i 0.252508 + 0.225863i
\(143\) −230.146 1.31427i −1.60941 0.00919067i
\(144\) 74.3450 + 328.507i 0.516284 + 2.28130i
\(145\) 7.72119 + 7.23761i 0.0532496 + 0.0499146i
\(146\) 10.8580 + 194.945i 0.0743702 + 1.33524i
\(147\) −40.0020 40.0020i −0.272122 0.272122i
\(148\) −31.4741 25.1471i −0.212663 0.169913i
\(149\) 160.633 1.07807 0.539037 0.842282i \(-0.318788\pi\)
0.539037 + 0.842282i \(0.318788\pi\)
\(150\) −272.114 + 32.8865i −1.81409 + 0.219243i
\(151\) 190.101 1.25895 0.629474 0.777022i \(-0.283271\pi\)
0.629474 + 0.777022i \(0.283271\pi\)
\(152\) 98.2962 138.132i 0.646686 0.908762i
\(153\) −119.902 + 119.902i −0.783672 + 0.783672i
\(154\) −113.685 + 125.644i −0.738213 + 0.815873i
\(155\) −79.8093 + 85.1417i −0.514898 + 0.549301i
\(156\) 455.944 50.9484i 2.92272 0.326592i
\(157\) −60.5266 + 60.5266i −0.385520 + 0.385520i −0.873086 0.487566i \(-0.837885\pi\)
0.487566 + 0.873086i \(0.337885\pi\)
\(158\) −71.3054 63.7813i −0.451300 0.403679i
\(159\) −83.7309 −0.526609
\(160\) 152.348 48.8884i 0.952175 0.305553i
\(161\) 83.2307i 0.516961i
\(162\) 230.252 257.414i 1.42131 1.58898i
\(163\) 40.7392 40.7392i 0.249934 0.249934i −0.571010 0.820943i \(-0.693448\pi\)
0.820943 + 0.571010i \(0.193448\pi\)
\(164\) 53.5745 5.98657i 0.326674 0.0365035i
\(165\) 218.791 + 207.448i 1.32601 + 1.25726i
\(166\) −31.2428 + 1.74016i −0.188209 + 0.0104829i
\(167\) 100.104 100.104i 0.599423 0.599423i −0.340736 0.940159i \(-0.610676\pi\)
0.940159 + 0.340736i \(0.110676\pi\)
\(168\) 195.836 275.201i 1.16569 1.63810i
\(169\) 268.758i 1.59028i
\(170\) 61.7412 + 51.7344i 0.363183 + 0.304320i
\(171\) −446.112 −2.60884
\(172\) −65.0772 + 81.4507i −0.378356 + 0.473551i
\(173\) 139.979 139.979i 0.809126 0.809126i −0.175376 0.984502i \(-0.556114\pi\)
0.984502 + 0.175376i \(0.0561141\pi\)
\(174\) 1.29052 + 23.1699i 0.00741679 + 0.133161i
\(175\) 144.662 + 127.074i 0.826637 + 0.726138i
\(176\) −148.312 94.7597i −0.842685 0.538408i
\(177\) −325.641 + 325.641i −1.83978 + 1.83978i
\(178\) −134.802 120.578i −0.757316 0.677405i
\(179\) −106.678 −0.595964 −0.297982 0.954571i \(-0.596314\pi\)
−0.297982 + 0.954571i \(0.596314\pi\)
\(180\) −337.244 252.038i −1.87358 1.40021i
\(181\) 12.7141 0.0702438 0.0351219 0.999383i \(-0.488818\pi\)
0.0351219 + 0.999383i \(0.488818\pi\)
\(182\) −240.214 214.867i −1.31986 1.18059i
\(183\) 338.600 + 338.600i 1.85027 + 1.85027i
\(184\) 85.2502 14.3638i 0.463316 0.0780639i
\(185\) 50.3318 1.62709i 0.272064 0.00879506i
\(186\) −255.495 + 14.2306i −1.37363 + 0.0765086i
\(187\) 0.505983 88.6044i 0.00270579 0.473820i
\(188\) 90.7514 113.584i 0.482720 0.604172i
\(189\) −508.802 −2.69208
\(190\) 18.6158 + 211.101i 0.0979777 + 1.11106i
\(191\) 4.38351i 0.0229503i 0.999934 + 0.0114751i \(0.00365273\pi\)
−0.999934 + 0.0114751i \(0.996347\pi\)
\(192\) 315.675 + 153.094i 1.64414 + 0.797366i
\(193\) −194.296 + 194.296i −1.00672 + 1.00672i −0.00673955 + 0.999977i \(0.502145\pi\)
−0.999977 + 0.00673955i \(0.997855\pi\)
\(194\) −13.8755 249.119i −0.0715231 1.28412i
\(195\) −392.195 + 418.400i −2.01126 + 2.14564i
\(196\) −41.0235 + 4.58408i −0.209304 + 0.0233882i
\(197\) −119.247 119.247i −0.605314 0.605314i 0.336404 0.941718i \(-0.390789\pi\)
−0.941718 + 0.336404i \(0.890789\pi\)
\(198\) 23.1140 + 462.543i 0.116737 + 2.33608i
\(199\) 351.199 1.76482 0.882410 0.470482i \(-0.155920\pi\)
0.882410 + 0.470482i \(0.155920\pi\)
\(200\) −105.192 + 170.102i −0.525961 + 0.850509i
\(201\) −433.803 −2.15823
\(202\) −78.4252 70.1498i −0.388243 0.347276i
\(203\) 11.5272 11.5272i 0.0567842 0.0567842i
\(204\) 19.6148 + 175.535i 0.0961509 + 0.860466i
\(205\) −46.0840 + 49.1630i −0.224800 + 0.239820i
\(206\) 8.38341 + 150.515i 0.0406962 + 0.730657i
\(207\) −160.857 160.857i −0.777088 0.777088i
\(208\) 178.625 283.124i 0.858773 1.36117i
\(209\) 165.774 163.891i 0.793177 0.784169i
\(210\) 37.0883 + 420.578i 0.176611 + 2.00275i
\(211\) −253.350 −1.20071 −0.600355 0.799734i \(-0.704974\pi\)
−0.600355 + 0.799734i \(0.704974\pi\)
\(212\) −38.1369 + 47.7322i −0.179891 + 0.225152i
\(213\) −93.2384 93.2384i −0.437739 0.437739i
\(214\) −7.41114 133.059i −0.0346315 0.621772i
\(215\) −4.21067 130.252i −0.0195845 0.605822i
\(216\) −87.8079 521.148i −0.406518 2.41272i
\(217\) 127.110 + 127.110i 0.585762 + 0.585762i
\(218\) 238.238 266.342i 1.09283 1.22175i
\(219\) 535.159i 2.44365i
\(220\) 217.912 30.2390i 0.990509 0.137450i
\(221\) 168.534 0.762595
\(222\) 82.3019 + 73.6175i 0.370729 + 0.331610i
\(223\) −77.2143 + 77.2143i −0.346252 + 0.346252i −0.858712 0.512459i \(-0.828735\pi\)
0.512459 + 0.858712i \(0.328735\pi\)
\(224\) −67.6853 236.985i −0.302167 1.05797i
\(225\) 525.174 33.9904i 2.33411 0.151068i
\(226\) 64.0785 3.56905i 0.283533 0.0157922i
\(227\) 219.293 219.293i 0.966048 0.966048i −0.0333944 0.999442i \(-0.510632\pi\)
0.999442 + 0.0333944i \(0.0106317\pi\)
\(228\) −290.062 + 363.042i −1.27220 + 1.59229i
\(229\) 257.724i 1.12543i −0.826650 0.562717i \(-0.809756\pi\)
0.826650 0.562717i \(-0.190244\pi\)
\(230\) −69.4055 + 82.8303i −0.301763 + 0.360132i
\(231\) 330.272 326.522i 1.42975 1.41351i
\(232\) 13.7962 + 9.81754i 0.0594664 + 0.0423170i
\(233\) 153.796 153.796i 0.660067 0.660067i −0.295328 0.955396i \(-0.595429\pi\)
0.955396 + 0.295328i \(0.0954291\pi\)
\(234\) −879.520 + 48.9876i −3.75863 + 0.209349i
\(235\) 5.87186 + 181.638i 0.0249866 + 0.772929i
\(236\) 37.3172 + 333.957i 0.158124 + 1.41507i
\(237\) 185.419 + 185.419i 0.782359 + 0.782359i
\(238\) 82.7222 92.4807i 0.347572 0.388574i
\(239\) 38.8269i 0.162456i −0.996696 0.0812279i \(-0.974116\pi\)
0.996696 0.0812279i \(-0.0258842\pi\)
\(240\) −424.382 + 110.571i −1.76826 + 0.460711i
\(241\) 0.772619i 0.00320589i 0.999999 + 0.00160294i \(0.000510233\pi\)
−0.999999 + 0.00160294i \(0.999490\pi\)
\(242\) −178.517 163.388i −0.737673 0.675158i
\(243\) −248.953 + 248.953i −1.02450 + 1.02450i
\(244\) 347.246 38.8023i 1.42314 0.159026i
\(245\) 35.2878 37.6455i 0.144032 0.153655i
\(246\) −147.530 + 8.21712i −0.599714 + 0.0334029i
\(247\) 313.527 + 313.527i 1.26934 + 1.26934i
\(248\) −108.258 + 152.131i −0.436525 + 0.613431i
\(249\) 85.7672 0.344446
\(250\) −37.9993 247.095i −0.151997 0.988381i
\(251\) 14.8441i 0.0591399i 0.999563 + 0.0295699i \(0.00941378\pi\)
−0.999563 + 0.0295699i \(0.990586\pi\)
\(252\) −404.818 + 506.670i −1.60642 + 2.01060i
\(253\) 118.869 + 0.678814i 0.469839 + 0.00268306i
\(254\) 0.0295048 + 0.529727i 0.000116161 + 0.00208554i
\(255\) −161.081 150.992i −0.631690 0.592127i
\(256\) 231.055 110.226i 0.902557 0.430570i
\(257\) −64.3743 + 64.3743i −0.250484 + 0.250484i −0.821169 0.570685i \(-0.806678\pi\)
0.570685 + 0.821169i \(0.306678\pi\)
\(258\) 190.512 212.986i 0.738418 0.825527i
\(259\) 77.5708i 0.299501i
\(260\) 59.8824 + 414.146i 0.230317 + 1.59287i
\(261\) 44.5564i 0.170714i
\(262\) −141.953 + 158.699i −0.541805 + 0.605720i
\(263\) −67.4719 67.4719i −0.256547 0.256547i 0.567101 0.823648i \(-0.308065\pi\)
−0.823648 + 0.567101i \(0.808065\pi\)
\(264\) 391.442 + 281.936i 1.48273 + 1.06794i
\(265\) −2.46756 76.3308i −0.00931156 0.288041i
\(266\) 325.934 18.1539i 1.22532 0.0682477i
\(267\) 350.533 + 350.533i 1.31286 + 1.31286i
\(268\) −197.585 + 247.297i −0.737256 + 0.922750i
\(269\) 261.542i 0.972275i 0.873882 + 0.486137i \(0.161595\pi\)
−0.873882 + 0.486137i \(0.838405\pi\)
\(270\) 506.355 + 424.287i 1.87539 + 1.57143i
\(271\) −383.025 −1.41338 −0.706689 0.707525i \(-0.749812\pi\)
−0.706689 + 0.707525i \(0.749812\pi\)
\(272\) 109.001 + 68.7693i 0.400738 + 0.252828i
\(273\) 624.641 + 624.641i 2.28806 + 2.28806i
\(274\) 9.96325 + 178.880i 0.0363622 + 0.652845i
\(275\) −182.666 + 205.568i −0.664240 + 0.747519i
\(276\) −235.493 + 26.3147i −0.853236 + 0.0953430i
\(277\) −105.551 105.551i −0.381051 0.381051i 0.490430 0.871481i \(-0.336840\pi\)
−0.871481 + 0.490430i \(0.836840\pi\)
\(278\) −334.063 298.813i −1.20167 1.07487i
\(279\) 491.324 1.76102
\(280\) 256.650 + 170.418i 0.916607 + 0.608636i
\(281\) 198.947i 0.707998i −0.935246 0.353999i \(-0.884822\pi\)
0.935246 0.353999i \(-0.115178\pi\)
\(282\) −265.672 + 297.013i −0.942100 + 1.05324i
\(283\) −169.428 169.428i −0.598687 0.598687i 0.341276 0.939963i \(-0.389141\pi\)
−0.939963 + 0.341276i \(0.889141\pi\)
\(284\) −95.6195 + 10.6848i −0.336688 + 0.0376225i
\(285\) −18.7678 580.557i −0.0658519 2.03704i
\(286\) 308.830 341.319i 1.07983 1.19342i
\(287\) 73.3969 + 73.3969i 0.255738 + 0.255738i
\(288\) −588.827 327.200i −2.04454 1.13611i
\(289\) 224.116i 0.775487i
\(290\) −21.0842 + 1.85929i −0.0727041 + 0.00641134i
\(291\) 683.879i 2.35010i
\(292\) −305.077 243.749i −1.04478 0.834758i
\(293\) 118.377 118.377i 0.404016 0.404016i −0.475629 0.879646i \(-0.657780\pi\)
0.879646 + 0.475629i \(0.157780\pi\)
\(294\) 112.968 6.29208i 0.384244 0.0214016i
\(295\) −306.457 287.264i −1.03884 0.973777i
\(296\) 79.4530 13.3870i 0.268422 0.0452263i
\(297\) 4.14969 726.666i 0.0139720 2.44669i
\(298\) −214.185 + 239.451i −0.718740 + 0.803528i
\(299\) 226.100i 0.756188i
\(300\) 313.807 449.482i 1.04602 1.49827i
\(301\) −200.743 −0.666919
\(302\) −253.477 + 283.378i −0.839326 + 0.938339i
\(303\) 203.933 + 203.933i 0.673046 + 0.673046i
\(304\) 74.8433 + 330.709i 0.246195 + 1.08786i
\(305\) −298.696 + 318.653i −0.979331 + 1.04476i
\(306\) −18.8599 338.609i −0.0616335 1.10656i
\(307\) 195.242 195.242i 0.635966 0.635966i −0.313592 0.949558i \(-0.601532\pi\)
0.949558 + 0.313592i \(0.101532\pi\)
\(308\) −35.7099 336.998i −0.115941 1.09415i
\(309\) 413.192i 1.33719i
\(310\) −20.5024 232.495i −0.0661368 0.749985i
\(311\) 522.926i 1.68144i −0.541474 0.840718i \(-0.682133\pi\)
0.541474 0.840718i \(-0.317867\pi\)
\(312\) −531.998 + 747.596i −1.70512 + 2.39614i
\(313\) −242.759 242.759i −0.775587 0.775587i 0.203490 0.979077i \(-0.434772\pi\)
−0.979077 + 0.203490i \(0.934772\pi\)
\(314\) −9.52047 170.930i −0.0303200 0.544363i
\(315\) −26.1928 810.241i −0.0831518 2.57219i
\(316\) 190.154 21.2484i 0.601753 0.0672416i
\(317\) −33.9249 + 33.9249i −0.107019 + 0.107019i −0.758589 0.651570i \(-0.774111\pi\)
0.651570 + 0.758589i \(0.274111\pi\)
\(318\) 111.645 124.815i 0.351085 0.392501i
\(319\) 16.3690 + 16.5570i 0.0513135 + 0.0519029i
\(320\) −130.261 + 292.288i −0.407065 + 0.913399i
\(321\) 365.272i 1.13792i
\(322\) 124.070 + 110.978i 0.385310 + 0.344652i
\(323\) −120.706 + 120.706i −0.373701 + 0.373701i
\(324\) 76.7070 + 686.461i 0.236750 + 2.11871i
\(325\) −392.980 345.203i −1.20917 1.06216i
\(326\) 6.40803 + 115.049i 0.0196565 + 0.352912i
\(327\) −692.583 + 692.583i −2.11799 + 2.11799i
\(328\) −62.5111 + 87.8444i −0.190583 + 0.267818i
\(329\) 279.939 0.850879
\(330\) −600.968 + 49.5389i −1.82111 + 0.150118i
\(331\) 423.596i 1.27975i −0.768480 0.639873i \(-0.778987\pi\)
0.768480 0.639873i \(-0.221013\pi\)
\(332\) 39.0644 48.8930i 0.117664 0.147268i
\(333\) −149.918 149.918i −0.450206 0.450206i
\(334\) 15.7457 + 282.698i 0.0471429 + 0.846400i
\(335\) −12.7843 395.464i −0.0381620 1.18049i
\(336\) 149.111 + 658.874i 0.443782 + 1.96093i
\(337\) −295.524 295.524i −0.876926 0.876926i 0.116290 0.993215i \(-0.462900\pi\)
−0.993215 + 0.116290i \(0.962900\pi\)
\(338\) 400.630 + 358.356i 1.18529 + 1.06022i
\(339\) −175.907 −0.518900
\(340\) −159.443 + 23.0543i −0.468951 + 0.0678067i
\(341\) −182.575 + 180.501i −0.535409 + 0.529329i
\(342\) 594.836 665.007i 1.73929 1.94446i
\(343\) 210.656 + 210.656i 0.614158 + 0.614158i
\(344\) −34.6437 205.613i −0.100708 0.597713i
\(345\) 202.567 216.102i 0.587152 0.626382i
\(346\) 22.0178 + 395.307i 0.0636354 + 1.14251i
\(347\) −235.404 + 235.404i −0.678398 + 0.678398i −0.959638 0.281239i \(-0.909255\pi\)
0.281239 + 0.959638i \(0.409255\pi\)
\(348\) −36.2595 28.9706i −0.104194 0.0832487i
\(349\) −487.495 −1.39683 −0.698416 0.715692i \(-0.746112\pi\)
−0.698416 + 0.715692i \(0.746112\pi\)
\(350\) −382.315 + 46.2049i −1.09233 + 0.132014i
\(351\) 1382.19 3.93785
\(352\) 339.012 94.7347i 0.963103 0.269133i
\(353\) 292.174 + 292.174i 0.827689 + 0.827689i 0.987197 0.159508i \(-0.0509907\pi\)
−0.159508 + 0.987197i \(0.550991\pi\)
\(354\) −51.2214 919.625i −0.144693 2.59781i
\(355\) 82.2503 87.7458i 0.231691 0.247171i
\(356\) 359.485 40.1698i 1.00979 0.112837i
\(357\) −240.482 + 240.482i −0.673620 + 0.673620i
\(358\) 142.242 159.021i 0.397323 0.444194i
\(359\) 183.518i 0.511193i −0.966784 0.255596i \(-0.917728\pi\)
0.966784 0.255596i \(-0.0822718\pi\)
\(360\) 825.380 166.658i 2.29272 0.462938i
\(361\) −88.1024 −0.244051
\(362\) −16.9527 + 18.9526i −0.0468308 + 0.0523553i
\(363\) 463.641 + 474.355i 1.27725 + 1.30676i
\(364\) 640.592 71.5816i 1.75987 0.196653i
\(365\) 487.862 15.7712i 1.33661 0.0432089i
\(366\) −956.222 + 53.2597i −2.61263 + 0.145518i
\(367\) −309.683 309.683i −0.843822 0.843822i 0.145532 0.989354i \(-0.453511\pi\)
−0.989354 + 0.145532i \(0.953511\pi\)
\(368\) −92.2591 + 146.232i −0.250704 + 0.397371i
\(369\) 283.703 0.768843
\(370\) −64.6858 + 77.1977i −0.174827 + 0.208642i
\(371\) −117.640 −0.317090
\(372\) 319.459 399.834i 0.858760 1.07482i
\(373\) −195.281 + 195.281i −0.523542 + 0.523542i −0.918639 0.395097i \(-0.870711\pi\)
0.395097 + 0.918639i \(0.370711\pi\)
\(374\) 131.405 + 118.897i 0.351351 + 0.317907i
\(375\) 66.3280 + 682.016i 0.176875 + 1.81871i
\(376\) 48.3112 + 286.731i 0.128487 + 0.762584i
\(377\) −31.3142 + 31.3142i −0.0830614 + 0.0830614i
\(378\) 678.426 758.457i 1.79478 2.00650i
\(379\) −683.030 −1.80219 −0.901095 0.433621i \(-0.857236\pi\)
−0.901095 + 0.433621i \(0.857236\pi\)
\(380\) −339.504 253.728i −0.893433 0.667704i
\(381\) 1.45420i 0.00381680i
\(382\) −6.53437 5.84487i −0.0171057 0.0153007i
\(383\) 283.380 283.380i 0.739895 0.739895i −0.232663 0.972557i \(-0.574744\pi\)
0.972557 + 0.232663i \(0.0747438\pi\)
\(384\) −649.127 + 266.436i −1.69044 + 0.693843i
\(385\) 307.397 + 291.460i 0.798434 + 0.757040i
\(386\) −30.5617 548.703i −0.0791753 1.42151i
\(387\) −387.968 + 387.968i −1.00250 + 1.00250i
\(388\) 389.857 + 311.487i 1.00479 + 0.802801i
\(389\) 699.754i 1.79885i 0.437072 + 0.899427i \(0.356016\pi\)
−0.437072 + 0.899427i \(0.643984\pi\)
\(390\) −100.752 1142.52i −0.258339 2.92954i
\(391\) −87.0469 −0.222626
\(392\) 47.8665 67.2650i 0.122108 0.171594i
\(393\) 412.672 412.672i 1.05006 1.05006i
\(394\) 336.759 18.7568i 0.854718 0.0476062i
\(395\) −163.568 + 174.496i −0.414095 + 0.441762i
\(396\) −720.320 582.290i −1.81899 1.47043i
\(397\) 482.013 482.013i 1.21414 1.21414i 0.244487 0.969653i \(-0.421380\pi\)
0.969653 0.244487i \(-0.0786195\pi\)
\(398\) −468.281 + 523.523i −1.17659 + 1.31538i
\(399\) −894.749 −2.24248
\(400\) −113.305 383.617i −0.283263 0.959042i
\(401\) 615.908 1.53593 0.767965 0.640492i \(-0.221270\pi\)
0.767965 + 0.640492i \(0.221270\pi\)
\(402\) 578.424 646.659i 1.43887 1.60860i
\(403\) −345.301 345.301i −0.856828 0.856828i
\(404\) 209.141 23.3700i 0.517675 0.0578465i
\(405\) −629.935 590.482i −1.55540 1.45798i
\(406\) 1.81316 + 32.5533i 0.00446591 + 0.0801807i
\(407\) 110.786 + 0.632653i 0.272201 + 0.00155443i
\(408\) −287.819 204.815i −0.705439 0.501998i
\(409\) 330.071 0.807019 0.403509 0.914976i \(-0.367790\pi\)
0.403509 + 0.914976i \(0.367790\pi\)
\(410\) −11.8386 134.249i −0.0288747 0.327436i
\(411\) 491.058i 1.19479i
\(412\) −235.547 188.197i −0.571717 0.456789i
\(413\) −457.519 + 457.519i −1.10779 + 1.10779i
\(414\) 454.269 25.3019i 1.09727 0.0611157i
\(415\) 2.52757 + 78.1871i 0.00609054 + 0.188403i
\(416\) 183.870 + 643.782i 0.441996 + 1.54755i
\(417\) 868.682 + 868.682i 2.08317 + 2.08317i
\(418\) 23.2690 + 465.644i 0.0556674 + 1.11398i
\(419\) 429.690 1.02551 0.512757 0.858534i \(-0.328624\pi\)
0.512757 + 0.858534i \(0.328624\pi\)
\(420\) −676.396 505.503i −1.61047 1.20358i
\(421\) 261.974 0.622267 0.311134 0.950366i \(-0.399291\pi\)
0.311134 + 0.950366i \(0.399291\pi\)
\(422\) 337.811 377.661i 0.800500 0.894932i
\(423\) 541.029 541.029i 1.27903 1.27903i
\(424\) −20.3021 120.495i −0.0478823 0.284186i
\(425\) 132.901 151.294i 0.312708 0.355987i
\(426\) 263.310 14.6659i 0.618098 0.0344269i
\(427\) 475.726 + 475.726i 1.11411 + 1.11411i
\(428\) 208.230 + 166.371i 0.486518 + 0.388717i
\(429\) −897.201 + 887.012i −2.09138 + 2.06763i
\(430\) 199.777 + 167.398i 0.464597 + 0.389298i
\(431\) −425.806 −0.987949 −0.493974 0.869476i \(-0.664456\pi\)
−0.493974 + 0.869476i \(0.664456\pi\)
\(432\) 893.941 + 563.994i 2.06931 + 1.30554i
\(433\) −441.920 441.920i −1.02060 1.02060i −0.999783 0.0208168i \(-0.993373\pi\)
−0.0208168 0.999783i \(-0.506627\pi\)
\(434\) −358.966 + 19.9937i −0.827111 + 0.0460685i
\(435\) 57.9844 1.87447i 0.133297 0.00430913i
\(436\) 79.3675 + 710.270i 0.182036 + 1.62906i
\(437\) −161.935 161.935i −0.370561 0.370561i
\(438\) 797.747 + 713.570i 1.82134 + 1.62915i
\(439\) 39.1211i 0.0891140i −0.999007 0.0445570i \(-0.985812\pi\)
0.999007 0.0445570i \(-0.0141876\pi\)
\(440\) −245.482 + 365.155i −0.557915 + 0.829898i
\(441\) −217.240 −0.492607
\(442\) −224.719 + 251.228i −0.508414 + 0.568390i
\(443\) 441.330 441.330i 0.996231 0.996231i −0.00376227 0.999993i \(-0.501198\pi\)
0.999993 + 0.00376227i \(0.00119757\pi\)
\(444\) −219.479 + 24.5252i −0.494322 + 0.0552370i
\(445\) −309.223 + 329.884i −0.694883 + 0.741312i
\(446\) −12.1454 218.057i −0.0272317 0.488917i
\(447\) 622.657 622.657i 1.39297 1.39297i
\(448\) 443.518 + 215.095i 0.989995 + 0.480122i
\(449\) 553.397i 1.23251i −0.787547 0.616254i \(-0.788649\pi\)
0.787547 0.616254i \(-0.211351\pi\)
\(450\) −649.587 + 828.185i −1.44353 + 1.84041i
\(451\) −105.423 + 104.226i −0.233755 + 0.231100i
\(452\) −80.1205 + 100.279i −0.177258 + 0.221856i
\(453\) 736.883 736.883i 1.62667 1.62667i
\(454\) 34.4935 + 619.294i 0.0759768 + 1.36408i
\(455\) −551.027 + 587.844i −1.21105 + 1.29196i
\(456\) −154.414 916.459i −0.338627 2.00978i
\(457\) 154.432 + 154.432i 0.337925 + 0.337925i 0.855586 0.517661i \(-0.173197\pi\)
−0.517661 + 0.855586i \(0.673197\pi\)
\(458\) 384.182 + 343.644i 0.838826 + 0.750314i
\(459\) 532.132i 1.15933i
\(460\) −30.9290 213.905i −0.0672370 0.465011i
\(461\) 471.965i 1.02379i 0.859049 + 0.511893i \(0.171056\pi\)
−0.859049 + 0.511893i \(0.828944\pi\)
\(462\) 46.3589 + 927.704i 0.100344 + 2.00802i
\(463\) 100.365 100.365i 0.216771 0.216771i −0.590365 0.807136i \(-0.701016\pi\)
0.807136 + 0.590365i \(0.201016\pi\)
\(464\) −33.0303 + 7.47513i −0.0711860 + 0.0161102i
\(465\) 20.6698 + 639.394i 0.0444513 + 1.37504i
\(466\) 24.1912 + 434.327i 0.0519124 + 0.932032i
\(467\) 239.686 + 239.686i 0.513247 + 0.513247i 0.915520 0.402273i \(-0.131780\pi\)
−0.402273 + 0.915520i \(0.631780\pi\)
\(468\) 1099.71 1376.39i 2.34980 2.94101i
\(469\) −609.486 −1.29954
\(470\) −278.592 233.439i −0.592750 0.496680i
\(471\) 469.235i 0.996252i
\(472\) −547.578 389.663i −1.16012 0.825556i
\(473\) 1.63722 286.699i 0.00346135 0.606128i
\(474\) −523.633 + 29.1653i −1.10471 + 0.0615302i
\(475\) 528.695 34.2182i 1.11304 0.0720384i
\(476\) 27.5584 + 246.623i 0.0578958 + 0.518117i
\(477\) −227.359 + 227.359i −0.476645 + 0.476645i
\(478\) 57.8782 + 51.7710i 0.121084 + 0.108307i
\(479\) 400.843i 0.836833i 0.908255 + 0.418417i \(0.137415\pi\)
−0.908255 + 0.418417i \(0.862585\pi\)
\(480\) 401.037 780.047i 0.835494 1.62510i
\(481\) 210.725i 0.438098i
\(482\) −1.15172 1.03019i −0.00238946 0.00213733i
\(483\) −322.625 322.625i −0.667960 0.667960i
\(484\) 481.589 48.2520i 0.995018 0.0996942i
\(485\) −623.438 + 20.1540i −1.28544 + 0.0415547i
\(486\) −39.1588 703.056i −0.0805738 1.44662i
\(487\) −24.4248 24.4248i −0.0501536 0.0501536i 0.681585 0.731739i \(-0.261291\pi\)
−0.731739 + 0.681585i \(0.761291\pi\)
\(488\) −405.169 + 569.369i −0.830265 + 1.16674i
\(489\) 315.832i 0.645873i
\(490\) 9.06517 + 102.798i 0.0185003 + 0.209792i
\(491\) 311.219 0.633846 0.316923 0.948451i \(-0.397350\pi\)
0.316923 + 0.948451i \(0.397350\pi\)
\(492\) 184.464 230.875i 0.374926 0.469258i
\(493\) −12.0557 12.0557i −0.0244538 0.0244538i
\(494\) −885.415 + 49.3159i −1.79234 + 0.0998298i
\(495\) 1157.39 30.8002i 2.33816 0.0622226i
\(496\) −82.4284 364.226i −0.166186 0.734326i
\(497\) −130.998 130.998i −0.263578 0.263578i
\(498\) −114.360 + 127.851i −0.229639 + 0.256728i
\(499\) 108.280 0.216994 0.108497 0.994097i \(-0.465396\pi\)
0.108497 + 0.994097i \(0.465396\pi\)
\(500\) 419.005 + 272.827i 0.838011 + 0.545654i
\(501\) 776.057i 1.54902i
\(502\) −22.1277 19.7928i −0.0440791 0.0394279i
\(503\) 22.0758 + 22.0758i 0.0438882 + 0.0438882i 0.728710 0.684822i \(-0.240120\pi\)
−0.684822 + 0.728710i \(0.740120\pi\)
\(504\) −215.504 1279.03i −0.427587 2.53777i
\(505\) −179.900 + 191.919i −0.356237 + 0.380038i
\(506\) −159.510 + 176.290i −0.315236 + 0.348399i
\(507\) −1041.78 1041.78i −2.05479 2.05479i
\(508\) −0.828991 0.662345i −0.00163187 0.00130383i
\(509\) 417.953i 0.821125i 0.911832 + 0.410562i \(0.134668\pi\)
−0.911832 + 0.410562i \(0.865332\pi\)
\(510\) 439.862 38.7888i 0.862474 0.0760565i
\(511\) 751.889i 1.47141i
\(512\) −143.772 + 491.400i −0.280805 + 0.959765i
\(513\) −989.936 + 989.936i −1.92970 + 1.92970i
\(514\) −10.1257 181.796i −0.0196998 0.353689i
\(515\) 376.675 12.1768i 0.731407 0.0236444i
\(516\) 63.4679 + 567.982i 0.123000 + 1.10074i
\(517\) −2.28313 + 399.806i −0.00441611 + 0.773320i
\(518\) 115.633 + 103.431i 0.223229 + 0.199674i
\(519\) 1085.19i 2.09093i
\(520\) −697.202 462.949i −1.34077 0.890286i
\(521\) 253.019 0.485640 0.242820 0.970071i \(-0.421927\pi\)
0.242820 + 0.970071i \(0.421927\pi\)
\(522\) 66.4190 + 59.4105i 0.127239 + 0.113813i
\(523\) −605.834 605.834i −1.15838 1.15838i −0.984823 0.173559i \(-0.944473\pi\)
−0.173559 0.984823i \(-0.555527\pi\)
\(524\) −47.2907 423.211i −0.0902495 0.807654i
\(525\) 1053.32 68.1731i 2.00633 0.129854i
\(526\) 190.544 10.6129i 0.362251 0.0201767i
\(527\) 132.939 132.939i 0.252255 0.252255i
\(528\) −942.213 + 207.585i −1.78450 + 0.393153i
\(529\) 412.220i 0.779244i
\(530\) 117.074 + 98.0995i 0.220895 + 0.185093i
\(531\) 1768.46i 3.33044i
\(532\) −407.532 + 510.067i −0.766037 + 0.958772i
\(533\) −199.386 199.386i −0.374083 0.374083i
\(534\) −989.923 + 55.1368i −1.85379 + 0.103252i
\(535\) −332.990 + 10.7646i −0.622411 + 0.0201208i
\(536\) −105.184 624.274i −0.196238 1.16469i
\(537\) −413.511 + 413.511i −0.770040 + 0.770040i
\(538\) −389.873 348.734i −0.724671 0.648205i
\(539\) 80.7256 79.8089i 0.149769 0.148068i
\(540\) −1307.63 + 189.074i −2.42155 + 0.350137i
\(541\) 391.623i 0.723887i 0.932200 + 0.361944i \(0.117887\pi\)
−0.932200 + 0.361944i \(0.882113\pi\)
\(542\) 510.718 570.965i 0.942283 1.05344i
\(543\) 49.2834 49.2834i 0.0907613 0.0907613i
\(544\) −247.852 + 70.7888i −0.455609 + 0.130126i
\(545\) −651.784 610.962i −1.19593 1.12103i
\(546\) −1764.02 + 98.2524i −3.23080 + 0.179949i
\(547\) −166.752 + 166.752i −0.304847 + 0.304847i −0.842907 0.538059i \(-0.819158\pi\)
0.538059 + 0.842907i \(0.319158\pi\)
\(548\) −279.936 223.662i −0.510832 0.408143i
\(549\) 1838.84 3.34943
\(550\) −62.8714 546.395i −0.114312 0.993445i
\(551\) 44.8551i 0.0814066i
\(552\) 274.775 386.131i 0.497781 0.699512i
\(553\) 260.510 + 260.510i 0.471085 + 0.471085i
\(554\) 298.082 16.6026i 0.538053 0.0299685i
\(555\) 188.792 201.406i 0.340167 0.362895i
\(556\) 890.866 99.5478i 1.60228 0.179043i
\(557\) −355.499 355.499i −0.638238 0.638238i 0.311883 0.950121i \(-0.399040\pi\)
−0.950121 + 0.311883i \(0.899040\pi\)
\(558\) −655.120 + 732.403i −1.17405 + 1.31255i
\(559\) 545.327 0.975540
\(560\) −596.249 + 155.350i −1.06473 + 0.277410i
\(561\) −341.493 345.416i −0.608722 0.615714i
\(562\) 296.565 + 265.272i 0.527696 + 0.472014i
\(563\) −608.314 608.314i −1.08049 1.08049i −0.996464 0.0840234i \(-0.973223\pi\)
−0.0840234 0.996464i \(-0.526777\pi\)
\(564\) −88.5071 792.060i −0.156927 1.40436i
\(565\) −5.18401 160.361i −0.00917525 0.283824i
\(566\) 478.474 26.6501i 0.845361 0.0470850i
\(567\) −940.448 + 940.448i −1.65864 + 1.65864i
\(568\) 111.569 156.784i 0.196425 0.276028i
\(569\) 937.364 1.64739 0.823694 0.567035i \(-0.191909\pi\)
0.823694 + 0.567035i \(0.191909\pi\)
\(570\) 890.445 + 746.125i 1.56218 + 1.30899i
\(571\) 703.275 1.23166 0.615828 0.787881i \(-0.288822\pi\)
0.615828 + 0.787881i \(0.288822\pi\)
\(572\) 97.0076 + 915.472i 0.169594 + 1.60048i
\(573\) 16.9917 + 16.9917i 0.0296538 + 0.0296538i
\(574\) −207.276 + 11.5449i −0.361109 + 0.0201131i
\(575\) 202.973 + 178.296i 0.352996 + 0.310080i
\(576\) 1272.88 441.466i 2.20986 0.766433i
\(577\) −123.821 + 123.821i −0.214594 + 0.214594i −0.806216 0.591621i \(-0.798488\pi\)
0.591621 + 0.806216i \(0.298488\pi\)
\(578\) 334.083 + 298.831i 0.577999 + 0.517009i
\(579\) 1506.29i 2.60154i
\(580\) 25.3416 33.9087i 0.0436924 0.0584633i
\(581\) 120.501 0.207403
\(582\) −1019.44 911.869i −1.75161 1.56679i
\(583\) 0.959452 168.013i 0.00164572 0.288187i
\(584\) 770.133 129.759i 1.31872 0.222191i
\(585\) 71.1541 + 2201.06i 0.121631 + 3.76249i
\(586\) 18.6200 + 334.302i 0.0317747 + 0.570481i
\(587\) 37.1908 + 37.1908i 0.0633573 + 0.0633573i 0.738075 0.674718i \(-0.235735\pi\)
−0.674718 + 0.738075i \(0.735735\pi\)
\(588\) −141.249 + 176.787i −0.240220 + 0.300659i
\(589\) 494.617 0.839758
\(590\) 836.840 73.7960i 1.41837 0.125078i
\(591\) −924.465 −1.56424
\(592\) −85.9852 + 136.288i −0.145245 + 0.230217i
\(593\) 113.671 113.671i 0.191688 0.191688i −0.604737 0.796425i \(-0.706722\pi\)
0.796425 + 0.604737i \(0.206722\pi\)
\(594\) 1077.69 + 975.107i 1.81429 + 1.64159i
\(595\) −226.316 212.142i −0.380362 0.356540i
\(596\) −71.3543 638.558i −0.119722 1.07141i
\(597\) 1361.34 1361.34i 2.28031 2.28031i
\(598\) −337.041 301.477i −0.563614 0.504142i
\(599\) −811.770 −1.35521 −0.677605 0.735426i \(-0.736982\pi\)
−0.677605 + 0.735426i \(0.736982\pi\)
\(600\) 251.607 + 1067.11i 0.419345 + 1.77852i
\(601\) 210.411i 0.350102i −0.984559 0.175051i \(-0.943991\pi\)
0.984559 0.175051i \(-0.0560091\pi\)
\(602\) 267.666 299.241i 0.444628 0.497079i
\(603\) −1177.93 + 1177.93i −1.95345 + 1.95345i
\(604\) −84.4441 755.701i −0.139808 1.25116i
\(605\) −418.768 + 436.644i −0.692179 + 0.721726i
\(606\) −575.917 + 32.0774i −0.950358 + 0.0529331i
\(607\) 14.5520 14.5520i 0.0239736 0.0239736i −0.695018 0.718992i \(-0.744604\pi\)
0.718992 + 0.695018i \(0.244604\pi\)
\(608\) −592.774 329.394i −0.974957 0.541766i
\(609\) 89.3649i 0.146740i
\(610\) −76.7327 870.142i −0.125791 1.42646i
\(611\) −760.468 −1.24463
\(612\) 529.902 + 423.380i 0.865853 + 0.691797i
\(613\) −511.327 + 511.327i −0.834139 + 0.834139i −0.988080 0.153941i \(-0.950803\pi\)
0.153941 + 0.988080i \(0.450803\pi\)
\(614\) 30.7104 + 551.372i 0.0500169 + 0.898000i
\(615\) 11.9353 + 369.203i 0.0194070 + 0.600330i
\(616\) 549.969 + 396.114i 0.892806 + 0.643043i
\(617\) −307.862 + 307.862i −0.498965 + 0.498965i −0.911116 0.412151i \(-0.864778\pi\)
0.412151 + 0.911116i \(0.364778\pi\)
\(618\) 615.934 + 550.942i 0.996657 + 0.891491i
\(619\) 149.498 0.241515 0.120758 0.992682i \(-0.461468\pi\)
0.120758 + 0.992682i \(0.461468\pi\)
\(620\) 373.912 + 279.442i 0.603084 + 0.450713i
\(621\) −713.894 −1.14959
\(622\) 779.512 + 697.259i 1.25323 + 1.12099i
\(623\) 492.493 + 492.493i 0.790518 + 0.790518i
\(624\) −405.066 1789.86i −0.649145 2.86837i
\(625\) −619.786 + 80.5651i −0.991657 + 0.128904i
\(626\) 685.563 38.1845i 1.09515 0.0609976i
\(627\) 7.29740 1277.87i 0.0116386 2.03807i
\(628\) 267.495 + 213.722i 0.425948 + 0.340322i
\(629\) −81.1276 −0.128979
\(630\) 1242.73 + 1041.31i 1.97258 + 1.65288i
\(631\) 367.025i 0.581655i 0.956775 + 0.290828i \(0.0939306\pi\)
−0.956775 + 0.290828i \(0.906069\pi\)
\(632\) −221.873 + 311.789i −0.351065 + 0.493338i
\(633\) −982.052 + 982.052i −1.55142 + 1.55142i
\(634\) −5.33619 95.8057i −0.00841671 0.151113i
\(635\) 1.32568 0.0428555i 0.00208768 6.74890e-5i
\(636\) 37.1938 + 332.852i 0.0584808 + 0.523352i
\(637\) 152.676 + 152.676i 0.239679 + 0.239679i
\(638\) −46.5072 + 2.32404i −0.0728952 + 0.00364269i
\(639\) −506.352 −0.792413
\(640\) −262.018 583.906i −0.409403 0.912353i
\(641\) −768.223 −1.19848 −0.599238 0.800571i \(-0.704530\pi\)
−0.599238 + 0.800571i \(0.704530\pi\)
\(642\) −544.501 487.046i −0.848133 0.758639i
\(643\) −440.590 + 440.590i −0.685210 + 0.685210i −0.961169 0.275959i \(-0.911004\pi\)
0.275959 + 0.961169i \(0.411004\pi\)
\(644\) −330.864 + 36.9716i −0.513763 + 0.0574093i
\(645\) −521.212 488.569i −0.808081 0.757471i
\(646\) −18.9863 340.878i −0.0293905 0.527676i
\(647\) 93.8740 + 93.8740i 0.145091 + 0.145091i 0.775921 0.630830i \(-0.217285\pi\)
−0.630830 + 0.775921i \(0.717285\pi\)
\(648\) −1125.57 800.966i −1.73699 1.23606i
\(649\) −649.693 657.156i −1.00107 1.01257i
\(650\) 1038.58 125.518i 1.59781 0.193105i
\(651\) 985.428 1.51371
\(652\) −180.045 143.852i −0.276143 0.220632i
\(653\) 539.451 + 539.451i 0.826112 + 0.826112i 0.986977 0.160864i \(-0.0514281\pi\)
−0.160864 + 0.986977i \(0.551428\pi\)
\(654\) −108.939 1955.89i −0.166574 2.99066i
\(655\) 388.362 + 364.039i 0.592919 + 0.555785i
\(656\) −47.5963 210.313i −0.0725554 0.320600i
\(657\) −1453.15 1453.15i −2.21180 2.21180i
\(658\) −373.265 + 417.297i −0.567271 + 0.634191i
\(659\) 232.233i 0.352402i 0.984354 + 0.176201i \(0.0563809\pi\)
−0.984354 + 0.176201i \(0.943619\pi\)
\(660\) 727.471 961.900i 1.10223 1.45742i
\(661\) 579.441 0.876613 0.438306 0.898826i \(-0.355578\pi\)
0.438306 + 0.898826i \(0.355578\pi\)
\(662\) 631.443 + 564.814i 0.953841 + 0.853193i
\(663\) 653.282 653.282i 0.985342 0.985342i
\(664\) 20.7958 + 123.425i 0.0313190 + 0.185881i
\(665\) −26.3684 815.672i −0.0396517 1.22657i
\(666\) 423.377 23.5813i 0.635702 0.0354074i
\(667\) 16.1736 16.1736i 0.0242483 0.0242483i
\(668\) −442.405 353.471i −0.662282 0.529148i
\(669\) 598.607i 0.894778i
\(670\) 606.554 + 508.246i 0.905304 + 0.758576i
\(671\) −683.307 + 675.547i −1.01834 + 1.00678i
\(672\) −1180.99 656.253i −1.75742 0.976567i
\(673\) 727.635 727.635i 1.08118 1.08118i 0.0847817 0.996400i \(-0.472981\pi\)
0.996400 0.0847817i \(-0.0270193\pi\)
\(674\) 834.574 46.4842i 1.23824 0.0689676i
\(675\) 1089.95 1240.80i 1.61474 1.83823i
\(676\) −1068.38 + 119.384i −1.58045 + 0.176603i
\(677\) 464.202 + 464.202i 0.685675 + 0.685675i 0.961273 0.275598i \(-0.0888757\pi\)
−0.275598 + 0.961273i \(0.588876\pi\)
\(678\) 234.551 262.220i 0.345945 0.386755i
\(679\) 960.837i 1.41508i
\(680\) 178.232 268.418i 0.262106 0.394732i
\(681\) 1700.08i 2.49644i
\(682\) −25.6272 512.835i −0.0375765 0.751957i
\(683\) 419.389 419.389i 0.614040 0.614040i −0.329956 0.943996i \(-0.607034\pi\)
0.943996 + 0.329956i \(0.107034\pi\)
\(684\) 198.166 + 1773.41i 0.289716 + 2.59271i
\(685\) 447.658 14.4716i 0.653516 0.0211264i
\(686\) −594.904 + 33.1350i −0.867206 + 0.0483017i
\(687\) −999.009 999.009i −1.45416 1.45416i
\(688\) 352.695 + 222.518i 0.512638 + 0.323427i
\(689\) 319.576 0.463825
\(690\) 52.0380 + 590.107i 0.0754175 + 0.855228i
\(691\) 1091.80i 1.58003i −0.613085 0.790017i \(-0.710072\pi\)
0.613085 0.790017i \(-0.289928\pi\)
\(692\) −618.631 494.272i −0.893976 0.714266i
\(693\) 10.1844 1783.43i 0.0146962 2.57349i
\(694\) −37.0277 664.793i −0.0533541 0.957916i
\(695\) −766.308 + 817.509i −1.10260 + 1.17627i
\(696\) 91.5333 15.4224i 0.131513 0.0221586i
\(697\) 76.7622 76.7622i 0.110132 0.110132i
\(698\) 650.015 726.695i 0.931253 1.04111i
\(699\) 1192.31i 1.70573i
\(700\) 440.893 631.514i 0.629848 0.902163i
\(701\) 1231.26i 1.75643i 0.478262 + 0.878217i \(0.341267\pi\)
−0.478262 + 0.878217i \(0.658733\pi\)
\(702\) −1842.98 + 2060.39i −2.62532 + 2.93502i
\(703\) −150.923 150.923i −0.214685 0.214685i
\(704\) −310.813 + 631.673i −0.441496 + 0.897263i
\(705\) 726.840 + 681.318i 1.03098 + 0.966408i
\(706\) −825.115 + 45.9573i −1.16872 + 0.0650953i
\(707\) 286.522 + 286.522i 0.405264 + 0.405264i
\(708\) 1439.16 + 1149.85i 2.03271 + 1.62409i
\(709\) 172.519i 0.243327i 0.992571 + 0.121664i \(0.0388229\pi\)
−0.992571 + 0.121664i \(0.961177\pi\)
\(710\) 21.1295 + 239.607i 0.0297598 + 0.337474i
\(711\) 1006.96 1.41626
\(712\) −419.449 + 589.436i −0.589114 + 0.827859i
\(713\) 178.347 + 178.347i 0.250136 + 0.250136i
\(714\) −37.8264 679.134i −0.0529782 0.951168i
\(715\) −835.059 791.766i −1.16791 1.10737i
\(716\) 47.3869 + 424.071i 0.0661828 + 0.592278i
\(717\) −150.504 150.504i −0.209907 0.209907i
\(718\) 273.566 + 244.699i 0.381011 + 0.340807i
\(719\) 157.766 0.219424 0.109712 0.993963i \(-0.465007\pi\)
0.109712 + 0.993963i \(0.465007\pi\)
\(720\) −852.111 + 1452.59i −1.18349 + 2.01748i
\(721\) 580.528i 0.805170i
\(722\) 117.474 131.332i 0.162706 0.181900i
\(723\) 2.99488 + 2.99488i 0.00414229 + 0.00414229i
\(724\) −5.64770 50.5420i −0.00780069 0.0698093i
\(725\) 3.41762 + 52.8045i 0.00471396 + 0.0728338i
\(726\) −1325.32 + 58.6431i −1.82550 + 0.0807756i
\(727\) 883.116 + 883.116i 1.21474 + 1.21474i 0.969450 + 0.245290i \(0.0788833\pi\)
0.245290 + 0.969450i \(0.421117\pi\)
\(728\) −747.447 + 1050.36i −1.02671 + 1.44280i
\(729\) 375.868i 0.515595i
\(730\) −626.995 + 748.272i −0.858898 + 1.02503i
\(731\) 209.947i 0.287205i
\(732\) 1195.61 1496.43i 1.63335 2.04430i
\(733\) 125.612 125.612i 0.171366 0.171366i −0.616213 0.787580i \(-0.711334\pi\)
0.787580 + 0.616213i \(0.211334\pi\)
\(734\) 874.559 48.7112i 1.19150 0.0663641i
\(735\) −9.13920 282.709i −0.0124343 0.384638i
\(736\) −94.9684 332.511i −0.129033 0.451781i
\(737\) 4.97085 870.462i 0.00674471 1.18109i
\(738\) −378.284 + 422.909i −0.512579 + 0.573047i
\(739\) 47.4462i 0.0642033i 0.999485 + 0.0321016i \(0.0102200\pi\)
−0.999485 + 0.0321016i \(0.989780\pi\)
\(740\) −28.8258 199.359i −0.0389538 0.269404i
\(741\) 2430.63 3.28020
\(742\) 156.859 175.363i 0.211400 0.236339i
\(743\) 735.075 + 735.075i 0.989334 + 0.989334i 0.999944 0.0106101i \(-0.00337736\pi\)
−0.0106101 + 0.999944i \(0.503377\pi\)
\(744\) 170.063 + 1009.34i 0.228579 + 1.35664i
\(745\) 585.977 + 549.277i 0.786546 + 0.737285i
\(746\) −30.7166 551.484i −0.0411751 0.739255i
\(747\) 232.889 232.889i 0.311765 0.311765i
\(748\) −352.450 + 37.3472i −0.471190 + 0.0499294i
\(749\) 513.201i 0.685181i
\(750\) −1105.10 810.512i −1.47347 1.08068i
\(751\) 1011.71i 1.34715i −0.739120 0.673573i \(-0.764759\pi\)
0.739120 0.673573i \(-0.235241\pi\)
\(752\) −491.840 310.305i −0.654042 0.412640i
\(753\) 57.5398 + 57.5398i 0.0764140 + 0.0764140i
\(754\) −4.92553 88.4327i −0.00653254 0.117285i
\(755\) 693.474 + 650.042i 0.918509 + 0.860983i
\(756\) 226.013 + 2022.62i 0.298959 + 2.67542i
\(757\) −788.218 + 788.218i −1.04124 + 1.04124i −0.0421273 + 0.999112i \(0.513414\pi\)
−0.999112 + 0.0421273i \(0.986586\pi\)
\(758\) 910.737 1018.17i 1.20150 1.34324i
\(759\) 463.401 458.138i 0.610541 0.603607i
\(760\) 830.912 167.775i 1.09331 0.220757i
\(761\) 1401.09i 1.84111i −0.390609 0.920557i \(-0.627735\pi\)
0.390609 0.920557i \(-0.372265\pi\)
\(762\) 2.16774 + 1.93900i 0.00284480 + 0.00254462i
\(763\) −973.066 + 973.066i −1.27532 + 1.27532i
\(764\) 17.4256 1.94718i 0.0228083 0.00254867i
\(765\) −847.391 + 27.3938i −1.10770 + 0.0358089i
\(766\) 44.5740 + 800.279i 0.0581906 + 1.04475i
\(767\) 1242.87 1242.87i 1.62043 1.62043i
\(768\) 468.364 1322.90i 0.609849 1.72252i
\(769\) 392.963 0.511005 0.255502 0.966808i \(-0.417759\pi\)
0.255502 + 0.966808i \(0.417759\pi\)
\(770\) −844.348 + 69.6013i −1.09656 + 0.0903913i
\(771\) 499.064i 0.647295i
\(772\) 858.686 + 686.071i 1.11229 + 0.888692i