Properties

Label 220.3.i.a.43.18
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.18
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33687 - 1.48754i) q^{2} +(-2.95023 + 2.95023i) q^{3} +(-0.425555 + 3.97730i) q^{4} +(4.93806 + 0.784567i) q^{5} +(8.33266 + 0.444512i) q^{6} +(2.85360 - 2.85360i) q^{7} +(6.48530 - 4.68410i) q^{8} -8.40772i q^{9} +(-5.43447 - 8.39443i) q^{10} +(-8.62034 + 6.83299i) q^{11} +(-10.4785 - 12.9894i) q^{12} +(4.71661 - 4.71661i) q^{13} +(-8.05974 - 0.429952i) q^{14} +(-16.8831 + 12.2538i) q^{15} +(-15.6378 - 3.38511i) q^{16} +(13.9929 + 13.9929i) q^{17} +(-12.5068 + 11.2400i) q^{18} +23.9819i q^{19} +(-5.22187 + 19.3063i) q^{20} +16.8376i q^{21} +(21.6886 + 3.68829i) q^{22} +(6.43276 - 6.43276i) q^{23} +(-5.31396 + 32.9523i) q^{24} +(23.7689 + 7.74848i) q^{25} +(-13.3216 - 0.710652i) q^{26} +(-1.74735 - 1.74735i) q^{27} +(10.1353 + 12.5640i) q^{28} -41.9911 q^{29} +(40.7985 + 8.73256i) q^{30} +52.7698i q^{31} +(15.8702 + 27.7873i) q^{32} +(5.27311 - 45.5909i) q^{33} +(2.10831 - 39.5216i) q^{34} +(16.3301 - 11.8524i) q^{35} +(33.4400 + 3.57794i) q^{36} +(-40.8207 + 40.8207i) q^{37} +(35.6740 - 32.0607i) q^{38} +27.8302i q^{39} +(35.6998 - 18.0422i) q^{40} -20.9489i q^{41} +(25.0465 - 22.5096i) q^{42} +(-23.2809 - 23.2809i) q^{43} +(-23.5084 - 37.1935i) q^{44} +(6.59642 - 41.5179i) q^{45} +(-18.1688 - 0.969226i) q^{46} +(29.3122 + 29.3122i) q^{47} +(56.1220 - 36.1483i) q^{48} +32.7139i q^{49} +(-20.2498 - 45.7159i) q^{50} -82.5645 q^{51} +(16.7522 + 20.7665i) q^{52} +(8.85084 + 8.85084i) q^{53} +(-0.263274 + 4.93525i) q^{54} +(-47.9287 + 26.9785i) q^{55} +(5.13991 - 31.8730i) q^{56} +(-70.7521 - 70.7521i) q^{57} +(56.1366 + 62.4634i) q^{58} +48.6533 q^{59} +(-41.5522 - 72.3637i) q^{60} +61.5189i q^{61} +(78.4972 - 70.5464i) q^{62} +(-23.9923 - 23.9923i) q^{63} +(20.1184 - 60.7557i) q^{64} +(26.9914 - 19.5904i) q^{65} +(-74.8678 + 53.1051i) q^{66} +(-8.41788 - 8.41788i) q^{67} +(-61.6086 + 49.6991i) q^{68} +37.9563i q^{69} +(-39.4622 - 8.44653i) q^{70} -84.4988i q^{71} +(-39.3826 - 54.5266i) q^{72} +(-1.63778 + 1.63778i) q^{73} +(115.295 + 6.15047i) q^{74} +(-92.9836 + 47.2640i) q^{75} +(-95.3832 - 10.2056i) q^{76} +(-5.10039 + 44.0976i) q^{77} +(41.3985 - 37.2053i) q^{78} -40.3760i q^{79} +(-74.5646 - 28.9848i) q^{80} +85.9797 q^{81} +(-31.1623 + 28.0059i) q^{82} +(-40.8742 - 40.8742i) q^{83} +(-66.9680 - 7.16530i) q^{84} +(58.1194 + 80.0761i) q^{85} +(-3.50774 + 65.7548i) q^{86} +(123.883 - 123.883i) q^{87} +(-23.8991 + 84.6926i) q^{88} +5.36138i q^{89} +(-70.5781 + 45.6916i) q^{90} -26.9186i q^{91} +(22.8475 + 28.3225i) q^{92} +(-155.683 - 155.683i) q^{93} +(4.41647 - 82.7896i) q^{94} +(-18.8154 + 118.424i) q^{95} +(-128.800 - 35.1582i) q^{96} +(86.0209 - 86.0209i) q^{97} +(48.6633 - 43.7343i) q^{98} +(57.4499 + 72.4774i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33687 1.48754i −0.668435 0.743770i
\(3\) −2.95023 + 2.95023i −0.983410 + 0.983410i −0.999865 0.0164544i \(-0.994762\pi\)
0.0164544 + 0.999865i \(0.494762\pi\)
\(4\) −0.425555 + 3.97730i −0.106389 + 0.994325i
\(5\) 4.93806 + 0.784567i 0.987612 + 0.156913i
\(6\) 8.33266 + 0.444512i 1.38878 + 0.0740853i
\(7\) 2.85360 2.85360i 0.407657 0.407657i −0.473264 0.880921i \(-0.656924\pi\)
0.880921 + 0.473264i \(0.156924\pi\)
\(8\) 6.48530 4.68410i 0.810663 0.585513i
\(9\) 8.40772i 0.934191i
\(10\) −5.43447 8.39443i −0.543447 0.839443i
\(11\) −8.62034 + 6.83299i −0.783667 + 0.621181i
\(12\) −10.4785 12.9894i −0.873205 1.08245i
\(13\) 4.71661 4.71661i 0.362816 0.362816i −0.502033 0.864849i \(-0.667414\pi\)
0.864849 + 0.502033i \(0.167414\pi\)
\(14\) −8.05974 0.429952i −0.575695 0.0307109i
\(15\) −16.8831 + 12.2538i −1.12554 + 0.816918i
\(16\) −15.6378 3.38511i −0.977363 0.211570i
\(17\) 13.9929 + 13.9929i 0.823111 + 0.823111i 0.986553 0.163442i \(-0.0522598\pi\)
−0.163442 + 0.986553i \(0.552260\pi\)
\(18\) −12.5068 + 11.2400i −0.694824 + 0.624446i
\(19\) 23.9819i 1.26221i 0.775699 + 0.631103i \(0.217397\pi\)
−0.775699 + 0.631103i \(0.782603\pi\)
\(20\) −5.22187 + 19.3063i −0.261094 + 0.965313i
\(21\) 16.8376i 0.801788i
\(22\) 21.6886 + 3.68829i 0.985847 + 0.167650i
\(23\) 6.43276 6.43276i 0.279685 0.279685i −0.553298 0.832983i \(-0.686631\pi\)
0.832983 + 0.553298i \(0.186631\pi\)
\(24\) −5.31396 + 32.9523i −0.221415 + 1.37301i
\(25\) 23.7689 + 7.74848i 0.950756 + 0.309939i
\(26\) −13.3216 0.710652i −0.512371 0.0273328i
\(27\) −1.74735 1.74735i −0.0647168 0.0647168i
\(28\) 10.1353 + 12.5640i 0.361973 + 0.448713i
\(29\) −41.9911 −1.44797 −0.723984 0.689817i \(-0.757691\pi\)
−0.723984 + 0.689817i \(0.757691\pi\)
\(30\) 40.7985 + 8.73256i 1.35995 + 0.291085i
\(31\) 52.7698i 1.70225i 0.524962 + 0.851126i \(0.324080\pi\)
−0.524962 + 0.851126i \(0.675920\pi\)
\(32\) 15.8702 + 27.7873i 0.495945 + 0.868354i
\(33\) 5.27311 45.5909i 0.159791 1.38154i
\(34\) 2.10831 39.5216i 0.0620091 1.16240i
\(35\) 16.3301 11.8524i 0.466574 0.338640i
\(36\) 33.4400 + 3.57794i 0.928890 + 0.0993874i
\(37\) −40.8207 + 40.8207i −1.10326 + 1.10326i −0.109249 + 0.994014i \(0.534844\pi\)
−0.994014 + 0.109249i \(0.965156\pi\)
\(38\) 35.6740 32.0607i 0.938791 0.843702i
\(39\) 27.8302i 0.713594i
\(40\) 35.6998 18.0422i 0.892496 0.451056i
\(41\) 20.9489i 0.510948i −0.966816 0.255474i \(-0.917768\pi\)
0.966816 0.255474i \(-0.0822315\pi\)
\(42\) 25.0465 22.5096i 0.596346 0.535943i
\(43\) −23.2809 23.2809i −0.541416 0.541416i 0.382528 0.923944i \(-0.375054\pi\)
−0.923944 + 0.382528i \(0.875054\pi\)
\(44\) −23.5084 37.1935i −0.534282 0.845306i
\(45\) 6.59642 41.5179i 0.146587 0.922619i
\(46\) −18.1688 0.969226i −0.394973 0.0210701i
\(47\) 29.3122 + 29.3122i 0.623663 + 0.623663i 0.946466 0.322803i \(-0.104625\pi\)
−0.322803 + 0.946466i \(0.604625\pi\)
\(48\) 56.1220 36.1483i 1.16921 0.753089i
\(49\) 32.7139i 0.667632i
\(50\) −20.2498 45.7159i −0.404996 0.914319i
\(51\) −82.5645 −1.61891
\(52\) 16.7522 + 20.7665i 0.322157 + 0.399356i
\(53\) 8.85084 + 8.85084i 0.166997 + 0.166997i 0.785658 0.618661i \(-0.212325\pi\)
−0.618661 + 0.785658i \(0.712325\pi\)
\(54\) −0.263274 + 4.93525i −0.00487545 + 0.0913934i
\(55\) −47.9287 + 26.9785i −0.871431 + 0.490518i
\(56\) 5.13991 31.8730i 0.0917840 0.569161i
\(57\) −70.7521 70.7521i −1.24127 1.24127i
\(58\) 56.1366 + 62.4634i 0.967873 + 1.07696i
\(59\) 48.6533 0.824632 0.412316 0.911041i \(-0.364720\pi\)
0.412316 + 0.911041i \(0.364720\pi\)
\(60\) −41.5522 72.3637i −0.692537 1.20606i
\(61\) 61.5189i 1.00851i 0.863556 + 0.504253i \(0.168232\pi\)
−0.863556 + 0.504253i \(0.831768\pi\)
\(62\) 78.4972 70.5464i 1.26608 1.13784i
\(63\) −23.9923 23.9923i −0.380830 0.380830i
\(64\) 20.1184 60.7557i 0.314349 0.949307i
\(65\) 26.9914 19.5904i 0.415252 0.301391i
\(66\) −74.8678 + 53.1051i −1.13436 + 0.804623i
\(67\) −8.41788 8.41788i −0.125640 0.125640i 0.641491 0.767131i \(-0.278316\pi\)
−0.767131 + 0.641491i \(0.778316\pi\)
\(68\) −61.6086 + 49.6991i −0.906009 + 0.730870i
\(69\) 37.9563i 0.550091i
\(70\) −39.4622 8.44653i −0.563745 0.120665i
\(71\) 84.4988i 1.19012i −0.803680 0.595062i \(-0.797128\pi\)
0.803680 0.595062i \(-0.202872\pi\)
\(72\) −39.3826 54.5266i −0.546981 0.757315i
\(73\) −1.63778 + 1.63778i −0.0224353 + 0.0224353i −0.718235 0.695800i \(-0.755050\pi\)
0.695800 + 0.718235i \(0.255050\pi\)
\(74\) 115.295 + 6.15047i 1.55803 + 0.0831144i
\(75\) −92.9836 + 47.2640i −1.23978 + 0.630186i
\(76\) −95.3832 10.2056i −1.25504 0.134284i
\(77\) −5.10039 + 44.0976i −0.0662388 + 0.572696i
\(78\) 41.3985 37.2053i 0.530750 0.476991i
\(79\) 40.3760i 0.511089i −0.966797 0.255544i \(-0.917745\pi\)
0.966797 0.255544i \(-0.0822547\pi\)
\(80\) −74.5646 28.9848i −0.932058 0.362310i
\(81\) 85.9797 1.06148
\(82\) −31.1623 + 28.0059i −0.380028 + 0.341536i
\(83\) −40.8742 40.8742i −0.492460 0.492460i 0.416620 0.909081i \(-0.363214\pi\)
−0.909081 + 0.416620i \(0.863214\pi\)
\(84\) −66.9680 7.16530i −0.797238 0.0853011i
\(85\) 58.1194 + 80.0761i 0.683757 + 0.942071i
\(86\) −3.50774 + 65.7548i −0.0407876 + 0.764591i
\(87\) 123.883 123.883i 1.42395 1.42395i
\(88\) −23.8991 + 84.6926i −0.271581 + 0.962416i
\(89\) 5.36138i 0.0602402i 0.999546 + 0.0301201i \(0.00958898\pi\)
−0.999546 + 0.0301201i \(0.990411\pi\)
\(90\) −70.5781 + 45.6916i −0.784201 + 0.507684i
\(91\) 26.9186i 0.295809i
\(92\) 22.8475 + 28.3225i 0.248343 + 0.307853i
\(93\) −155.683 155.683i −1.67401 1.67401i
\(94\) 4.41647 82.7896i 0.0469837 0.880741i
\(95\) −18.8154 + 118.424i −0.198057 + 1.24657i
\(96\) −128.800 35.1582i −1.34167 0.366231i
\(97\) 86.0209 86.0209i 0.886814 0.886814i −0.107402 0.994216i \(-0.534253\pi\)
0.994216 + 0.107402i \(0.0342531\pi\)
\(98\) 48.6633 43.7343i 0.496565 0.446268i
\(99\) 57.4499 + 72.4774i 0.580302 + 0.732095i
\(100\) −40.9330 + 91.2386i −0.409330 + 0.912386i
\(101\) 42.9360i 0.425109i 0.977149 + 0.212555i \(0.0681783\pi\)
−0.977149 + 0.212555i \(0.931822\pi\)
\(102\) 110.378 + 122.818i 1.08214 + 1.20410i
\(103\) −3.23744 + 3.23744i −0.0314314 + 0.0314314i −0.722648 0.691216i \(-0.757075\pi\)
0.691216 + 0.722648i \(0.257075\pi\)
\(104\) 8.49556 52.6817i 0.0816881 0.506555i
\(105\) −13.2102 + 83.1449i −0.125811 + 0.791856i
\(106\) 1.33356 24.9984i 0.0125807 0.235834i
\(107\) 136.140 136.140i 1.27233 1.27233i 0.327472 0.944861i \(-0.393803\pi\)
0.944861 0.327472i \(-0.106197\pi\)
\(108\) 7.69334 6.20615i 0.0712346 0.0574644i
\(109\) 9.16768 0.0841071 0.0420536 0.999115i \(-0.486610\pi\)
0.0420536 + 0.999115i \(0.486610\pi\)
\(110\) 104.206 + 35.2292i 0.947328 + 0.320265i
\(111\) 240.861i 2.16992i
\(112\) −54.2838 + 34.9643i −0.484677 + 0.312181i
\(113\) 47.3297 + 47.3297i 0.418847 + 0.418847i 0.884806 0.465959i \(-0.154291\pi\)
−0.465959 + 0.884806i \(0.654291\pi\)
\(114\) −10.6602 + 199.833i −0.0935109 + 1.75292i
\(115\) 36.8123 26.7185i 0.320107 0.232334i
\(116\) 17.8695 167.011i 0.154047 1.43975i
\(117\) −39.6559 39.6559i −0.338940 0.338940i
\(118\) −65.0432 72.3738i −0.551213 0.613337i
\(119\) 79.8601 0.671094
\(120\) −52.0940 + 158.551i −0.434116 + 1.32126i
\(121\) 27.6206 117.805i 0.228269 0.973598i
\(122\) 91.5118 82.2427i 0.750097 0.674121i
\(123\) 61.8040 + 61.8040i 0.502472 + 0.502472i
\(124\) −209.881 22.4564i −1.69259 0.181100i
\(125\) 111.293 + 56.9108i 0.890345 + 0.455286i
\(126\) −3.61492 + 67.7640i −0.0286898 + 0.537810i
\(127\) −135.590 + 135.590i −1.06763 + 1.06763i −0.0700935 + 0.997540i \(0.522330\pi\)
−0.997540 + 0.0700935i \(0.977670\pi\)
\(128\) −117.272 + 51.2956i −0.916189 + 0.400747i
\(129\) 137.368 1.06487
\(130\) −65.2255 13.9610i −0.501735 0.107392i
\(131\) 223.136 1.70333 0.851665 0.524087i \(-0.175593\pi\)
0.851665 + 0.524087i \(0.175593\pi\)
\(132\) 179.085 + 40.3741i 1.35670 + 0.305865i
\(133\) 68.4347 + 68.4347i 0.514547 + 0.514547i
\(134\) −1.26832 + 23.7756i −0.00946510 + 0.177430i
\(135\) −7.25762 9.99946i −0.0537602 0.0740700i
\(136\) 156.292 + 25.2040i 1.14921 + 0.185323i
\(137\) 30.6040 30.6040i 0.223387 0.223387i −0.586536 0.809923i \(-0.699509\pi\)
0.809923 + 0.586536i \(0.199509\pi\)
\(138\) 56.4615 50.7426i 0.409141 0.367700i
\(139\) 270.899i 1.94891i 0.224576 + 0.974457i \(0.427900\pi\)
−0.224576 + 0.974457i \(0.572100\pi\)
\(140\) 40.1912 + 69.9935i 0.287080 + 0.499953i
\(141\) −172.955 −1.22663
\(142\) −125.695 + 112.964i −0.885179 + 0.795521i
\(143\) −8.43025 + 72.8873i −0.0589528 + 0.509701i
\(144\) −28.4611 + 131.478i −0.197647 + 0.913044i
\(145\) −207.354 32.9448i −1.43003 0.227206i
\(146\) 4.62577 + 0.246765i 0.0316833 + 0.00169017i
\(147\) −96.5137 96.5137i −0.656556 0.656556i
\(148\) −144.985 179.728i −0.979627 1.21438i
\(149\) −16.6615 −0.111822 −0.0559111 0.998436i \(-0.517806\pi\)
−0.0559111 + 0.998436i \(0.517806\pi\)
\(150\) 194.614 + 75.1310i 1.29743 + 0.500874i
\(151\) −83.2430 −0.551278 −0.275639 0.961261i \(-0.588889\pi\)
−0.275639 + 0.961261i \(0.588889\pi\)
\(152\) 112.334 + 155.530i 0.739037 + 1.02322i
\(153\) 117.648 117.648i 0.768943 0.768943i
\(154\) 72.4155 51.3657i 0.470231 0.333544i
\(155\) −41.4014 + 260.581i −0.267106 + 1.68116i
\(156\) −110.689 11.8433i −0.709544 0.0759183i
\(157\) 25.4390 25.4390i 0.162032 0.162032i −0.621434 0.783466i \(-0.713450\pi\)
0.783466 + 0.621434i \(0.213450\pi\)
\(158\) −60.0610 + 53.9775i −0.380133 + 0.341630i
\(159\) −52.2240 −0.328453
\(160\) 56.5671 + 149.667i 0.353545 + 0.935418i
\(161\) 36.7131i 0.228031i
\(162\) −114.944 127.898i −0.709529 0.789496i
\(163\) 86.4306 86.4306i 0.530249 0.530249i −0.390397 0.920646i \(-0.627662\pi\)
0.920646 + 0.390397i \(0.127662\pi\)
\(164\) 83.3199 + 8.91489i 0.508048 + 0.0543591i
\(165\) 61.8080 220.994i 0.374594 1.33935i
\(166\) −6.15853 + 115.446i −0.0370996 + 0.695455i
\(167\) 201.686 201.686i 1.20770 1.20770i 0.235933 0.971769i \(-0.424185\pi\)
0.971769 0.235933i \(-0.0758145\pi\)
\(168\) 78.8688 + 109.197i 0.469457 + 0.649980i
\(169\) 124.507i 0.736729i
\(170\) 41.4183 193.506i 0.243637 1.13827i
\(171\) 201.633 1.17914
\(172\) 102.502 82.6878i 0.595944 0.480743i
\(173\) −149.223 + 149.223i −0.862562 + 0.862562i −0.991635 0.129073i \(-0.958800\pi\)
0.129073 + 0.991635i \(0.458800\pi\)
\(174\) −349.897 18.6655i −2.01091 0.107273i
\(175\) 89.9380 45.7159i 0.513931 0.261234i
\(176\) 157.934 77.6721i 0.897350 0.441319i
\(177\) −143.538 + 143.538i −0.810952 + 0.810952i
\(178\) 7.97527 7.16747i 0.0448049 0.0402667i
\(179\) −103.164 −0.576334 −0.288167 0.957580i \(-0.593046\pi\)
−0.288167 + 0.957580i \(0.593046\pi\)
\(180\) 162.322 + 43.9040i 0.901788 + 0.243911i
\(181\) −120.023 −0.663109 −0.331555 0.943436i \(-0.607573\pi\)
−0.331555 + 0.943436i \(0.607573\pi\)
\(182\) −40.0425 + 35.9867i −0.220014 + 0.197729i
\(183\) −181.495 181.495i −0.991775 0.991775i
\(184\) 11.5867 71.8502i 0.0629712 0.390490i
\(185\) −233.602 + 169.549i −1.26271 + 0.916479i
\(186\) −23.4568 + 439.713i −0.126112 + 2.36405i
\(187\) −216.237 25.0102i −1.15635 0.133745i
\(188\) −129.057 + 104.109i −0.686474 + 0.553773i
\(189\) −9.97249 −0.0527645
\(190\) 201.314 130.329i 1.05955 0.685942i
\(191\) 135.139i 0.707536i −0.935333 0.353768i \(-0.884900\pi\)
0.935333 0.353768i \(-0.115100\pi\)
\(192\) 119.889 + 238.597i 0.624424 + 1.24269i
\(193\) −193.578 + 193.578i −1.00299 + 1.00299i −0.00299750 + 0.999996i \(0.500954\pi\)
−0.999996 + 0.00299750i \(0.999046\pi\)
\(194\) −242.959 12.9608i −1.25236 0.0668082i
\(195\) −21.8346 + 137.427i −0.111972 + 0.704754i
\(196\) −130.113 13.9216i −0.663842 0.0710284i
\(197\) −43.7391 43.7391i −0.222026 0.222026i 0.587325 0.809351i \(-0.300181\pi\)
−0.809351 + 0.587325i \(0.800181\pi\)
\(198\) 31.0101 182.352i 0.156617 0.920970i
\(199\) 259.956 1.30631 0.653156 0.757223i \(-0.273445\pi\)
0.653156 + 0.757223i \(0.273445\pi\)
\(200\) 190.443 61.0848i 0.952216 0.305424i
\(201\) 49.6694 0.247111
\(202\) 63.8691 57.3999i 0.316184 0.284158i
\(203\) −119.826 + 119.826i −0.590274 + 0.590274i
\(204\) 35.1357 328.383i 0.172234 1.60972i
\(205\) 16.4358 103.447i 0.0801746 0.504619i
\(206\) 9.14386 + 0.487785i 0.0443877 + 0.00236789i
\(207\) −54.0849 54.0849i −0.261280 0.261280i
\(208\) −89.7237 + 57.7911i −0.431364 + 0.277842i
\(209\) −163.868 206.732i −0.784057 0.989149i
\(210\) 141.342 91.5032i 0.673056 0.435730i
\(211\) 193.253 0.915891 0.457946 0.888980i \(-0.348585\pi\)
0.457946 + 0.888980i \(0.348585\pi\)
\(212\) −38.9689 + 31.4359i −0.183816 + 0.148283i
\(213\) 249.291 + 249.291i 1.17038 + 1.17038i
\(214\) −384.514 20.5122i −1.79680 0.0958513i
\(215\) −96.6971 133.228i −0.449754 0.619665i
\(216\) −19.5169 3.14734i −0.0903560 0.0145710i
\(217\) 150.584 + 150.584i 0.693935 + 0.693935i
\(218\) −12.2560 13.6373i −0.0562202 0.0625564i
\(219\) 9.66366i 0.0441263i
\(220\) −86.9052 202.108i −0.395024 0.918671i
\(221\) 131.998 0.597275
\(222\) −358.291 + 322.000i −1.61392 + 1.45045i
\(223\) 124.127 124.127i 0.556625 0.556625i −0.371720 0.928345i \(-0.621232\pi\)
0.928345 + 0.371720i \(0.121232\pi\)
\(224\) 124.581 + 34.0066i 0.556166 + 0.151815i
\(225\) 65.1471 199.842i 0.289543 0.888188i
\(226\) 7.13118 133.679i 0.0315539 0.591498i
\(227\) 52.1429 52.1429i 0.229704 0.229704i −0.582865 0.812569i \(-0.698068\pi\)
0.812569 + 0.582865i \(0.198068\pi\)
\(228\) 311.511 251.293i 1.36628 1.10216i
\(229\) 320.338i 1.39886i −0.714702 0.699429i \(-0.753438\pi\)
0.714702 0.699429i \(-0.246562\pi\)
\(230\) −88.9581 19.0407i −0.386774 0.0827857i
\(231\) −115.051 145.145i −0.498055 0.628335i
\(232\) −272.325 + 196.690i −1.17381 + 0.847804i
\(233\) 125.112 125.112i 0.536962 0.536962i −0.385674 0.922635i \(-0.626031\pi\)
0.922635 + 0.385674i \(0.126031\pi\)
\(234\) −5.97497 + 112.005i −0.0255340 + 0.478652i
\(235\) 121.748 + 167.743i 0.518076 + 0.713799i
\(236\) −20.7046 + 193.509i −0.0877315 + 0.819952i
\(237\) 119.119 + 119.119i 0.502610 + 0.502610i
\(238\) −106.763 118.795i −0.448583 0.499140i
\(239\) 39.2846i 0.164371i −0.996617 0.0821854i \(-0.973810\pi\)
0.996617 0.0821854i \(-0.0261900\pi\)
\(240\) 305.495 134.471i 1.27289 0.560295i
\(241\) 322.935i 1.33998i −0.742371 0.669989i \(-0.766299\pi\)
0.742371 0.669989i \(-0.233701\pi\)
\(242\) −212.165 + 116.404i −0.876717 + 0.481007i
\(243\) −237.934 + 237.934i −0.979151 + 0.979151i
\(244\) −244.679 26.1796i −1.00278 0.107294i
\(245\) −25.6663 + 161.543i −0.104760 + 0.659361i
\(246\) 9.31202 174.560i 0.0378537 0.709593i
\(247\) 113.113 + 113.113i 0.457948 + 0.457948i
\(248\) 247.179 + 342.228i 0.996690 + 1.37995i
\(249\) 241.177 0.968581
\(250\) −64.1274 241.635i −0.256510 0.966542i
\(251\) 315.202i 1.25579i −0.778300 0.627893i \(-0.783918\pi\)
0.778300 0.627893i \(-0.216082\pi\)
\(252\) 105.634 85.2144i 0.419184 0.338152i
\(253\) −11.4976 + 99.4076i −0.0454452 + 0.392916i
\(254\) 382.961 + 20.4293i 1.50772 + 0.0804303i
\(255\) −407.708 64.7773i −1.59886 0.254029i
\(256\) 233.082 + 105.872i 0.910477 + 0.413561i
\(257\) 188.045 188.045i 0.731692 0.731692i −0.239263 0.970955i \(-0.576906\pi\)
0.970955 + 0.239263i \(0.0769057\pi\)
\(258\) −183.643 204.341i −0.711796 0.792018i
\(259\) 232.972i 0.899506i
\(260\) 66.4306 + 115.690i 0.255502 + 0.444960i
\(261\) 353.049i 1.35268i
\(262\) −298.304 331.924i −1.13857 1.26689i
\(263\) −277.864 277.864i −1.05652 1.05652i −0.998304 0.0582135i \(-0.981460\pi\)
−0.0582135 0.998304i \(-0.518540\pi\)
\(264\) −179.355 320.371i −0.679374 1.21352i
\(265\) 36.7619 + 50.6501i 0.138724 + 0.191132i
\(266\) 10.3111 193.288i 0.0387634 0.726646i
\(267\) −15.8173 15.8173i −0.0592408 0.0592408i
\(268\) 37.0627 29.8982i 0.138294 0.111560i
\(269\) 181.174i 0.673510i −0.941592 0.336755i \(-0.890671\pi\)
0.941592 0.336755i \(-0.109329\pi\)
\(270\) −5.17209 + 24.1640i −0.0191559 + 0.0894963i
\(271\) −102.599 −0.378594 −0.189297 0.981920i \(-0.560621\pi\)
−0.189297 + 0.981920i \(0.560621\pi\)
\(272\) −171.450 266.185i −0.630333 0.978623i
\(273\) 79.4161 + 79.4161i 0.290902 + 0.290902i
\(274\) −86.4384 4.61112i −0.315469 0.0168289i
\(275\) −257.841 + 95.6181i −0.937605 + 0.347702i
\(276\) −150.963 16.1525i −0.546969 0.0585234i
\(277\) 189.335 + 189.335i 0.683521 + 0.683521i 0.960792 0.277271i \(-0.0894298\pi\)
−0.277271 + 0.960792i \(0.589430\pi\)
\(278\) 402.973 362.157i 1.44954 1.30272i
\(279\) 443.674 1.59023
\(280\) 50.3877 153.358i 0.179956 0.547708i
\(281\) 86.3451i 0.307278i −0.988127 0.153639i \(-0.950901\pi\)
0.988127 0.153639i \(-0.0490993\pi\)
\(282\) 231.219 + 257.278i 0.819925 + 0.912334i
\(283\) 160.770 + 160.770i 0.568094 + 0.568094i 0.931594 0.363500i \(-0.118418\pi\)
−0.363500 + 0.931594i \(0.618418\pi\)
\(284\) 336.077 + 35.9588i 1.18337 + 0.126616i
\(285\) −293.869 404.888i −1.03112 1.42066i
\(286\) 119.693 84.9005i 0.418507 0.296855i
\(287\) −59.7797 59.7797i −0.208292 0.208292i
\(288\) 233.628 133.432i 0.811209 0.463307i
\(289\) 102.601i 0.355022i
\(290\) 228.199 + 352.491i 0.786894 + 1.21549i
\(291\) 507.563i 1.74420i
\(292\) −5.81698 7.21091i −0.0199212 0.0246949i
\(293\) 5.51757 5.51757i 0.0188313 0.0188313i −0.697628 0.716460i \(-0.745761\pi\)
0.716460 + 0.697628i \(0.245761\pi\)
\(294\) −14.5417 + 272.594i −0.0494617 + 0.927192i
\(295\) 240.253 + 38.1718i 0.814417 + 0.129396i
\(296\) −73.5264 + 455.943i −0.248400 + 1.54035i
\(297\) 27.0024 + 3.12314i 0.0909173 + 0.0105156i
\(298\) 22.2743 + 24.7847i 0.0747459 + 0.0831700i
\(299\) 60.6817i 0.202949i
\(300\) −148.413 389.937i −0.494711 1.29979i
\(301\) −132.869 −0.441424
\(302\) 111.285 + 123.827i 0.368494 + 0.410024i
\(303\) −126.671 126.671i −0.418057 0.418057i
\(304\) 81.1815 375.024i 0.267044 1.23363i
\(305\) −48.2657 + 303.784i −0.158248 + 0.996013i
\(306\) −332.287 17.7261i −1.08591 0.0579284i
\(307\) −246.073 + 246.073i −0.801541 + 0.801541i −0.983336 0.181796i \(-0.941809\pi\)
0.181796 + 0.983336i \(0.441809\pi\)
\(308\) −173.219 39.0517i −0.562399 0.126791i
\(309\) 19.1024i 0.0618200i
\(310\) 442.972 286.776i 1.42894 0.925084i
\(311\) 415.341i 1.33550i 0.744385 + 0.667750i \(0.232743\pi\)
−0.744385 + 0.667750i \(0.767257\pi\)
\(312\) 130.359 + 180.487i 0.417818 + 0.578484i
\(313\) −124.153 124.153i −0.396656 0.396656i 0.480396 0.877052i \(-0.340493\pi\)
−0.877052 + 0.480396i \(0.840493\pi\)
\(314\) −71.8502 3.83290i −0.228822 0.0122067i
\(315\) −99.6518 137.299i −0.316355 0.435869i
\(316\) 160.587 + 17.1822i 0.508188 + 0.0543741i
\(317\) 173.038 173.038i 0.545861 0.545861i −0.379380 0.925241i \(-0.623863\pi\)
0.925241 + 0.379380i \(0.123863\pi\)
\(318\) 69.8168 + 77.6854i 0.219550 + 0.244294i
\(319\) 361.977 286.924i 1.13473 0.899450i
\(320\) 147.013 284.231i 0.459414 0.888222i
\(321\) 803.286i 2.50245i
\(322\) −54.6122 + 49.0806i −0.169603 + 0.152424i
\(323\) −335.576 + 335.576i −1.03893 + 1.03893i
\(324\) −36.5891 + 341.967i −0.112929 + 1.05545i
\(325\) 148.655 75.5621i 0.457401 0.232499i
\(326\) −244.116 13.0225i −0.748821 0.0399464i
\(327\) −27.0468 + 27.0468i −0.0827118 + 0.0827118i
\(328\) −98.1267 135.860i −0.299167 0.414207i
\(329\) 167.290 0.508481
\(330\) −411.366 + 203.498i −1.24656 + 0.616660i
\(331\) 178.943i 0.540613i 0.962774 + 0.270306i \(0.0871250\pi\)
−0.962774 + 0.270306i \(0.912875\pi\)
\(332\) 179.963 145.175i 0.542058 0.437273i
\(333\) 343.209 + 343.209i 1.03066 + 1.03066i
\(334\) −569.645 30.3881i −1.70552 0.0909824i
\(335\) −34.9636 48.1724i −0.104369 0.143798i
\(336\) 56.9970 263.302i 0.169634 0.783638i
\(337\) −198.832 198.832i −0.590007 0.590007i 0.347626 0.937633i \(-0.386988\pi\)
−0.937633 + 0.347626i \(0.886988\pi\)
\(338\) 185.210 166.450i 0.547957 0.492456i
\(339\) −279.267 −0.823797
\(340\) −343.219 + 197.081i −1.00947 + 0.579651i
\(341\) −360.575 454.894i −1.05741 1.33400i
\(342\) −269.557 299.938i −0.788180 0.877010i
\(343\) 233.179 + 233.179i 0.679822 + 0.679822i
\(344\) −260.034 41.9336i −0.755912 0.121900i
\(345\) −29.7792 + 187.430i −0.0863166 + 0.543277i
\(346\) 421.468 + 22.4835i 1.21811 + 0.0649812i
\(347\) −142.195 + 142.195i −0.409783 + 0.409783i −0.881663 0.471880i \(-0.843576\pi\)
0.471880 + 0.881663i \(0.343576\pi\)
\(348\) 440.002 + 545.440i 1.26437 + 1.56736i
\(349\) −474.609 −1.35991 −0.679956 0.733253i \(-0.738001\pi\)
−0.679956 + 0.733253i \(0.738001\pi\)
\(350\) −188.240 72.6702i −0.537828 0.207629i
\(351\) −16.4832 −0.0469606
\(352\) −326.677 131.095i −0.928060 0.372430i
\(353\) −369.364 369.364i −1.04636 1.04636i −0.998872 0.0474863i \(-0.984879\pi\)
−0.0474863 0.998872i \(-0.515121\pi\)
\(354\) 405.412 + 21.6270i 1.14523 + 0.0610931i
\(355\) 66.2949 417.260i 0.186746 1.17538i
\(356\) −21.3238 2.28156i −0.0598983 0.00640887i
\(357\) −235.606 + 235.606i −0.659960 + 0.659960i
\(358\) 137.917 + 153.460i 0.385242 + 0.428660i
\(359\) 65.7181i 0.183059i −0.995802 0.0915294i \(-0.970824\pi\)
0.995802 0.0915294i \(-0.0291755\pi\)
\(360\) −151.694 300.154i −0.421373 0.833762i
\(361\) −214.131 −0.593162
\(362\) 160.455 + 178.539i 0.443246 + 0.493201i
\(363\) 266.066 + 429.040i 0.732964 + 1.18193i
\(364\) 107.063 + 11.4553i 0.294130 + 0.0314707i
\(365\) −9.37241 + 6.80251i −0.0256778 + 0.0186370i
\(366\) −27.3459 + 512.616i −0.0747155 + 1.40059i
\(367\) −296.069 296.069i −0.806728 0.806728i 0.177409 0.984137i \(-0.443229\pi\)
−0.984137 + 0.177409i \(0.943229\pi\)
\(368\) −122.370 + 78.8187i −0.332527 + 0.214181i
\(369\) −176.132 −0.477323
\(370\) 564.506 + 120.828i 1.52569 + 0.326561i
\(371\) 50.5135 0.136155
\(372\) 685.450 552.946i 1.84261 1.48642i
\(373\) 397.167 397.167i 1.06479 1.06479i 0.0670417 0.997750i \(-0.478644\pi\)
0.997750 0.0670417i \(-0.0213560\pi\)
\(374\) 251.877 + 355.096i 0.673467 + 0.949455i
\(375\) −496.240 + 160.441i −1.32331 + 0.427842i
\(376\) 327.400 + 52.7971i 0.870744 + 0.140418i
\(377\) −198.055 + 198.055i −0.525346 + 0.525346i
\(378\) 13.3319 + 14.8345i 0.0352697 + 0.0392447i
\(379\) −33.0684 −0.0872516 −0.0436258 0.999048i \(-0.513891\pi\)
−0.0436258 + 0.999048i \(0.513891\pi\)
\(380\) −463.001 125.230i −1.21842 0.329554i
\(381\) 800.041i 2.09984i
\(382\) −201.025 + 180.664i −0.526244 + 0.472942i
\(383\) −193.694 + 193.694i −0.505728 + 0.505728i −0.913212 0.407484i \(-0.866406\pi\)
0.407484 + 0.913212i \(0.366406\pi\)
\(384\) 194.646 497.314i 0.506891 1.29509i
\(385\) −59.7836 + 213.755i −0.155282 + 0.555208i
\(386\) 546.743 + 29.1664i 1.41643 + 0.0755606i
\(387\) −195.739 + 195.739i −0.505786 + 0.505786i
\(388\) 305.524 + 378.738i 0.787434 + 0.976128i
\(389\) 450.342i 1.15769i 0.815437 + 0.578845i \(0.196497\pi\)
−0.815437 + 0.578845i \(0.803503\pi\)
\(390\) 233.618 151.242i 0.599022 0.387801i
\(391\) 180.026 0.460424
\(392\) 153.236 + 212.160i 0.390907 + 0.541224i
\(393\) −658.303 + 658.303i −1.67507 + 1.67507i
\(394\) −6.59018 + 123.537i −0.0167264 + 0.313546i
\(395\) 31.6777 199.379i 0.0801967 0.504758i
\(396\) −312.712 + 197.652i −0.789678 + 0.499122i
\(397\) 39.0747 39.0747i 0.0984250 0.0984250i −0.656180 0.754605i \(-0.727829\pi\)
0.754605 + 0.656180i \(0.227829\pi\)
\(398\) −347.528 386.695i −0.873185 0.971596i
\(399\) −403.796 −1.01202
\(400\) −345.464 201.630i −0.863660 0.504074i
\(401\) 166.655 0.415598 0.207799 0.978172i \(-0.433370\pi\)
0.207799 + 0.978172i \(0.433370\pi\)
\(402\) −66.4015 73.8852i −0.165178 0.183794i
\(403\) 248.894 + 248.894i 0.617604 + 0.617604i
\(404\) −170.769 18.2716i −0.422697 0.0452268i
\(405\) 424.573 + 67.4568i 1.04833 + 0.166560i
\(406\) 338.437 + 18.0542i 0.833589 + 0.0444684i
\(407\) 72.9611 630.816i 0.179266 1.54992i
\(408\) −535.456 + 386.740i −1.31239 + 0.947893i
\(409\) 783.414 1.91544 0.957719 0.287705i \(-0.0928921\pi\)
0.957719 + 0.287705i \(0.0928921\pi\)
\(410\) −175.854 + 113.846i −0.428912 + 0.277673i
\(411\) 180.578i 0.439362i
\(412\) −11.4986 14.2540i −0.0279091 0.0345970i
\(413\) 138.837 138.837i 0.336167 0.336167i
\(414\) −8.14898 + 152.758i −0.0196835 + 0.368981i
\(415\) −169.771 233.908i −0.409086 0.563634i
\(416\) 205.916 + 56.2083i 0.494989 + 0.135116i
\(417\) −799.214 799.214i −1.91658 1.91658i
\(418\) −88.4522 + 520.134i −0.211608 + 1.24434i
\(419\) 612.469 1.46174 0.730870 0.682517i \(-0.239115\pi\)
0.730870 + 0.682517i \(0.239115\pi\)
\(420\) −325.070 87.9235i −0.773977 0.209342i
\(421\) 813.501 1.93231 0.966153 0.257968i \(-0.0830529\pi\)
0.966153 + 0.257968i \(0.0830529\pi\)
\(422\) −258.354 287.472i −0.612214 0.681213i
\(423\) 246.449 246.449i 0.582621 0.582621i
\(424\) 98.8586 + 15.9421i 0.233157 + 0.0375994i
\(425\) 224.172 + 441.019i 0.527463 + 1.03769i
\(426\) 37.5607 704.100i 0.0881707 1.65282i
\(427\) 175.550 + 175.550i 0.411124 + 0.411124i
\(428\) 483.533 + 599.403i 1.12975 + 1.40047i
\(429\) −190.163 239.906i −0.443271 0.559220i
\(430\) −68.9105 + 321.949i −0.160257 + 0.748720i
\(431\) −480.808 −1.11556 −0.557782 0.829987i \(-0.688348\pi\)
−0.557782 + 0.829987i \(0.688348\pi\)
\(432\) 21.4098 + 33.2398i 0.0495597 + 0.0769439i
\(433\) −332.664 332.664i −0.768276 0.768276i 0.209527 0.977803i \(-0.432808\pi\)
−0.977803 + 0.209527i \(0.932808\pi\)
\(434\) 22.6885 425.311i 0.0522776 0.979979i
\(435\) 708.938 514.549i 1.62974 1.18287i
\(436\) −3.90135 + 36.4626i −0.00894804 + 0.0836298i
\(437\) 154.270 + 154.270i 0.353020 + 0.353020i
\(438\) −14.3751 + 12.9191i −0.0328198 + 0.0294956i
\(439\) 744.953i 1.69693i 0.529249 + 0.848466i \(0.322474\pi\)
−0.529249 + 0.848466i \(0.677526\pi\)
\(440\) −184.462 + 399.467i −0.419233 + 0.907879i
\(441\) 275.050 0.623696
\(442\) −176.464 196.352i −0.399240 0.444236i
\(443\) 191.340 191.340i 0.431919 0.431919i −0.457361 0.889281i \(-0.651205\pi\)
0.889281 + 0.457361i \(0.151205\pi\)
\(444\) 957.977 + 102.500i 2.15761 + 0.230855i
\(445\) −4.20636 + 26.4748i −0.00945249 + 0.0594940i
\(446\) −350.587 18.7023i −0.786069 0.0419334i
\(447\) 49.1553 49.1553i 0.109967 0.109967i
\(448\) −115.963 230.782i −0.258845 0.515138i
\(449\) 525.098i 1.16948i 0.811220 + 0.584742i \(0.198804\pi\)
−0.811220 + 0.584742i \(0.801196\pi\)
\(450\) −384.367 + 170.255i −0.854149 + 0.378343i
\(451\) 143.143 + 180.586i 0.317391 + 0.400413i
\(452\) −208.386 + 168.103i −0.461031 + 0.371909i
\(453\) 245.586 245.586i 0.542133 0.542133i
\(454\) −147.273 7.85638i −0.324390 0.0173048i
\(455\) 21.1195 132.926i 0.0464164 0.292145i
\(456\) −790.259 127.439i −1.73303 0.279471i
\(457\) 487.268 + 487.268i 1.06623 + 1.06623i 0.997645 + 0.0685878i \(0.0218493\pi\)
0.0685878 + 0.997645i \(0.478151\pi\)
\(458\) −476.516 + 428.251i −1.04043 + 0.935046i
\(459\) 48.9010i 0.106538i
\(460\) 90.6016 + 157.784i 0.196960 + 0.343008i
\(461\) 45.5227i 0.0987477i −0.998780 0.0493739i \(-0.984277\pi\)
0.998780 0.0493739i \(-0.0157226\pi\)
\(462\) −62.1018 + 365.183i −0.134419 + 0.790440i
\(463\) 500.542 500.542i 1.08108 1.08108i 0.0846757 0.996409i \(-0.473015\pi\)
0.996409 0.0846757i \(-0.0269854\pi\)
\(464\) 656.648 + 142.145i 1.41519 + 0.306346i
\(465\) −646.629 890.916i −1.39060 1.91595i
\(466\) −353.368 18.8507i −0.758300 0.0404521i
\(467\) −319.616 319.616i −0.684403 0.684403i 0.276586 0.960989i \(-0.410797\pi\)
−0.960989 + 0.276586i \(0.910797\pi\)
\(468\) 174.599 140.848i 0.373075 0.300957i
\(469\) −48.0425 −0.102436
\(470\) 86.7628 405.355i 0.184602 0.862458i
\(471\) 150.102i 0.318687i
\(472\) 315.531 227.897i 0.668499 0.482833i
\(473\) 359.767 + 41.6112i 0.760608 + 0.0879730i
\(474\) 17.9476 336.440i 0.0378642 0.709789i
\(475\) −185.823 + 570.024i −0.391207 + 1.20005i
\(476\) −33.9848 + 317.628i −0.0713967 + 0.667285i
\(477\) 74.4154 74.4154i 0.156007 0.156007i
\(478\) −58.4375 + 52.5185i −0.122254 + 0.109871i
\(479\) 353.953i 0.738942i 0.929242 + 0.369471i \(0.120461\pi\)
−0.929242 + 0.369471i \(0.879539\pi\)
\(480\) −608.438 274.666i −1.26758 0.572220i
\(481\) 385.071i 0.800563i
\(482\) −480.379 + 431.722i −0.996636 + 0.895689i
\(483\) 108.312 + 108.312i 0.224248 + 0.224248i
\(484\) 456.793 + 159.988i 0.943787 + 0.330553i
\(485\) 492.266 357.288i 1.01498 0.736675i
\(486\) 672.023 + 35.8495i 1.38276 + 0.0737645i
\(487\) 547.477 + 547.477i 1.12418 + 1.12418i 0.991106 + 0.133076i \(0.0424855\pi\)
0.133076 + 0.991106i \(0.457514\pi\)
\(488\) 288.161 + 398.969i 0.590493 + 0.817558i
\(489\) 509.980i 1.04290i
\(490\) 274.615 177.783i 0.560439 0.362823i
\(491\) 741.586 1.51036 0.755180 0.655518i \(-0.227550\pi\)
0.755180 + 0.655518i \(0.227550\pi\)
\(492\) −272.114 + 219.512i −0.553077 + 0.446163i
\(493\) −587.576 587.576i −1.19184 1.19184i
\(494\) 17.0428 319.478i 0.0344996 0.646717i
\(495\) 226.828 + 402.971i 0.458238 + 0.814084i
\(496\) 178.632 825.204i 0.360145 1.66372i
\(497\) −241.126 241.126i −0.485162 0.485162i
\(498\) −322.422 358.760i −0.647434 0.720402i
\(499\) −114.519 −0.229497 −0.114749 0.993395i \(-0.536606\pi\)
−0.114749 + 0.993395i \(0.536606\pi\)
\(500\) −273.712 + 418.427i −0.547425 + 0.836855i
\(501\) 1190.04i 2.37533i
\(502\) −468.876 + 421.385i −0.934016 + 0.839412i
\(503\) 4.53874 + 4.53874i 0.00902333 + 0.00902333i 0.711604 0.702581i \(-0.247969\pi\)
−0.702581 + 0.711604i \(0.747969\pi\)
\(504\) −267.979 43.2149i −0.531705 0.0857439i
\(505\) −33.6862 + 212.021i −0.0667053 + 0.419843i
\(506\) 163.244 115.792i 0.322616 0.228838i
\(507\) −367.325 367.325i −0.724507 0.724507i
\(508\) −481.579 596.981i −0.947991 1.17516i
\(509\) 506.523i 0.995135i −0.867425 0.497567i \(-0.834227\pi\)
0.867425 0.497567i \(-0.165773\pi\)
\(510\) 448.694 + 693.082i 0.879793 + 1.35898i
\(511\) 9.34714i 0.0182919i
\(512\) −154.112 488.255i −0.301000 0.953624i
\(513\) 41.9049 41.9049i 0.0816859 0.0816859i
\(514\) −531.116 28.3328i −1.03330 0.0551221i
\(515\) −18.5267 + 13.4467i −0.0359741 + 0.0261101i
\(516\) −58.4576 + 546.354i −0.113290 + 1.05883i
\(517\) −452.971 52.3912i −0.876152 0.101337i
\(518\) 346.555 311.453i 0.669026 0.601261i
\(519\) 880.486i 1.69650i
\(520\) 83.2839 253.480i 0.160161 0.487462i
\(521\) −96.1043 −0.184461 −0.0922306 0.995738i \(-0.529400\pi\)
−0.0922306 + 0.995738i \(0.529400\pi\)
\(522\) 525.175 471.981i 1.00608 0.904178i
\(523\) −676.382 676.382i −1.29327 1.29327i −0.932750 0.360524i \(-0.882598\pi\)
−0.360524 0.932750i \(-0.617402\pi\)
\(524\) −94.9566 + 887.479i −0.181215 + 1.69366i
\(525\) −130.465 + 400.210i −0.248506 + 0.762305i
\(526\) −41.8658 + 784.803i −0.0795929 + 1.49202i
\(527\) −738.401 + 738.401i −1.40114 + 1.40114i
\(528\) −236.790 + 695.091i −0.448466 + 1.31646i
\(529\) 446.239i 0.843552i
\(530\) 26.1981 122.397i 0.0494304 0.230939i
\(531\) 409.063i 0.770364i
\(532\) −301.308 + 243.063i −0.566368 + 0.456885i
\(533\) −98.8076 98.8076i −0.185380 0.185380i
\(534\) −2.38320 + 44.6746i −0.00446291 + 0.0836602i
\(535\) 779.076 565.455i 1.45622 1.05693i
\(536\) −94.0228 15.1623i −0.175416 0.0282879i
\(537\) 304.357 304.357i 0.566773 0.566773i
\(538\) −269.504 + 242.206i −0.500937 + 0.450198i
\(539\) −223.534 282.005i −0.414720 0.523201i
\(540\) 42.8593 24.6104i 0.0793691 0.0455749i
\(541\) 80.2693i 0.148372i 0.997244 + 0.0741861i \(0.0236359\pi\)
−0.997244 + 0.0741861i \(0.976364\pi\)
\(542\) 137.162 + 152.620i 0.253066 + 0.281587i
\(543\) 354.095 354.095i 0.652109 0.652109i
\(544\) −166.755 + 610.895i −0.306534 + 1.12297i
\(545\) 45.2706 + 7.19266i 0.0830652 + 0.0131975i
\(546\) 11.9656 224.304i 0.0219151 0.410813i
\(547\) −104.234 + 104.234i −0.190555 + 0.190555i −0.795936 0.605381i \(-0.793021\pi\)
0.605381 + 0.795936i \(0.293021\pi\)
\(548\) 108.698 + 134.745i 0.198353 + 0.245885i
\(549\) 517.233 0.942138
\(550\) 486.936 + 255.720i 0.885339 + 0.464946i
\(551\) 1007.03i 1.82763i
\(552\) 177.791 + 246.158i 0.322085 + 0.445938i
\(553\) −115.217 115.217i −0.208349 0.208349i
\(554\) 28.5272 534.761i 0.0514931 0.965273i
\(555\) 188.972 1189.39i 0.340490 2.14304i
\(556\) −1077.45 115.282i −1.93785 0.207342i
\(557\) 269.311 + 269.311i 0.483503 + 0.483503i 0.906249 0.422745i \(-0.138934\pi\)
−0.422745 + 0.906249i \(0.638934\pi\)
\(558\) −593.134 659.983i −1.06297 1.18277i
\(559\) −219.614 −0.392869
\(560\) −295.489 + 130.066i −0.527658 + 0.232262i
\(561\) 711.734 564.162i 1.26869 1.00564i
\(562\) −128.442 + 115.432i −0.228544 + 0.205395i
\(563\) 441.086 + 441.086i 0.783457 + 0.783457i 0.980412 0.196956i \(-0.0631055\pi\)
−0.196956 + 0.980412i \(0.563105\pi\)
\(564\) 73.6019 687.895i 0.130500 1.21967i
\(565\) 196.584 + 270.850i 0.347936 + 0.479381i
\(566\) 24.2233 454.082i 0.0427974 0.802265i
\(567\) 245.352 245.352i 0.432719 0.432719i
\(568\) −395.801 548.000i −0.696833 0.964789i
\(569\) 211.547 0.371787 0.185894 0.982570i \(-0.440482\pi\)
0.185894 + 0.982570i \(0.440482\pi\)
\(570\) −209.423 + 978.425i −0.367409 + 1.71653i
\(571\) −429.918 −0.752922 −0.376461 0.926432i \(-0.622859\pi\)
−0.376461 + 0.926432i \(0.622859\pi\)
\(572\) −286.307 64.5471i −0.500537 0.112845i
\(573\) 398.692 + 398.692i 0.695798 + 0.695798i
\(574\) −9.00701 + 168.842i −0.0156917 + 0.294151i
\(575\) 202.744 103.056i 0.352598 0.179227i
\(576\) −510.817 169.150i −0.886835 0.293662i
\(577\) 157.849 157.849i 0.273569 0.273569i −0.556966 0.830535i \(-0.688035\pi\)
0.830535 + 0.556966i \(0.188035\pi\)
\(578\) 152.624 137.165i 0.264055 0.237309i
\(579\) 1142.20i 1.97271i
\(580\) 219.272 810.691i 0.378055 1.39774i
\(581\) −233.277 −0.401510
\(582\) 755.021 678.546i 1.29729 1.16589i
\(583\) −136.775 15.8196i −0.234605 0.0271348i
\(584\) −2.94997 + 18.2930i −0.00505132 + 0.0313237i
\(585\) −164.711 226.936i −0.281557 0.387925i
\(586\) −15.5839 0.831333i −0.0265936 0.00141866i
\(587\) 127.820 + 127.820i 0.217752 + 0.217752i 0.807550 0.589799i \(-0.200793\pi\)
−0.589799 + 0.807550i \(0.700793\pi\)
\(588\) 424.936 342.792i 0.722680 0.582979i
\(589\) −1265.52 −2.14859
\(590\) −264.405 408.417i −0.448144 0.692232i
\(591\) 258.081 0.436685
\(592\) 776.530 500.164i 1.31171 0.844871i
\(593\) 284.588 284.588i 0.479912 0.479912i −0.425191 0.905104i \(-0.639793\pi\)
0.905104 + 0.425191i \(0.139793\pi\)
\(594\) −31.4530 44.3424i −0.0529511 0.0746506i
\(595\) 394.354 + 62.6556i 0.662780 + 0.105304i
\(596\) 7.09038 66.2678i 0.0118966 0.111188i
\(597\) −766.931 + 766.931i −1.28464 + 1.28464i
\(598\) −90.2664 + 81.1235i −0.150947 + 0.135658i
\(599\) −495.013 −0.826399 −0.413200 0.910640i \(-0.635589\pi\)
−0.413200 + 0.910640i \(0.635589\pi\)
\(600\) −381.637 + 742.066i −0.636062 + 1.23678i
\(601\) 1143.04i 1.90190i −0.309341 0.950951i \(-0.600109\pi\)
0.309341 0.950951i \(-0.399891\pi\)
\(602\) 177.628 + 197.648i 0.295064 + 0.328318i
\(603\) −70.7752 + 70.7752i −0.117372 + 0.117372i
\(604\) 35.4244 331.082i 0.0586497 0.548149i
\(605\) 228.818 560.060i 0.378212 0.925719i
\(606\) −19.0856 + 357.772i −0.0314943 + 0.590382i
\(607\) 244.186 244.186i 0.402283 0.402283i −0.476754 0.879037i \(-0.658187\pi\)
0.879037 + 0.476754i \(0.158187\pi\)
\(608\) −666.393 + 380.598i −1.09604 + 0.625984i
\(609\) 707.027i 1.16096i
\(610\) 516.416 334.323i 0.846583 0.548070i
\(611\) 276.508 0.452550
\(612\) 417.856 + 517.988i 0.682772 + 0.846386i
\(613\) 608.066 608.066i 0.991951 0.991951i −0.00801702 0.999968i \(-0.502552\pi\)
0.999968 + 0.00801702i \(0.00255192\pi\)
\(614\) 695.011 + 37.0759i 1.13194 + 0.0603841i
\(615\) 256.703 + 353.681i 0.417403 + 0.575092i
\(616\) 173.480 + 309.877i 0.281624 + 0.503047i
\(617\) −282.421 + 282.421i −0.457732 + 0.457732i −0.897910 0.440178i \(-0.854915\pi\)
0.440178 + 0.897910i \(0.354915\pi\)
\(618\) −28.4156 + 25.5374i −0.0459799 + 0.0413227i
\(619\) −568.021 −0.917642 −0.458821 0.888529i \(-0.651728\pi\)
−0.458821 + 0.888529i \(0.651728\pi\)
\(620\) −1018.79 275.557i −1.64321 0.444447i
\(621\) −22.4806 −0.0362007
\(622\) 617.836 555.257i 0.993306 0.892696i
\(623\) 15.2992 + 15.2992i 0.0245573 + 0.0245573i
\(624\) 94.2083 435.203i 0.150975 0.697440i
\(625\) 504.922 + 368.346i 0.807875 + 0.589353i
\(626\) −18.7062 + 350.660i −0.0298821 + 0.560159i
\(627\) 1093.36 + 126.459i 1.74379 + 0.201689i
\(628\) 90.3528 + 112.004i 0.143874 + 0.178351i
\(629\) −1142.40 −1.81621
\(630\) −71.0161 + 331.787i −0.112724 + 0.526646i
\(631\) 27.8174i 0.0440847i −0.999757 0.0220423i \(-0.992983\pi\)
0.999757 0.0220423i \(-0.00701686\pi\)
\(632\) −189.125 261.851i −0.299249 0.414321i
\(633\) −570.141 + 570.141i −0.900697 + 0.900697i
\(634\) −488.730 26.0717i −0.770868 0.0411225i
\(635\) −775.928 + 563.170i −1.22193 + 0.886882i
\(636\) 22.2242 207.711i 0.0349437 0.326589i
\(637\) 154.299 + 154.299i 0.242227 + 0.242227i
\(638\) −910.729 154.875i −1.42747 0.242751i
\(639\) −710.442 −1.11180
\(640\) −619.342 + 161.293i −0.967722 + 0.252020i
\(641\) −686.709 −1.07131 −0.535654 0.844438i \(-0.679935\pi\)
−0.535654 + 0.844438i \(0.679935\pi\)
\(642\) 1194.92 1073.89i 1.86125 1.67273i
\(643\) 360.493 360.493i 0.560642 0.560642i −0.368848 0.929490i \(-0.620248\pi\)
0.929490 + 0.368848i \(0.120248\pi\)
\(644\) 146.019 + 15.6234i 0.226737 + 0.0242600i
\(645\) 678.332 + 107.774i 1.05168 + 0.167092i
\(646\) 947.804 + 50.5613i 1.46719 + 0.0782682i
\(647\) 215.063 + 215.063i 0.332400 + 0.332400i 0.853497 0.521098i \(-0.174477\pi\)
−0.521098 + 0.853497i \(0.674477\pi\)
\(648\) 557.605 402.738i 0.860501 0.621509i
\(649\) −419.408 + 332.447i −0.646237 + 0.512246i
\(650\) −311.134 120.114i −0.478668 0.184791i
\(651\) −888.514 −1.36485
\(652\) 306.979 + 380.541i 0.470827 + 0.583652i
\(653\) −621.487 621.487i −0.951742 0.951742i 0.0471461 0.998888i \(-0.484987\pi\)
−0.998888 + 0.0471461i \(0.984987\pi\)
\(654\) 76.3912 + 4.07514i 0.116806 + 0.00623110i
\(655\) 1101.86 + 175.065i 1.68223 + 0.267275i
\(656\) −70.9143 + 327.594i −0.108101 + 0.499382i
\(657\) 13.7700 + 13.7700i 0.0209589 + 0.0209589i
\(658\) −223.646 248.851i −0.339887 0.378193i
\(659\) 2.90418i 0.00440694i −0.999998 0.00220347i \(-0.999299\pi\)
0.999998 0.00220347i \(-0.000701387\pi\)
\(660\) 852.654 + 339.874i 1.29190 + 0.514960i
\(661\) −881.200 −1.33313 −0.666566 0.745446i \(-0.732237\pi\)
−0.666566 + 0.745446i \(0.732237\pi\)
\(662\) 266.185 239.223i 0.402092 0.361365i
\(663\) −389.424 + 389.424i −0.587367 + 0.587367i
\(664\) −456.541 73.6227i −0.687561 0.110878i
\(665\) 284.243 + 391.626i 0.427433 + 0.588912i
\(666\) 51.7114 969.364i 0.0776448 1.45550i
\(667\) −270.119 + 270.119i −0.404975 + 0.404975i
\(668\) 716.338 + 887.995i 1.07236 + 1.32933i
\(669\) 732.409i 1.09478i
\(670\) −24.9166 + 116.410i −0.0371889 + 0.173746i
\(671\) −420.358 530.314i −0.626464 0.790333i
\(672\) −467.871 + 267.216i −0.696236 + 0.397642i
\(673\) 200.228 200.228i 0.297516 0.297516i −0.542524 0.840040i \(-0.682531\pi\)
0.840040 + 0.542524i \(0.182531\pi\)
\(674\) −29.9581 + 561.585i −0.0444482 + 0.833211i
\(675\) −27.9934 55.0720i −0.0414716 0.0815882i
\(676\) −495.202 52.9846i −0.732548 0.0783796i
\(677\) 434.262 + 434.262i 0.641450 + 0.641450i 0.950912 0.309462i \(-0.100149\pi\)
−0.309462 + 0.950912i \(0.600149\pi\)
\(678\) 373.344 + 415.421i 0.550655 + 0.612716i
\(679\) 490.939i 0.723032i
\(680\) 752.006 + 247.081i 1.10589 + 0.363354i
\(681\) 307.667i 0.451787i
\(682\) −194.630 + 1144.50i −0.285382 + 1.67816i
\(683\) −558.733 + 558.733i −0.818057 + 0.818057i −0.985826 0.167770i \(-0.946344\pi\)
0.167770 + 0.985826i \(0.446344\pi\)
\(684\) −85.8059 + 801.955i −0.125447 + 1.17245i
\(685\) 175.136 127.114i 0.255672 0.185567i
\(686\) 35.1331 658.593i 0.0512144 0.960048i
\(687\) 945.072 + 945.072i 1.37565 + 1.37565i
\(688\) 285.254 + 442.871i 0.414613 + 0.643707i
\(689\) 83.4919 0.121178
\(690\) 318.621 206.272i 0.461770 0.298946i
\(691\) 999.806i 1.44690i 0.690378 + 0.723449i \(0.257444\pi\)
−0.690378 + 0.723449i \(0.742556\pi\)
\(692\) −530.003 657.008i −0.765900 0.949433i
\(693\) 370.760 + 42.8827i 0.535008 + 0.0618798i
\(694\) 401.617 + 21.4245i 0.578698 + 0.0308711i
\(695\) −212.538 + 1337.72i −0.305811 + 1.92477i
\(696\) 223.139 1383.70i 0.320602 1.98808i
\(697\) 293.135 293.135i 0.420567 0.420567i
\(698\) 634.491 + 706.000i 0.909013 + 1.01146i
\(699\) 738.219i 1.05611i
\(700\) 143.552 + 377.165i 0.205075 + 0.538807i
\(701\) 1014.39i 1.44706i 0.690294 + 0.723529i \(0.257481\pi\)
−0.690294 + 0.723529i \(0.742519\pi\)
\(702\) 22.0359 + 24.5194i 0.0313901 + 0.0349279i
\(703\) −978.959 978.959i −1.39254 1.39254i
\(704\) 241.716 + 661.203i 0.343346 + 0.939209i
\(705\) −854.064 135.695i −1.21144 0.192475i
\(706\) −55.6522 + 1043.24i −0.0788275 + 1.47767i
\(707\) 122.522 + 122.522i 0.173299 + 0.173299i
\(708\) −509.812 631.979i −0.720073 0.892625i
\(709\) 492.819i 0.695091i −0.937663 0.347545i \(-0.887015\pi\)
0.937663 0.347545i \(-0.112985\pi\)
\(710\) −709.319 + 459.206i −0.999041 + 0.646770i
\(711\) −339.470 −0.477455
\(712\) 25.1132 + 34.7702i 0.0352714 + 0.0488345i
\(713\) 339.456 + 339.456i 0.476095 + 0.476095i
\(714\) 665.448 + 35.4988i 0.932000 + 0.0497182i
\(715\) −98.8140 + 353.308i −0.138201 + 0.494137i
\(716\) 43.9018 410.313i 0.0613154 0.573063i
\(717\) 115.899 + 115.899i 0.161644 + 0.161644i
\(718\) −97.7583 + 87.8566i −0.136154 + 0.122363i
\(719\) −826.112 −1.14897 −0.574487 0.818514i \(-0.694798\pi\)
−0.574487 + 0.818514i \(0.694798\pi\)
\(720\) −243.696 + 626.919i −0.338467 + 0.870720i
\(721\) 18.4767i 0.0256265i
\(722\) 286.266 + 318.529i 0.396490 + 0.441176i
\(723\) 952.732 + 952.732i 1.31775 + 1.31775i
\(724\) 51.0763 477.367i 0.0705473 0.659346i
\(725\) −998.082 325.367i −1.37666 0.448782i
\(726\) 282.519 969.355i 0.389144 1.33520i
\(727\) 658.233 + 658.233i 0.905409 + 0.905409i 0.995898 0.0904881i \(-0.0288427\pi\)
−0.0904881 + 0.995898i \(0.528843\pi\)
\(728\) −126.090 174.575i −0.173200 0.239801i
\(729\) 630.102i 0.864337i
\(730\) 22.6487 + 4.84776i 0.0310256 + 0.00664077i
\(731\) 651.534i 0.891291i
\(732\) 799.095 644.623i 1.09166 0.880633i
\(733\) −857.313 + 857.313i −1.16959 + 1.16959i −0.187289 + 0.982305i \(0.559970\pi\)
−0.982305 + 0.187289i \(0.940030\pi\)
\(734\) −44.6088 + 836.222i −0.0607750 + 1.13927i
\(735\) −400.869 552.312i −0.545400 0.751445i
\(736\) 280.839 + 76.6599i 0.381574 + 0.104158i
\(737\) 130.084 + 15.0457i 0.176505 + 0.0204148i
\(738\) 235.466 + 262.004i 0.319060 + 0.355019i
\(739\) 10.2097i 0.0138155i −0.999976 0.00690775i \(-0.997801\pi\)
0.999976 0.00690775i \(-0.00219882\pi\)
\(740\) −574.935 1001.26i −0.776940 1.35305i
\(741\) −667.420 −0.900702
\(742\) −67.5300 75.1409i −0.0910108 0.101268i
\(743\) −329.686 329.686i −0.443723 0.443723i 0.449538 0.893261i \(-0.351589\pi\)
−0.893261 + 0.449538i \(0.851589\pi\)
\(744\) −1738.89 280.417i −2.33721 0.376904i
\(745\) −82.2755 13.0721i −0.110437 0.0175464i
\(746\) −1121.76 59.8413i −1.50370 0.0802162i
\(747\) −343.659 + 343.659i −0.460052 + 0.460052i
\(748\) 191.494 849.394i 0.256007 1.13555i
\(749\) 776.976i 1.03735i
\(750\) 902.071 + 523.689i 1.20276 + 0.698253i
\(751\) 967.225i 1.28792i 0.765061 + 0.643958i \(0.222709\pi\)
−0.765061 + 0.643958i \(0.777291\pi\)
\(752\) −359.153 557.603i −0.477597 0.741493i
\(753\) 929.919 + 929.919i 1.23495 + 1.23495i
\(754\) 559.390 + 29.8410i 0.741896 + 0.0395770i
\(755\) −411.059 65.3097i −0.544449 0.0865029i
\(756\) 4.24384 39.6636i 0.00561354 0.0524651i
\(757\) 177.197 177.197i 0.234078 0.234078i −0.580315 0.814392i \(-0.697070\pi\)
0.814392 + 0.580315i \(0.197070\pi\)
\(758\) 44.2081 + 49.1905i 0.0583220 + 0.0648951i
\(759\) −259.355 327.196i −0.341706 0.431088i
\(760\) 432.687 + 856.150i 0.569325 + 1.12651i
\(761\) 446.102i 0.586206i −0.956081 0.293103i \(-0.905312\pi\)
0.956081 0.293103i \(-0.0946878\pi\)
\(762\) −1190.09 + 1069.55i −1.56180 + 1.40361i
\(763\) 26.1609 26.1609i 0.0342869 0.0342869i
\(764\) 537.489 + 57.5091i 0.703520 + 0.0752737i
\(765\) 673.257 488.651i 0.880075 0.638760i
\(766\) 547.071 + 29.1839i 0.714192 + 0.0380991i
\(767\) 229.479 229.479i 0.299190 0.299190i
\(768\) −999.991 + 375.300i −1.30207 + 0.488672i
\(769\) 1010.16 1.31360 0.656800 0.754065i \(-0.271910\pi\)
0.656800 + 0.754065i \(0.271910\pi\)
\(770\) 397.892 196.832i 0.516743 0.255626i
\(771\) 1109.55i 1.43911i
\(772\) −687.538 852.294i −0.890594 1.10401i