Properties

Label 220.3.i.a.43.15
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.15
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61925 - 1.17390i) q^{2} +(2.04929 - 2.04929i) q^{3} +(1.24394 + 3.80166i) q^{4} +(-1.54252 + 4.75612i) q^{5} +(-5.72396 + 0.912660i) q^{6} +(0.191923 - 0.191923i) q^{7} +(2.44850 - 7.61609i) q^{8} +0.600827i q^{9} +(8.08090 - 5.89059i) q^{10} +(-2.04378 + 10.8085i) q^{11} +(10.3399 + 5.24151i) q^{12} +(-11.7111 + 11.7111i) q^{13} +(-0.536069 + 0.0854739i) q^{14} +(6.58560 + 12.9077i) q^{15} +(-12.9052 + 9.45807i) q^{16} +(-3.02352 - 3.02352i) q^{17} +(0.705308 - 0.972889i) q^{18} +29.9372i q^{19} +(-19.9999 + 0.0522011i) q^{20} -0.786612i q^{21} +(15.9974 - 15.1024i) q^{22} +(16.8498 - 16.8498i) q^{23} +(-10.5899 - 20.6253i) q^{24} +(-20.2413 - 14.6728i) q^{25} +(32.7108 - 5.21560i) q^{26} +(19.6749 + 19.6749i) q^{27} +(0.968367 + 0.490885i) q^{28} +11.2003 q^{29} +(4.48859 - 28.6316i) q^{30} -12.8505i q^{31} +(31.9996 - 0.165600i) q^{32} +(17.9614 + 26.3380i) q^{33} +(1.34654 + 8.44512i) q^{34} +(0.616764 + 1.20885i) q^{35} +(-2.28414 + 0.747393i) q^{36} +(9.72307 - 9.72307i) q^{37} +(35.1431 - 48.4758i) q^{38} +47.9989i q^{39} +(32.4462 + 23.3933i) q^{40} -23.8309i q^{41} +(-0.923400 + 1.27372i) q^{42} +(49.2420 + 49.2420i) q^{43} +(-43.6324 + 5.67533i) q^{44} +(-2.85760 - 0.926786i) q^{45} +(-47.0640 + 7.50415i) q^{46} +(-4.51450 - 4.51450i) q^{47} +(-7.06421 + 45.8289i) q^{48} +48.9263i q^{49} +(15.5514 + 47.5200i) q^{50} -12.3921 q^{51} +(-59.0895 - 29.9537i) q^{52} +(-23.7927 - 23.7927i) q^{53} +(-8.76230 - 54.9548i) q^{54} +(-48.2538 - 26.3927i) q^{55} +(-0.991780 - 1.93163i) q^{56} +(61.3500 + 61.3500i) q^{57} +(-18.1361 - 13.1480i) q^{58} -14.6598 q^{59} +(-40.8787 + 41.0926i) q^{60} -66.0194i q^{61} +(-15.0852 + 20.8082i) q^{62} +(0.115313 + 0.115313i) q^{63} +(-52.0097 - 37.2960i) q^{64} +(-37.6348 - 73.7640i) q^{65} +(1.83406 - 63.7325i) q^{66} +(35.2878 + 35.2878i) q^{67} +(7.73331 - 15.2555i) q^{68} -69.0604i q^{69} +(0.420372 - 2.68145i) q^{70} -107.125i q^{71} +(4.57595 + 1.47113i) q^{72} +(-52.4871 + 52.4871i) q^{73} +(-27.1579 + 4.33021i) q^{74} +(-71.5490 + 11.4115i) q^{75} +(-113.811 + 37.2401i) q^{76} +(1.68215 + 2.46664i) q^{77} +(56.3457 - 77.7222i) q^{78} +122.830i q^{79} +(-25.0772 - 75.9680i) q^{80} +75.2316 q^{81} +(-27.9750 + 38.5882i) q^{82} +(-81.9671 - 81.9671i) q^{83} +(2.99043 - 0.978498i) q^{84} +(19.0440 - 9.71638i) q^{85} +(-21.9302 - 137.540i) q^{86} +(22.9526 - 22.9526i) q^{87} +(77.3141 + 42.0301i) q^{88} -24.0688i q^{89} +(3.53923 + 4.85523i) q^{90} +4.49526i q^{91} +(85.0175 + 43.0972i) q^{92} +(-26.3344 - 26.3344i) q^{93} +(2.01056 + 12.6097i) q^{94} +(-142.385 - 46.1786i) q^{95} +(65.2370 - 65.9157i) q^{96} +(-36.5473 + 36.5473i) q^{97} +(57.4344 - 79.2240i) q^{98} +(-6.49402 - 1.22796i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61925 1.17390i −0.809625 0.586948i
\(3\) 2.04929 2.04929i 0.683096 0.683096i −0.277600 0.960697i \(-0.589539\pi\)
0.960697 + 0.277600i \(0.0895391\pi\)
\(4\) 1.24394 + 3.80166i 0.310985 + 0.950415i
\(5\) −1.54252 + 4.75612i −0.308503 + 0.951223i
\(6\) −5.72396 + 0.912660i −0.953994 + 0.152110i
\(7\) 0.191923 0.191923i 0.0274176 0.0274176i −0.693265 0.720683i \(-0.743828\pi\)
0.720683 + 0.693265i \(0.243828\pi\)
\(8\) 2.44850 7.61609i 0.306062 0.952011i
\(9\) 0.600827i 0.0667586i
\(10\) 8.08090 5.89059i 0.808090 0.589059i
\(11\) −2.04378 + 10.8085i −0.185798 + 0.982588i
\(12\) 10.3399 + 5.24151i 0.861658 + 0.436792i
\(13\) −11.7111 + 11.7111i −0.900854 + 0.900854i −0.995510 0.0946558i \(-0.969825\pi\)
0.0946558 + 0.995510i \(0.469825\pi\)
\(14\) −0.536069 + 0.0854739i −0.0382907 + 0.00610528i
\(15\) 6.58560 + 12.9077i 0.439040 + 0.860515i
\(16\) −12.9052 + 9.45807i −0.806577 + 0.591130i
\(17\) −3.02352 3.02352i −0.177854 0.177854i 0.612566 0.790420i \(-0.290137\pi\)
−0.790420 + 0.612566i \(0.790137\pi\)
\(18\) 0.705308 0.972889i 0.0391838 0.0540494i
\(19\) 29.9372i 1.57564i 0.615904 + 0.787821i \(0.288791\pi\)
−0.615904 + 0.787821i \(0.711209\pi\)
\(20\) −19.9999 + 0.0522011i −0.999997 + 0.00261006i
\(21\) 0.786612i 0.0374577i
\(22\) 15.9974 15.1024i 0.727154 0.686474i
\(23\) 16.8498 16.8498i 0.732602 0.732602i −0.238533 0.971134i \(-0.576666\pi\)
0.971134 + 0.238533i \(0.0766664\pi\)
\(24\) −10.5899 20.6253i −0.441245 0.859386i
\(25\) −20.2413 14.6728i −0.809651 0.586911i
\(26\) 32.7108 5.21560i 1.25811 0.200600i
\(27\) 19.6749 + 19.6749i 0.728699 + 0.728699i
\(28\) 0.968367 + 0.490885i 0.0345845 + 0.0175316i
\(29\) 11.2003 0.386217 0.193109 0.981177i \(-0.438143\pi\)
0.193109 + 0.981177i \(0.438143\pi\)
\(30\) 4.48859 28.6316i 0.149620 0.954387i
\(31\) 12.8505i 0.414533i −0.978285 0.207267i \(-0.933543\pi\)
0.978285 0.207267i \(-0.0664567\pi\)
\(32\) 31.9996 0.165600i 0.999987 0.00517502i
\(33\) 17.9614 + 26.3380i 0.544284 + 0.798120i
\(34\) 1.34654 + 8.44512i 0.0396041 + 0.248386i
\(35\) 0.616764 + 1.20885i 0.0176218 + 0.0345387i
\(36\) −2.28414 + 0.747393i −0.0634483 + 0.0207609i
\(37\) 9.72307 9.72307i 0.262786 0.262786i −0.563399 0.826185i \(-0.690507\pi\)
0.826185 + 0.563399i \(0.190507\pi\)
\(38\) 35.1431 48.4758i 0.924820 1.27568i
\(39\) 47.9989i 1.23074i
\(40\) 32.4462 + 23.3933i 0.811154 + 0.584832i
\(41\) 23.8309i 0.581242i −0.956838 0.290621i \(-0.906138\pi\)
0.956838 0.290621i \(-0.0938619\pi\)
\(42\) −0.923400 + 1.27372i −0.0219857 + 0.0303267i
\(43\) 49.2420 + 49.2420i 1.14516 + 1.14516i 0.987492 + 0.157671i \(0.0503987\pi\)
0.157671 + 0.987492i \(0.449601\pi\)
\(44\) −43.6324 + 5.67533i −0.991647 + 0.128985i
\(45\) −2.85760 0.926786i −0.0635023 0.0205952i
\(46\) −47.0640 + 7.50415i −1.02313 + 0.163134i
\(47\) −4.51450 4.51450i −0.0960533 0.0960533i 0.657447 0.753501i \(-0.271636\pi\)
−0.753501 + 0.657447i \(0.771636\pi\)
\(48\) −7.06421 + 45.8289i −0.147171 + 0.954768i
\(49\) 48.9263i 0.998497i
\(50\) 15.5514 + 47.5200i 0.311028 + 0.950401i
\(51\) −12.3921 −0.242983
\(52\) −59.0895 29.9537i −1.13634 0.576033i
\(53\) −23.7927 23.7927i −0.448918 0.448918i 0.446076 0.894995i \(-0.352821\pi\)
−0.894995 + 0.446076i \(0.852821\pi\)
\(54\) −8.76230 54.9548i −0.162265 1.01768i
\(55\) −48.2538 26.3927i −0.877341 0.479867i
\(56\) −0.991780 1.93163i −0.0177104 0.0344934i
\(57\) 61.3500 + 61.3500i 1.07632 + 1.07632i
\(58\) −18.1361 13.1480i −0.312691 0.226689i
\(59\) −14.6598 −0.248471 −0.124235 0.992253i \(-0.539648\pi\)
−0.124235 + 0.992253i \(0.539648\pi\)
\(60\) −40.8787 + 41.0926i −0.681311 + 0.684877i
\(61\) 66.0194i 1.08228i −0.840931 0.541142i \(-0.817992\pi\)
0.840931 0.541142i \(-0.182008\pi\)
\(62\) −15.0852 + 20.8082i −0.243309 + 0.335616i
\(63\) 0.115313 + 0.115313i 0.00183036 + 0.00183036i
\(64\) −52.0097 37.2960i −0.812652 0.582750i
\(65\) −37.6348 73.7640i −0.578997 1.13483i
\(66\) 1.83406 63.7325i 0.0277888 0.965644i
\(67\) 35.2878 + 35.2878i 0.526684 + 0.526684i 0.919582 0.392898i \(-0.128527\pi\)
−0.392898 + 0.919582i \(0.628527\pi\)
\(68\) 7.73331 15.2555i 0.113725 0.224345i
\(69\) 69.0604i 1.00088i
\(70\) 0.420372 2.68145i 0.00600531 0.0383065i
\(71\) 107.125i 1.50881i −0.656410 0.754404i \(-0.727926\pi\)
0.656410 0.754404i \(-0.272074\pi\)
\(72\) 4.57595 + 1.47113i 0.0635549 + 0.0204323i
\(73\) −52.4871 + 52.4871i −0.719001 + 0.719001i −0.968401 0.249399i \(-0.919767\pi\)
0.249399 + 0.968401i \(0.419767\pi\)
\(74\) −27.1579 + 4.33021i −0.366999 + 0.0585164i
\(75\) −71.5490 + 11.4115i −0.953987 + 0.152153i
\(76\) −113.811 + 37.2401i −1.49751 + 0.490001i
\(77\) 1.68215 + 2.46664i 0.0218461 + 0.0320343i
\(78\) 56.3457 77.7222i 0.722380 0.996438i
\(79\) 122.830i 1.55480i 0.629004 + 0.777402i \(0.283463\pi\)
−0.629004 + 0.777402i \(0.716537\pi\)
\(80\) −25.0772 75.9680i −0.313465 0.949600i
\(81\) 75.2316 0.928785
\(82\) −27.9750 + 38.5882i −0.341159 + 0.470588i
\(83\) −81.9671 81.9671i −0.987556 0.987556i 0.0123677 0.999924i \(-0.496063\pi\)
−0.999924 + 0.0123677i \(0.996063\pi\)
\(84\) 2.99043 0.978498i 0.0356004 0.0116488i
\(85\) 19.0440 9.71638i 0.224047 0.114310i
\(86\) −21.9302 137.540i −0.255002 1.59930i
\(87\) 22.9526 22.9526i 0.263824 0.263824i
\(88\) 77.3141 + 42.0301i 0.878569 + 0.477615i
\(89\) 24.0688i 0.270435i −0.990816 0.135218i \(-0.956827\pi\)
0.990816 0.135218i \(-0.0431734\pi\)
\(90\) 3.53923 + 4.85523i 0.0393247 + 0.0539470i
\(91\) 4.49526i 0.0493985i
\(92\) 85.0175 + 43.0972i 0.924104 + 0.468447i
\(93\) −26.3344 26.3344i −0.283166 0.283166i
\(94\) 2.01056 + 12.6097i 0.0213889 + 0.134145i
\(95\) −142.385 46.1786i −1.49879 0.486091i
\(96\) 65.2370 65.9157i 0.679552 0.686622i
\(97\) −36.5473 + 36.5473i −0.376777 + 0.376777i −0.869938 0.493161i \(-0.835841\pi\)
0.493161 + 0.869938i \(0.335841\pi\)
\(98\) 57.4344 79.2240i 0.586065 0.808408i
\(99\) −6.49402 1.22796i −0.0655962 0.0124036i
\(100\) 30.6020 95.2025i 0.306020 0.952025i
\(101\) 147.722i 1.46260i 0.682057 + 0.731299i \(0.261086\pi\)
−0.682057 + 0.731299i \(0.738914\pi\)
\(102\) 20.0659 + 14.5471i 0.196725 + 0.142618i
\(103\) 15.3839 15.3839i 0.149358 0.149358i −0.628473 0.777831i \(-0.716320\pi\)
0.777831 + 0.628473i \(0.216320\pi\)
\(104\) 60.5182 + 117.867i 0.581906 + 1.13334i
\(105\) 3.74122 + 1.21336i 0.0356306 + 0.0115558i
\(106\) 10.5962 + 66.4564i 0.0999640 + 0.626947i
\(107\) 66.6257 66.6257i 0.622670 0.622670i −0.323543 0.946213i \(-0.604874\pi\)
0.946213 + 0.323543i \(0.104874\pi\)
\(108\) −50.3228 + 99.2715i −0.465952 + 0.919181i
\(109\) −147.808 −1.35604 −0.678018 0.735045i \(-0.737161\pi\)
−0.678018 + 0.735045i \(0.737161\pi\)
\(110\) 47.1526 + 99.3812i 0.428660 + 0.903466i
\(111\) 39.8508i 0.359016i
\(112\) −0.661588 + 4.29203i −0.00590704 + 0.0383217i
\(113\) 101.361 + 101.361i 0.896998 + 0.896998i 0.995170 0.0981712i \(-0.0312993\pi\)
−0.0981712 + 0.995170i \(0.531299\pi\)
\(114\) −27.3225 171.359i −0.239671 1.50315i
\(115\) 54.1486 + 106.131i 0.470858 + 0.922878i
\(116\) 13.9325 + 42.5797i 0.120108 + 0.367066i
\(117\) −7.03635 7.03635i −0.0601397 0.0601397i
\(118\) 23.7378 + 17.2090i 0.201168 + 0.145839i
\(119\) −1.16057 −0.00975266
\(120\) 114.431 18.5519i 0.953593 0.154600i
\(121\) −112.646 44.1803i −0.930958 0.365126i
\(122\) −77.4998 + 106.902i −0.635244 + 0.876245i
\(123\) −48.8364 48.8364i −0.397044 0.397044i
\(124\) 48.8533 15.9853i 0.393978 0.128914i
\(125\) 101.008 73.6369i 0.808064 0.589095i
\(126\) −0.0513550 0.322085i −0.000407579 0.00255623i
\(127\) 128.689 128.689i 1.01330 1.01330i 0.0133851 0.999910i \(-0.495739\pi\)
0.999910 0.0133851i \(-0.00426073\pi\)
\(128\) 40.4351 + 121.445i 0.315899 + 0.948793i
\(129\) 201.822 1.56451
\(130\) −25.6510 + 163.622i −0.197315 + 1.25863i
\(131\) 122.974 0.938730 0.469365 0.883004i \(-0.344483\pi\)
0.469365 + 0.883004i \(0.344483\pi\)
\(132\) −77.7851 + 101.046i −0.589281 + 0.765499i
\(133\) 5.74564 + 5.74564i 0.0432003 + 0.0432003i
\(134\) −15.7156 98.5640i −0.117281 0.735552i
\(135\) −123.925 + 63.2272i −0.917961 + 0.468349i
\(136\) −30.4305 + 15.6243i −0.223753 + 0.114885i
\(137\) −158.269 + 158.269i −1.15525 + 1.15525i −0.169766 + 0.985484i \(0.554301\pi\)
−0.985484 + 0.169766i \(0.945699\pi\)
\(138\) −81.0697 + 111.826i −0.587461 + 0.810333i
\(139\) 101.883i 0.732970i −0.930424 0.366485i \(-0.880561\pi\)
0.930424 0.366485i \(-0.119439\pi\)
\(140\) −3.82843 + 3.84847i −0.0273459 + 0.0274891i
\(141\) −18.5030 −0.131227
\(142\) −125.754 + 173.463i −0.885591 + 1.22157i
\(143\) −102.644 150.514i −0.717791 1.05255i
\(144\) −5.68267 7.75381i −0.0394630 0.0538459i
\(145\) −17.2766 + 53.2699i −0.119149 + 0.367379i
\(146\) 146.604 23.3754i 1.00414 0.160105i
\(147\) 100.264 + 100.264i 0.682069 + 0.682069i
\(148\) 49.0587 + 24.8689i 0.331478 + 0.168033i
\(149\) 87.1478 0.584885 0.292442 0.956283i \(-0.405532\pi\)
0.292442 + 0.956283i \(0.405532\pi\)
\(150\) 129.252 + 65.5130i 0.861677 + 0.436753i
\(151\) 192.284 1.27340 0.636701 0.771111i \(-0.280299\pi\)
0.636701 + 0.771111i \(0.280299\pi\)
\(152\) 228.005 + 73.3012i 1.50003 + 0.482245i
\(153\) 1.81661 1.81661i 0.0118733 0.0118733i
\(154\) 0.171766 5.96878i 0.00111536 0.0387583i
\(155\) 61.1186 + 19.8222i 0.394314 + 0.127885i
\(156\) −182.475 + 59.7077i −1.16971 + 0.382742i
\(157\) 149.928 149.928i 0.954956 0.954956i −0.0440723 0.999028i \(-0.514033\pi\)
0.999028 + 0.0440723i \(0.0140332\pi\)
\(158\) 144.189 198.892i 0.912588 1.25881i
\(159\) −97.5162 −0.613309
\(160\) −48.5723 + 152.449i −0.303577 + 0.952807i
\(161\) 6.46775i 0.0401723i
\(162\) −121.819 88.3140i −0.751967 0.545148i
\(163\) 20.1712 20.1712i 0.123750 0.123750i −0.642520 0.766269i \(-0.722111\pi\)
0.766269 + 0.642520i \(0.222111\pi\)
\(164\) 90.5970 29.6442i 0.552421 0.180758i
\(165\) −152.972 + 44.7996i −0.927104 + 0.271513i
\(166\) 36.5044 + 228.946i 0.219906 + 1.37919i
\(167\) 56.4559 56.4559i 0.338059 0.338059i −0.517577 0.855636i \(-0.673166\pi\)
0.855636 + 0.517577i \(0.173166\pi\)
\(168\) −5.99091 1.92602i −0.0356602 0.0114644i
\(169\) 105.300i 0.623077i
\(170\) −42.2430 6.62245i −0.248489 0.0389556i
\(171\) −17.9871 −0.105188
\(172\) −125.947 + 248.455i −0.732251 + 1.44451i
\(173\) 128.028 128.028i 0.740047 0.740047i −0.232540 0.972587i \(-0.574704\pi\)
0.972587 + 0.232540i \(0.0747037\pi\)
\(174\) −64.1101 + 10.2221i −0.368449 + 0.0587475i
\(175\) −6.70082 + 1.06873i −0.0382904 + 0.00610700i
\(176\) −75.8518 158.816i −0.430976 0.902363i
\(177\) −30.0421 + 30.0421i −0.169729 + 0.169729i
\(178\) −28.2542 + 38.9733i −0.158731 + 0.218951i
\(179\) 326.200 1.82234 0.911172 0.412025i \(-0.135179\pi\)
0.911172 + 0.412025i \(0.135179\pi\)
\(180\) −0.0313639 12.0165i −0.000174244 0.0667583i
\(181\) −7.65453 −0.0422902 −0.0211451 0.999776i \(-0.506731\pi\)
−0.0211451 + 0.999776i \(0.506731\pi\)
\(182\) 5.27697 7.27896i 0.0289943 0.0399943i
\(183\) −135.293 135.293i −0.739305 0.739305i
\(184\) −87.0731 169.587i −0.473223 0.921667i
\(185\) 31.2461 + 61.2421i 0.168898 + 0.331038i
\(186\) 11.7282 + 73.5559i 0.0630547 + 0.395462i
\(187\) 38.8590 26.5002i 0.207802 0.141712i
\(188\) 11.5468 22.7784i 0.0614193 0.121162i
\(189\) 7.55213 0.0399583
\(190\) 176.348 + 241.920i 0.928146 + 1.27326i
\(191\) 28.8142i 0.150860i −0.997151 0.0754299i \(-0.975967\pi\)
0.997151 0.0754299i \(-0.0240329\pi\)
\(192\) −183.013 + 30.1526i −0.953194 + 0.157045i
\(193\) 124.886 124.886i 0.647078 0.647078i −0.305208 0.952286i \(-0.598726\pi\)
0.952286 + 0.305208i \(0.0987260\pi\)
\(194\) 102.082 16.2765i 0.526196 0.0838996i
\(195\) −228.288 74.0391i −1.17071 0.379688i
\(196\) −186.001 + 60.8614i −0.948986 + 0.310517i
\(197\) −159.965 159.965i −0.812005 0.812005i 0.172930 0.984934i \(-0.444677\pi\)
−0.984934 + 0.172930i \(0.944677\pi\)
\(198\) 9.07395 + 9.61167i 0.0458280 + 0.0485438i
\(199\) −246.680 −1.23960 −0.619800 0.784760i \(-0.712786\pi\)
−0.619800 + 0.784760i \(0.712786\pi\)
\(200\) −161.310 + 118.233i −0.806550 + 0.591166i
\(201\) 144.630 0.719552
\(202\) 173.411 239.199i 0.858468 1.18416i
\(203\) 2.14960 2.14960i 0.0105891 0.0105891i
\(204\) −15.4151 47.1106i −0.0755640 0.230934i
\(205\) 113.343 + 36.7596i 0.552891 + 0.179315i
\(206\) −42.9694 + 6.85127i −0.208589 + 0.0332586i
\(207\) 10.1238 + 10.1238i 0.0489074 + 0.0489074i
\(208\) 40.3700 261.899i 0.194086 1.25913i
\(209\) −323.575 61.1851i −1.54821 0.292752i
\(210\) −4.63361 6.35653i −0.0220648 0.0302692i
\(211\) 154.668 0.733025 0.366512 0.930413i \(-0.380552\pi\)
0.366512 + 0.930413i \(0.380552\pi\)
\(212\) 60.8550 120.048i 0.287052 0.566266i
\(213\) −219.531 219.531i −1.03066 1.03066i
\(214\) −186.095 + 29.6721i −0.869604 + 0.138655i
\(215\) −310.157 + 158.244i −1.44259 + 0.736019i
\(216\) 198.020 101.672i 0.916757 0.470702i
\(217\) −2.46631 2.46631i −0.0113655 0.0113655i
\(218\) 239.338 + 173.511i 1.09788 + 0.795922i
\(219\) 215.123i 0.982295i
\(220\) 40.3113 216.275i 0.183233 0.983070i
\(221\) 70.8175 0.320441
\(222\) −46.7806 + 64.5284i −0.210724 + 0.290668i
\(223\) −104.480 + 104.480i −0.468519 + 0.468519i −0.901434 0.432916i \(-0.857485\pi\)
0.432916 + 0.901434i \(0.357485\pi\)
\(224\) 6.10968 6.17324i 0.0272753 0.0275591i
\(225\) 8.81580 12.1615i 0.0391813 0.0540512i
\(226\) −45.1415 283.115i −0.199741 1.25272i
\(227\) −56.0911 + 56.0911i −0.247097 + 0.247097i −0.819778 0.572681i \(-0.805903\pi\)
0.572681 + 0.819778i \(0.305903\pi\)
\(228\) −156.916 + 309.548i −0.688228 + 1.35766i
\(229\) 295.729i 1.29139i 0.763595 + 0.645696i \(0.223433\pi\)
−0.763595 + 0.645696i \(0.776567\pi\)
\(230\) 36.9064 235.417i 0.160463 1.02355i
\(231\) 8.50207 + 1.60766i 0.0368055 + 0.00695958i
\(232\) 27.4239 85.3025i 0.118207 0.367683i
\(233\) 138.848 138.848i 0.595913 0.595913i −0.343309 0.939222i \(-0.611548\pi\)
0.939222 + 0.343309i \(0.111548\pi\)
\(234\) 3.13367 + 19.6535i 0.0133918 + 0.0839895i
\(235\) 28.4352 14.5078i 0.121001 0.0617354i
\(236\) −18.2359 55.7314i −0.0772706 0.236150i
\(237\) 251.713 + 251.713i 1.06208 + 1.06208i
\(238\) 1.87925 + 1.36238i 0.00789599 + 0.00572430i
\(239\) 330.896i 1.38450i 0.721656 + 0.692251i \(0.243381\pi\)
−0.721656 + 0.692251i \(0.756619\pi\)
\(240\) −207.071 104.290i −0.862795 0.434542i
\(241\) 353.916i 1.46853i 0.678863 + 0.734265i \(0.262473\pi\)
−0.678863 + 0.734265i \(0.737527\pi\)
\(242\) 130.539 + 203.773i 0.539417 + 0.842039i
\(243\) −22.9026 + 22.9026i −0.0942494 + 0.0942494i
\(244\) 250.983 82.1241i 1.02862 0.336574i
\(245\) −232.699 75.4697i −0.949793 0.308040i
\(246\) 21.7495 + 136.407i 0.0884128 + 0.554501i
\(247\) −350.598 350.598i −1.41942 1.41942i
\(248\) −97.8708 31.4645i −0.394640 0.126873i
\(249\) −335.949 −1.34919
\(250\) −249.999 + 0.663785i −0.999996 + 0.00265514i
\(251\) 15.6105i 0.0621931i −0.999516 0.0310965i \(-0.990100\pi\)
0.999516 0.0310965i \(-0.00989993\pi\)
\(252\) −0.294937 + 0.581821i −0.00117039 + 0.00230881i
\(253\) 147.684 + 216.558i 0.583729 + 0.855962i
\(254\) −359.446 + 57.3120i −1.41514 + 0.225638i
\(255\) 19.1151 58.9384i 0.0749610 0.231131i
\(256\) 77.0897 244.117i 0.301132 0.953583i
\(257\) 276.648 276.648i 1.07645 1.07645i 0.0796260 0.996825i \(-0.474627\pi\)
0.996825 0.0796260i \(-0.0253726\pi\)
\(258\) −326.801 236.918i −1.26667 0.918287i
\(259\) 3.73216i 0.0144099i
\(260\) 233.610 234.833i 0.898500 0.903202i
\(261\) 6.72944i 0.0257833i
\(262\) −199.125 144.358i −0.760020 0.550986i
\(263\) 85.2580 + 85.2580i 0.324175 + 0.324175i 0.850366 0.526191i \(-0.176380\pi\)
−0.526191 + 0.850366i \(0.676380\pi\)
\(264\) 244.571 72.3070i 0.926405 0.273890i
\(265\) 149.861 76.4601i 0.565515 0.288529i
\(266\) −2.55885 16.0484i −0.00961973 0.0603324i
\(267\) −49.3238 49.3238i −0.184733 0.184733i
\(268\) −90.2564 + 178.048i −0.336777 + 0.664359i
\(269\) 426.434i 1.58526i 0.609705 + 0.792628i \(0.291288\pi\)
−0.609705 + 0.792628i \(0.708712\pi\)
\(270\) 274.887 + 43.0942i 1.01810 + 0.159608i
\(271\) 268.779 0.991806 0.495903 0.868378i \(-0.334837\pi\)
0.495903 + 0.868378i \(0.334837\pi\)
\(272\) 67.6158 + 10.4225i 0.248588 + 0.0383181i
\(273\) 9.21210 + 9.21210i 0.0337439 + 0.0337439i
\(274\) 442.069 70.4860i 1.61339 0.257248i
\(275\) 199.959 188.789i 0.727124 0.686507i
\(276\) 262.544 85.9070i 0.951247 0.311257i
\(277\) −191.192 191.192i −0.690225 0.690225i 0.272057 0.962281i \(-0.412296\pi\)
−0.962281 + 0.272057i \(0.912296\pi\)
\(278\) −119.600 + 164.974i −0.430215 + 0.593430i
\(279\) 7.72095 0.0276736
\(280\) 10.7169 1.73745i 0.0382746 0.00620520i
\(281\) 109.574i 0.389944i 0.980809 + 0.194972i \(0.0624616\pi\)
−0.980809 + 0.194972i \(0.937538\pi\)
\(282\) 29.9611 + 21.7206i 0.106245 + 0.0770235i
\(283\) 25.6303 + 25.6303i 0.0905664 + 0.0905664i 0.750939 0.660372i \(-0.229601\pi\)
−0.660372 + 0.750939i \(0.729601\pi\)
\(284\) 407.254 133.258i 1.43399 0.469217i
\(285\) −386.421 + 197.154i −1.35586 + 0.691770i
\(286\) −10.4811 + 364.213i −0.0366473 + 1.27347i
\(287\) −4.57370 4.57370i −0.0159363 0.0159363i
\(288\) 0.0994973 + 19.2262i 0.000345477 + 0.0667577i
\(289\) 270.717i 0.936736i
\(290\) 90.5085 65.9763i 0.312098 0.227505i
\(291\) 149.792i 0.514749i
\(292\) −264.829 134.247i −0.906948 0.459751i
\(293\) −143.187 + 143.187i −0.488691 + 0.488691i −0.907893 0.419202i \(-0.862310\pi\)
0.419202 + 0.907893i \(0.362310\pi\)
\(294\) −44.6531 280.052i −0.151881 0.952559i
\(295\) 22.6129 69.7236i 0.0766540 0.236351i
\(296\) −50.2449 97.8587i −0.169746 0.330604i
\(297\) −252.866 + 172.444i −0.851402 + 0.580620i
\(298\) −141.114 102.302i −0.473537 0.343297i
\(299\) 394.660i 1.31993i
\(300\) −132.385 257.810i −0.441284 0.859366i
\(301\) 18.9014 0.0627952
\(302\) −311.355 225.721i −1.03098 0.747420i
\(303\) 302.726 + 302.726i 0.999095 + 0.999095i
\(304\) −283.148 386.346i −0.931409 1.27088i
\(305\) 313.996 + 101.836i 1.02949 + 0.333888i
\(306\) −5.07406 + 0.809036i −0.0165819 + 0.00264391i
\(307\) 302.068 302.068i 0.983936 0.983936i −0.0159367 0.999873i \(-0.505073\pi\)
0.999873 + 0.0159367i \(0.00507304\pi\)
\(308\) −7.28485 + 9.46330i −0.0236521 + 0.0307250i
\(309\) 63.0520i 0.204052i
\(310\) −75.6972 103.844i −0.244184 0.334980i
\(311\) 245.922i 0.790745i −0.918521 0.395373i \(-0.870615\pi\)
0.918521 0.395373i \(-0.129385\pi\)
\(312\) 365.564 + 117.525i 1.17168 + 0.376683i
\(313\) −265.176 265.176i −0.847207 0.847207i 0.142576 0.989784i \(-0.454461\pi\)
−0.989784 + 0.142576i \(0.954461\pi\)
\(314\) −418.771 + 66.7712i −1.33367 + 0.212647i
\(315\) −0.726312 + 0.370569i −0.00230575 + 0.00117641i
\(316\) −466.956 + 152.793i −1.47771 + 0.483521i
\(317\) 161.326 161.326i 0.508916 0.508916i −0.405278 0.914194i \(-0.632825\pi\)
0.914194 + 0.405278i \(0.132825\pi\)
\(318\) 157.903 + 114.474i 0.496550 + 0.359980i
\(319\) −22.8909 + 121.058i −0.0717584 + 0.379492i
\(320\) 257.610 189.834i 0.805031 0.593233i
\(321\) 273.071i 0.850688i
\(322\) −7.59246 + 10.4729i −0.0235791 + 0.0325245i
\(323\) 90.5157 90.5157i 0.280234 0.280234i
\(324\) 93.5836 + 286.005i 0.288838 + 0.882731i
\(325\) 408.882 65.2134i 1.25810 0.200657i
\(326\) −56.3410 + 8.98333i −0.172825 + 0.0275562i
\(327\) −302.901 + 302.901i −0.926303 + 0.926303i
\(328\) −181.498 58.3500i −0.553349 0.177896i
\(329\) −1.73288 −0.00526710
\(330\) 300.290 + 107.032i 0.909971 + 0.324338i
\(331\) 447.273i 1.35128i 0.737232 + 0.675639i \(0.236132\pi\)
−0.737232 + 0.675639i \(0.763868\pi\)
\(332\) 209.649 413.573i 0.631473 1.24570i
\(333\) 5.84189 + 5.84189i 0.0175432 + 0.0175432i
\(334\) −157.690 + 25.1429i −0.472124 + 0.0752781i
\(335\) −222.265 + 113.401i −0.663478 + 0.338510i
\(336\) 7.43983 + 10.1514i 0.0221424 + 0.0302125i
\(337\) −151.689 151.689i −0.450115 0.450115i 0.445278 0.895393i \(-0.353105\pi\)
−0.895393 + 0.445278i \(0.853105\pi\)
\(338\) −123.611 + 170.507i −0.365713 + 0.504458i
\(339\) 415.435 1.22547
\(340\) 60.6280 + 60.3123i 0.178318 + 0.177389i
\(341\) 138.895 + 26.2637i 0.407315 + 0.0770195i
\(342\) 29.1256 + 21.1150i 0.0851625 + 0.0617396i
\(343\) 18.7943 + 18.7943i 0.0547940 + 0.0547940i
\(344\) 495.601 254.463i 1.44070 0.739717i
\(345\) 328.459 + 106.527i 0.952056 + 0.308773i
\(346\) −357.601 + 57.0179i −1.03353 + 0.164792i
\(347\) 1.95387 1.95387i 0.00563075 0.00563075i −0.704286 0.709917i \(-0.748733\pi\)
0.709917 + 0.704286i \(0.248733\pi\)
\(348\) 115.810 + 58.7064i 0.332787 + 0.168697i
\(349\) 507.289 1.45355 0.726774 0.686876i \(-0.241019\pi\)
0.726774 + 0.686876i \(0.241019\pi\)
\(350\) 12.1049 + 6.13552i 0.0345853 + 0.0175301i
\(351\) −460.829 −1.31290
\(352\) −63.6102 + 346.205i −0.180711 + 0.983536i
\(353\) −20.6594 20.6594i −0.0585252 0.0585252i 0.677238 0.735764i \(-0.263177\pi\)
−0.735764 + 0.677238i \(0.763177\pi\)
\(354\) 83.9120 13.3794i 0.237039 0.0377949i
\(355\) 509.501 + 165.243i 1.43521 + 0.465472i
\(356\) 91.5012 29.9401i 0.257026 0.0841014i
\(357\) −2.37834 + 2.37834i −0.00666200 + 0.00666200i
\(358\) −528.199 382.924i −1.47542 1.06962i
\(359\) 286.206i 0.797231i 0.917118 + 0.398615i \(0.130509\pi\)
−0.917118 + 0.398615i \(0.869491\pi\)
\(360\) −14.0553 + 19.4945i −0.0390426 + 0.0541515i
\(361\) −535.236 −1.48265
\(362\) 12.3946 + 8.98562i 0.0342392 + 0.0248222i
\(363\) −321.382 + 140.306i −0.885350 + 0.386518i
\(364\) −17.0895 + 5.59184i −0.0469491 + 0.0153622i
\(365\) −168.673 330.597i −0.462117 0.905745i
\(366\) 60.2533 + 377.892i 0.164626 + 1.03249i
\(367\) −107.002 107.002i −0.291558 0.291558i 0.546138 0.837696i \(-0.316098\pi\)
−0.837696 + 0.546138i \(0.816098\pi\)
\(368\) −58.0840 + 376.818i −0.157837 + 1.02396i
\(369\) 14.3183 0.0388029
\(370\) 21.2966 135.846i 0.0575583 0.367151i
\(371\) −9.13273 −0.0246165
\(372\) 67.3561 132.873i 0.181065 0.357186i
\(373\) −357.322 + 357.322i −0.957967 + 0.957967i −0.999152 0.0411849i \(-0.986887\pi\)
0.0411849 + 0.999152i \(0.486887\pi\)
\(374\) −94.0309 2.70597i −0.251419 0.00723521i
\(375\) 56.0912 357.898i 0.149577 0.954394i
\(376\) −45.4366 + 23.3291i −0.120842 + 0.0620455i
\(377\) −131.168 + 131.168i −0.347925 + 0.347925i
\(378\) −12.2288 8.86540i −0.0323513 0.0234534i
\(379\) 454.313 1.19872 0.599358 0.800481i \(-0.295423\pi\)
0.599358 + 0.800481i \(0.295423\pi\)
\(380\) −1.56276 598.742i −0.00411252 1.57564i
\(381\) 527.440i 1.38436i
\(382\) −33.8249 + 46.6574i −0.0885468 + 0.122140i
\(383\) −228.002 + 228.002i −0.595306 + 0.595306i −0.939060 0.343754i \(-0.888302\pi\)
0.343754 + 0.939060i \(0.388302\pi\)
\(384\) 331.740 + 166.014i 0.863907 + 0.432327i
\(385\) −14.3264 + 4.19564i −0.0372114 + 0.0108978i
\(386\) −348.825 + 55.6186i −0.903691 + 0.144090i
\(387\) −29.5859 + 29.5859i −0.0764495 + 0.0764495i
\(388\) −184.403 93.4778i −0.475266 0.240922i
\(389\) 109.473i 0.281421i 0.990051 + 0.140711i \(0.0449387\pi\)
−0.990051 + 0.140711i \(0.955061\pi\)
\(390\) 282.742 + 387.874i 0.724979 + 0.994549i
\(391\) −101.892 −0.260592
\(392\) 372.627 + 119.796i 0.950580 + 0.305602i
\(393\) 252.009 252.009i 0.641243 0.641243i
\(394\) 71.2411 + 446.805i 0.180815 + 1.13402i
\(395\) −584.191 189.467i −1.47897 0.479662i
\(396\) −3.40989 26.2156i −0.00861084 0.0662009i
\(397\) −107.593 + 107.593i −0.271016 + 0.271016i −0.829509 0.558493i \(-0.811380\pi\)
0.558493 + 0.829509i \(0.311380\pi\)
\(398\) 399.437 + 289.577i 1.00361 + 0.727580i
\(399\) 23.5490 0.0590200
\(400\) 399.995 2.08804i 0.999986 0.00522010i
\(401\) −213.669 −0.532841 −0.266421 0.963857i \(-0.585841\pi\)
−0.266421 + 0.963857i \(0.585841\pi\)
\(402\) −234.192 169.780i −0.582567 0.422339i
\(403\) 150.494 + 150.494i 0.373434 + 0.373434i
\(404\) −561.590 + 183.758i −1.39007 + 0.454846i
\(405\) −116.046 + 357.810i −0.286533 + 0.883482i
\(406\) −6.00413 + 0.957333i −0.0147885 + 0.00235796i
\(407\) 85.2197 + 124.963i 0.209385 + 0.307035i
\(408\) −30.3421 + 94.3796i −0.0743679 + 0.231322i
\(409\) 165.802 0.405385 0.202692 0.979242i \(-0.435031\pi\)
0.202692 + 0.979242i \(0.435031\pi\)
\(410\) −140.378 192.575i −0.342386 0.469696i
\(411\) 648.679i 1.57830i
\(412\) 77.6208 + 39.3476i 0.188400 + 0.0955039i
\(413\) −2.81355 + 2.81355i −0.00681247 + 0.00681247i
\(414\) −4.50870 28.2774i −0.0108906 0.0683028i
\(415\) 516.281 263.410i 1.24405 0.634722i
\(416\) −372.811 + 376.690i −0.896180 + 0.905504i
\(417\) −208.787 208.787i −0.500689 0.500689i
\(418\) 452.124 + 478.917i 1.08164 + 1.14574i
\(419\) 53.5275 0.127751 0.0638753 0.997958i \(-0.479654\pi\)
0.0638753 + 0.997958i \(0.479654\pi\)
\(420\) 0.0410620 + 15.7322i 9.77668e−5 + 0.0374576i
\(421\) 226.307 0.537546 0.268773 0.963203i \(-0.413382\pi\)
0.268773 + 0.963203i \(0.413382\pi\)
\(422\) −250.446 181.564i −0.593475 0.430247i
\(423\) 2.71244 2.71244i 0.00641238 0.00641238i
\(424\) −239.464 + 122.951i −0.564773 + 0.289978i
\(425\) 16.8365 + 105.563i 0.0396152 + 0.248384i
\(426\) 97.7691 + 613.182i 0.229505 + 1.43939i
\(427\) −12.6706 12.6706i −0.0296736 0.0296736i
\(428\) 336.167 + 170.410i 0.785436 + 0.398154i
\(429\) −518.794 98.0992i −1.20931 0.228669i
\(430\) 687.984 + 107.855i 1.59996 + 0.250827i
\(431\) −184.190 −0.427354 −0.213677 0.976904i \(-0.568544\pi\)
−0.213677 + 0.976904i \(0.568544\pi\)
\(432\) −439.995 67.8223i −1.01851 0.156996i
\(433\) 355.695 + 355.695i 0.821467 + 0.821467i 0.986318 0.164851i \(-0.0527143\pi\)
−0.164851 + 0.986318i \(0.552714\pi\)
\(434\) 1.09838 + 6.88877i 0.00253084 + 0.0158727i
\(435\) 73.7606 + 144.570i 0.169565 + 0.332346i
\(436\) −183.864 561.915i −0.421707 1.28880i
\(437\) 504.437 + 504.437i 1.15432 + 1.15432i
\(438\) 252.531 348.337i 0.576555 0.795290i
\(439\) 444.731i 1.01305i −0.862224 0.506527i \(-0.830929\pi\)
0.862224 0.506527i \(-0.169071\pi\)
\(440\) −319.159 + 302.883i −0.725360 + 0.688369i
\(441\) −29.3963 −0.0666582
\(442\) −114.671 83.1323i −0.259437 0.188082i
\(443\) −335.016 + 335.016i −0.756244 + 0.756244i −0.975637 0.219393i \(-0.929592\pi\)
0.219393 + 0.975637i \(0.429592\pi\)
\(444\) 151.499 49.5720i 0.341214 0.111649i
\(445\) 114.474 + 37.1265i 0.257244 + 0.0834302i
\(446\) 291.827 46.5305i 0.654321 0.104329i
\(447\) 178.591 178.591i 0.399533 0.399533i
\(448\) −17.1398 + 2.82390i −0.0382585 + 0.00630335i
\(449\) 503.174i 1.12066i −0.828271 0.560328i \(-0.810675\pi\)
0.828271 0.560328i \(-0.189325\pi\)
\(450\) −28.5513 + 9.34370i −0.0634474 + 0.0207638i
\(451\) 257.576 + 48.7052i 0.571121 + 0.107994i
\(452\) −259.253 + 511.426i −0.573567 + 1.13147i
\(453\) 394.045 394.045i 0.869856 0.869856i
\(454\) 156.671 24.9804i 0.345090 0.0550230i
\(455\) −21.3800 6.93402i −0.0469890 0.0152396i
\(456\) 617.463 317.032i 1.35408 0.695245i
\(457\) 537.579 + 537.579i 1.17632 + 1.17632i 0.980674 + 0.195648i \(0.0626809\pi\)
0.195648 + 0.980674i \(0.437319\pi\)
\(458\) 347.155 478.859i 0.757980 1.04554i
\(459\) 118.975i 0.259204i
\(460\) −336.116 + 337.875i −0.730687 + 0.734511i
\(461\) 95.1876i 0.206481i 0.994656 + 0.103240i \(0.0329211\pi\)
−0.994656 + 0.103240i \(0.967079\pi\)
\(462\) −11.8797 12.5837i −0.0257137 0.0272375i
\(463\) 494.077 494.077i 1.06712 1.06712i 0.0695422 0.997579i \(-0.477846\pi\)
0.997579 0.0695422i \(-0.0221539\pi\)
\(464\) −144.542 + 105.933i −0.311514 + 0.228304i
\(465\) 165.871 84.6284i 0.356712 0.181996i
\(466\) −387.822 + 61.8365i −0.832236 + 0.132696i
\(467\) 34.3502 + 34.3502i 0.0735550 + 0.0735550i 0.742927 0.669372i \(-0.233437\pi\)
−0.669372 + 0.742927i \(0.733437\pi\)
\(468\) 17.9970 35.5026i 0.0384551 0.0758603i
\(469\) 13.5451 0.0288808
\(470\) −63.0743 9.88818i −0.134201 0.0210387i
\(471\) 614.492i 1.30465i
\(472\) −35.8944 + 111.650i −0.0760475 + 0.236547i
\(473\) −632.870 + 431.591i −1.33799 + 0.912454i
\(474\) −112.102 703.072i −0.236501 1.48327i
\(475\) 439.262 605.968i 0.924762 1.27572i
\(476\) −1.44367 4.41208i −0.00303293 0.00926907i
\(477\) 14.2953 14.2953i 0.0299692 0.0299692i
\(478\) 388.437 535.804i 0.812631 1.12093i
\(479\) 687.002i 1.43424i −0.696949 0.717121i \(-0.745460\pi\)
0.696949 0.717121i \(-0.254540\pi\)
\(480\) 212.874 + 411.951i 0.443487 + 0.858231i
\(481\) 227.736i 0.473463i
\(482\) 415.460 573.078i 0.861950 1.18896i
\(483\) −13.2543 13.2543i −0.0274416 0.0274416i
\(484\) 27.8335 483.199i 0.0575073 0.998345i
\(485\) −117.448 230.198i −0.242162 0.474635i
\(486\) 63.9703 10.1998i 0.131626 0.0209872i
\(487\) −404.262 404.262i −0.830107 0.830107i 0.157424 0.987531i \(-0.449681\pi\)
−0.987531 + 0.157424i \(0.949681\pi\)
\(488\) −502.810 161.648i −1.03035 0.331247i
\(489\) 82.6732i 0.169066i
\(490\) 288.205 + 395.369i 0.588173 + 0.806875i
\(491\) 274.934 0.559946 0.279973 0.960008i \(-0.409674\pi\)
0.279973 + 0.960008i \(0.409674\pi\)
\(492\) 124.910 246.409i 0.253882 0.500832i
\(493\) −33.8643 33.8643i −0.0686903 0.0686903i
\(494\) 156.140 + 979.270i 0.316074 + 1.98233i
\(495\) 15.8575 28.9922i 0.0320353 0.0585700i
\(496\) 121.541 + 165.839i 0.245043 + 0.334353i
\(497\) −20.5598 20.5598i −0.0413679 0.0413679i
\(498\) 543.985 + 394.369i 1.09234 + 0.791905i
\(499\) −181.398 −0.363524 −0.181762 0.983343i \(-0.558180\pi\)
−0.181762 + 0.983343i \(0.558180\pi\)
\(500\) 405.590 + 292.398i 0.811180 + 0.584796i
\(501\) 231.389i 0.461854i
\(502\) −18.3250 + 25.2772i −0.0365041 + 0.0503531i
\(503\) −523.663 523.663i −1.04108 1.04108i −0.999119 0.0419598i \(-0.986640\pi\)
−0.0419598 0.999119i \(-0.513360\pi\)
\(504\) 1.16057 0.595889i 0.00230273 0.00118232i
\(505\) −702.585 227.864i −1.39126 0.451216i
\(506\) 15.0802 524.027i 0.0298027 1.03563i
\(507\) −215.790 215.790i −0.425621 0.425621i
\(508\) 649.311 + 329.149i 1.27817 + 0.647931i
\(509\) 273.380i 0.537093i 0.963267 + 0.268546i \(0.0865433\pi\)
−0.963267 + 0.268546i \(0.913457\pi\)
\(510\) −100.140 + 72.9969i −0.196352 + 0.143131i
\(511\) 20.1470i 0.0394266i
\(512\) −411.395 + 304.791i −0.803507 + 0.595296i
\(513\) −589.011 + 589.011i −1.14817 + 1.14817i
\(514\) −772.718 + 123.206i −1.50334 + 0.239701i
\(515\) 49.4376 + 96.8973i 0.0959953 + 0.188150i
\(516\) 251.055 + 767.259i 0.486540 + 1.48694i
\(517\) 58.0215 39.5682i 0.112227 0.0765343i
\(518\) −4.38117 + 6.04331i −0.00845786 + 0.0116666i
\(519\) 524.733i 1.01105i
\(520\) −653.942 + 106.019i −1.25758 + 0.203883i
\(521\) −381.228 −0.731723 −0.365861 0.930669i \(-0.619226\pi\)
−0.365861 + 0.930669i \(0.619226\pi\)
\(522\) 7.89966 10.8966i 0.0151334 0.0208748i
\(523\) 450.960 + 450.960i 0.862256 + 0.862256i 0.991600 0.129344i \(-0.0412872\pi\)
−0.129344 + 0.991600i \(0.541287\pi\)
\(524\) 152.972 + 467.504i 0.291931 + 0.892183i
\(525\) −11.5418 + 15.9220i −0.0219843 + 0.0303277i
\(526\) −37.9701 238.138i −0.0721864 0.452734i
\(527\) −38.8538 + 38.8538i −0.0737264 + 0.0737264i
\(528\) −480.902 170.017i −0.910799 0.322003i
\(529\) 38.8341i 0.0734105i
\(530\) −332.419 52.1134i −0.627206 0.0983273i
\(531\) 8.80799i 0.0165875i
\(532\) −14.6957 + 28.9902i −0.0276236 + 0.0544929i
\(533\) 279.086 + 279.086i 0.523614 + 0.523614i
\(534\) 21.9666 + 137.769i 0.0411360 + 0.257994i
\(535\) 214.108 + 419.651i 0.400203 + 0.784394i
\(536\) 355.158 182.353i 0.662607 0.340211i
\(537\) 668.478 668.478i 1.24484 1.24484i
\(538\) 500.589 690.503i 0.930463 1.28346i
\(539\) −528.819 99.9947i −0.981111 0.185519i
\(540\) −394.523 392.469i −0.730598 0.726795i
\(541\) 684.932i 1.26605i 0.774132 + 0.633024i \(0.218187\pi\)
−0.774132 + 0.633024i \(0.781813\pi\)
\(542\) −435.221 315.519i −0.802991 0.582138i
\(543\) −15.6864 + 15.6864i −0.0288883 + 0.0288883i
\(544\) −97.2520 96.2506i −0.178772 0.176931i
\(545\) 227.996 702.992i 0.418342 1.28989i
\(546\) −4.10265 25.7307i −0.00751401 0.0471259i
\(547\) −8.71058 + 8.71058i −0.0159243 + 0.0159243i −0.715024 0.699100i \(-0.753584\pi\)
0.699100 + 0.715024i \(0.253584\pi\)
\(548\) −798.564 404.809i −1.45723 0.738702i
\(549\) 39.6662 0.0722518
\(550\) −545.402 + 70.9662i −0.991641 + 0.129029i
\(551\) 335.306i 0.608540i
\(552\) −525.970 169.094i −0.952845 0.306330i
\(553\) 23.5738 + 23.5738i 0.0426290 + 0.0426290i
\(554\) 85.1483 + 534.028i 0.153697 + 0.963949i
\(555\) 189.535 + 61.4705i 0.341504 + 0.110758i
\(556\) 387.324 126.736i 0.696625 0.227943i
\(557\) −209.323 209.323i −0.375805 0.375805i 0.493781 0.869586i \(-0.335614\pi\)
−0.869586 + 0.493781i \(0.835614\pi\)
\(558\) −12.5021 9.06358i −0.0224053 0.0162430i
\(559\) −1153.36 −2.06325
\(560\) −19.3929 9.76713i −0.0346302 0.0174413i
\(561\) 25.3268 133.940i 0.0451458 0.238752i
\(562\) 128.629 177.428i 0.228877 0.315708i
\(563\) −704.567 704.567i −1.25145 1.25145i −0.955069 0.296382i \(-0.904220\pi\)
−0.296382 0.955069i \(-0.595780\pi\)
\(564\) −23.0167 70.3423i −0.0408097 0.124720i
\(565\) −638.435 + 325.733i −1.12997 + 0.576519i
\(566\) −11.4146 71.5891i −0.0201671 0.126482i
\(567\) 14.4387 14.4387i 0.0254650 0.0254650i
\(568\) −815.877 262.296i −1.43640 0.461789i
\(569\) 886.554 1.55809 0.779045 0.626967i \(-0.215704\pi\)
0.779045 + 0.626967i \(0.215704\pi\)
\(570\) 857.151 + 134.376i 1.50377 + 0.235747i
\(571\) −737.017 −1.29075 −0.645374 0.763867i \(-0.723298\pi\)
−0.645374 + 0.763867i \(0.723298\pi\)
\(572\) 444.520 577.449i 0.777133 1.00953i
\(573\) −59.0487 59.0487i −0.103052 0.103052i
\(574\) 2.03692 + 12.7750i 0.00354864 + 0.0222561i
\(575\) −588.296 + 93.8284i −1.02312 + 0.163180i
\(576\) 22.4084 31.2488i 0.0389036 0.0542515i
\(577\) 370.075 370.075i 0.641378 0.641378i −0.309516 0.950894i \(-0.600167\pi\)
0.950894 + 0.309516i \(0.100167\pi\)
\(578\) −317.793 + 438.358i −0.549815 + 0.758405i
\(579\) 511.855i 0.884033i
\(580\) −224.005 + 0.584668i −0.386216 + 0.00100805i
\(581\) −31.4628 −0.0541528
\(582\) 175.840 242.551i 0.302131 0.416754i
\(583\) 305.789 208.535i 0.524510 0.357694i
\(584\) 271.232 + 528.261i 0.464438 + 0.904557i
\(585\) 44.3194 22.6120i 0.0757596 0.0386530i
\(586\) 399.941 63.7688i 0.682493 0.108820i
\(587\) 138.774 + 138.774i 0.236413 + 0.236413i 0.815363 0.578950i \(-0.196537\pi\)
−0.578950 + 0.815363i \(0.696537\pi\)
\(588\) −256.448 + 505.893i −0.436135 + 0.860362i
\(589\) 384.709 0.653156
\(590\) −118.464 + 86.3546i −0.200787 + 0.146364i
\(591\) −655.629 −1.10935
\(592\) −33.5169 + 217.440i −0.0566164 + 0.367297i
\(593\) 90.2407 90.2407i 0.152177 0.152177i −0.626913 0.779089i \(-0.715682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(594\) 611.885 + 17.6085i 1.03011 + 0.0296439i
\(595\) 1.79019 5.51979i 0.00300873 0.00927695i
\(596\) 108.407 + 331.306i 0.181890 + 0.555883i
\(597\) −505.520 + 505.520i −0.846766 + 0.846766i
\(598\) 463.290 639.054i 0.774732 1.06865i
\(599\) −34.1675 −0.0570408 −0.0285204 0.999593i \(-0.509080\pi\)
−0.0285204 + 0.999593i \(0.509080\pi\)
\(600\) −88.2768 + 572.865i −0.147128 + 0.954775i
\(601\) 912.806i 1.51881i −0.650617 0.759406i \(-0.725490\pi\)
0.650617 0.759406i \(-0.274510\pi\)
\(602\) −30.6060 22.1882i −0.0508406 0.0368575i
\(603\) −21.2019 + 21.2019i −0.0351607 + 0.0351607i
\(604\) 239.189 + 730.997i 0.396009 + 1.21026i
\(605\) 383.885 467.608i 0.634520 0.772906i
\(606\) −134.820 845.557i −0.222476 1.39531i
\(607\) −542.713 + 542.713i −0.894090 + 0.894090i −0.994905 0.100815i \(-0.967855\pi\)
0.100815 + 0.994905i \(0.467855\pi\)
\(608\) 4.95762 + 957.978i 0.00815397 + 1.57562i
\(609\) 8.81029i 0.0144668i
\(610\) −388.893 533.496i −0.637529 0.874584i
\(611\) 105.740 0.173060
\(612\) 9.16589 + 4.64638i 0.0149770 + 0.00759213i
\(613\) 265.278 265.278i 0.432754 0.432754i −0.456810 0.889564i \(-0.651008\pi\)
0.889564 + 0.456810i \(0.151008\pi\)
\(614\) −843.721 + 134.528i −1.37414 + 0.219100i
\(615\) 307.603 156.941i 0.500167 0.255188i
\(616\) 22.9049 6.77180i 0.0371833 0.0109932i
\(617\) −615.762 + 615.762i −0.997994 + 0.997994i −0.999998 0.00200418i \(-0.999362\pi\)
0.00200418 + 0.999998i \(0.499362\pi\)
\(618\) −74.0164 + 102.097i −0.119768 + 0.165205i
\(619\) 368.464 0.595257 0.297628 0.954682i \(-0.403804\pi\)
0.297628 + 0.954682i \(0.403804\pi\)
\(620\) 0.670812 + 257.010i 0.00108196 + 0.414532i
\(621\) 663.037 1.06769
\(622\) −288.686 + 398.209i −0.464126 + 0.640207i
\(623\) −4.61935 4.61935i −0.00741469 0.00741469i
\(624\) −453.977 619.436i −0.727527 0.992687i
\(625\) 194.419 + 593.992i 0.311071 + 0.950387i
\(626\) 118.097 + 740.675i 0.188654 + 1.18319i
\(627\) −788.485 + 537.714i −1.25755 + 0.857597i
\(628\) 756.477 + 383.474i 1.20458 + 0.610627i
\(629\) −58.7958 −0.0934750
\(630\) 1.61109 + 0.252571i 0.00255728 + 0.000400906i
\(631\) 1158.33i 1.83571i −0.396916 0.917855i \(-0.629920\pi\)
0.396916 0.917855i \(-0.370080\pi\)
\(632\) 935.481 + 300.748i 1.48019 + 0.475867i
\(633\) 316.960 316.960i 0.500727 0.500727i
\(634\) −450.608 + 71.8474i −0.710737 + 0.113324i
\(635\) 413.553 + 810.562i 0.651265 + 1.27648i
\(636\) −121.304 370.723i −0.190730 0.582898i
\(637\) −572.981 572.981i −0.899500 0.899500i
\(638\) 179.176 169.152i 0.280840 0.265128i
\(639\) 64.3638 0.100726
\(640\) −639.981 + 4.98241i −0.999970 + 0.00778502i
\(641\) 460.419 0.718283 0.359142 0.933283i \(-0.383070\pi\)
0.359142 + 0.933283i \(0.383070\pi\)
\(642\) −320.556 + 442.170i −0.499309 + 0.688738i
\(643\) 423.311 423.311i 0.658338 0.658338i −0.296649 0.954987i \(-0.595869\pi\)
0.954987 + 0.296649i \(0.0958691\pi\)
\(644\) 24.5882 8.04549i 0.0381804 0.0124930i
\(645\) −311.314 + 959.890i −0.482658 + 1.48820i
\(646\) −252.823 + 40.3116i −0.391368 + 0.0624018i
\(647\) 679.923 + 679.923i 1.05089 + 1.05089i 0.998634 + 0.0522523i \(0.0166400\pi\)
0.0522523 + 0.998634i \(0.483360\pi\)
\(648\) 184.204 572.970i 0.284266 0.884214i
\(649\) 29.9613 158.450i 0.0461654 0.244144i
\(650\) −738.636 374.388i −1.13636 0.575982i
\(651\) −10.1084 −0.0155275
\(652\) 101.776 + 51.5922i 0.156098 + 0.0791292i
\(653\) −441.796 441.796i −0.676564 0.676564i 0.282657 0.959221i \(-0.408784\pi\)
−0.959221 + 0.282657i \(0.908784\pi\)
\(654\) 846.047 134.898i 1.29365 0.206267i
\(655\) −189.689 + 584.877i −0.289601 + 0.892942i
\(656\) 225.395 + 307.543i 0.343589 + 0.468816i
\(657\) −31.5357 31.5357i −0.0479995 0.0479995i
\(658\) 2.80596 + 2.03421i 0.00426437 + 0.00309151i
\(659\) 1044.69i 1.58526i −0.609703 0.792630i \(-0.708711\pi\)
0.609703 0.792630i \(-0.291289\pi\)
\(660\) −360.601 525.820i −0.546365 0.796697i
\(661\) 476.865 0.721429 0.360715 0.932676i \(-0.382533\pi\)
0.360715 + 0.932676i \(0.382533\pi\)
\(662\) 525.052 724.247i 0.793130 1.09403i
\(663\) 145.125 145.125i 0.218892 0.218892i
\(664\) −824.966 + 423.573i −1.24242 + 0.637911i
\(665\) −36.1897 + 18.4642i −0.0544206 + 0.0277657i
\(666\) −2.60171 16.3172i −0.00390647 0.0245004i
\(667\) 188.723 188.723i 0.282943 0.282943i
\(668\) 284.854 + 144.398i 0.426428 + 0.216165i
\(669\) 428.218i 0.640087i
\(670\) 493.024 + 77.2914i 0.735856 + 0.115360i
\(671\) 713.568 + 134.929i 1.06344 + 0.201087i
\(672\) −0.130263 25.1712i −0.000193844 0.0374572i
\(673\) −25.1247 + 25.1247i −0.0373324 + 0.0373324i −0.725527 0.688194i \(-0.758404\pi\)
0.688194 + 0.725527i \(0.258404\pi\)
\(674\) 67.5553 + 423.689i 0.100230 + 0.628618i
\(675\) −109.560 686.930i −0.162311 1.01767i
\(676\) 400.315 130.987i 0.592181 0.193768i
\(677\) −439.457 439.457i −0.649125 0.649125i 0.303657 0.952781i \(-0.401792\pi\)
−0.952781 + 0.303657i \(0.901792\pi\)
\(678\) −672.693 487.677i −0.992173 0.719288i
\(679\) 14.0286i 0.0206606i
\(680\) −27.3715 168.832i −0.0402522 0.248282i
\(681\) 229.894i 0.337583i
\(682\) −194.074 205.575i −0.284566 0.301430i
\(683\) −623.294 + 623.294i −0.912583 + 0.912583i −0.996475 0.0838919i \(-0.973265\pi\)
0.0838919 + 0.996475i \(0.473265\pi\)
\(684\) −22.3749 68.3808i −0.0327118 0.0999719i
\(685\) −508.614 996.880i −0.742503 1.45530i
\(686\) −8.37014 52.4953i −0.0122014 0.0765237i
\(687\) 606.034 + 606.034i 0.882145 + 0.882145i
\(688\) −1101.21 169.745i −1.60060 0.246722i
\(689\) 557.277 0.808820
\(690\) −406.806 558.070i −0.589574 0.808797i
\(691\) 549.965i 0.795897i 0.917408 + 0.397948i \(0.130278\pi\)
−0.917408 + 0.397948i \(0.869722\pi\)
\(692\) 645.979 + 327.460i 0.933495 + 0.473208i
\(693\) −1.48203 + 1.01068i −0.00213857 + 0.00145841i
\(694\) −5.45744 + 0.870165i −0.00786375 + 0.00125384i
\(695\) 484.566 + 157.156i 0.697218 + 0.226124i
\(696\) −118.610 231.009i −0.170417 0.331909i
\(697\) −72.0532 + 72.0532i −0.103376 + 0.103376i
\(698\) −821.427 595.504i −1.17683 0.853157i
\(699\) 569.078i 0.814132i
\(700\) −12.3983 24.1448i −0.0177119 0.0344926i
\(701\) 546.768i 0.779982i −0.920819 0.389991i \(-0.872478\pi\)
0.920819 0.389991i \(-0.127522\pi\)
\(702\) 746.197 + 540.965i 1.06296 + 0.770605i
\(703\) 291.082 + 291.082i 0.414056 + 0.414056i
\(704\) 509.409 485.920i 0.723592 0.690228i
\(705\) 28.5413 88.0026i 0.0404841 0.124826i
\(706\) 9.20075 + 57.7047i 0.0130322 + 0.0817347i
\(707\) 28.3513 + 28.3513i 0.0401009 + 0.0401009i
\(708\) −151.580 76.8393i −0.214097 0.108530i
\(709\) 514.197i 0.725242i −0.931937 0.362621i \(-0.881882\pi\)
0.931937 0.362621i \(-0.118118\pi\)
\(710\) −631.031 865.670i −0.888777 1.21925i
\(711\) −73.7993 −0.103797
\(712\) −183.310 58.9323i −0.257458 0.0827701i
\(713\) −216.529 216.529i −0.303688 0.303688i
\(714\) 6.64304 1.05920i 0.00930397 0.00148348i
\(715\) 874.193 256.017i 1.22265 0.358066i
\(716\) 405.773 + 1240.10i 0.566722 + 1.73198i
\(717\) 678.102 + 678.102i 0.945749 + 0.945749i
\(718\) 335.976 463.439i 0.467933 0.645458i
\(719\) −189.750 −0.263908 −0.131954 0.991256i \(-0.542125\pi\)
−0.131954 + 0.991256i \(0.542125\pi\)
\(720\) 45.6436 15.0670i 0.0633939 0.0209265i
\(721\) 5.90504i 0.00819007i
\(722\) 866.681 + 628.311i 1.20039 + 0.870237i
\(723\) 725.276 + 725.276i 1.00315 + 1.00315i
\(724\) −9.52178 29.0999i −0.0131516 0.0401933i
\(725\) −226.708 164.339i −0.312701 0.226675i
\(726\) 685.103 + 150.079i 0.943667 + 0.206720i
\(727\) 927.043 + 927.043i 1.27516 + 1.27516i 0.943343 + 0.331819i \(0.107662\pi\)
0.331819 + 0.943343i \(0.392338\pi\)
\(728\) 34.2363 + 11.0067i 0.0470279 + 0.0151190i
\(729\) 770.952i 1.05755i
\(730\) −114.963 + 733.323i −0.157484 + 1.00455i
\(731\) 297.768i 0.407344i
\(732\) 346.041 682.633i 0.472734 0.932559i
\(733\) −416.046 + 416.046i −0.567594 + 0.567594i −0.931454 0.363860i \(-0.881459\pi\)
0.363860 + 0.931454i \(0.381459\pi\)
\(734\) 47.6537 + 298.872i 0.0649234 + 0.407182i
\(735\) −631.527 + 322.209i −0.859221 + 0.438380i
\(736\) 536.397 541.978i 0.728801 0.736383i
\(737\) −453.528 + 309.287i −0.615370 + 0.419656i
\(738\) −23.1848 16.8081i −0.0314158 0.0227753i
\(739\) 694.401i 0.939650i 0.882760 + 0.469825i \(0.155683\pi\)
−0.882760 + 0.469825i \(0.844317\pi\)
\(740\) −193.953 + 194.968i −0.262099 + 0.263471i
\(741\) −1436.95 −1.93921
\(742\) 14.7882 + 10.7209i 0.0199302 + 0.0144486i
\(743\) 641.222 + 641.222i 0.863018 + 0.863018i 0.991687 0.128670i \(-0.0410708\pi\)
−0.128670 + 0.991687i \(0.541071\pi\)
\(744\) −265.045 + 136.086i −0.356244 + 0.182911i
\(745\) −134.427 + 414.485i −0.180439 + 0.556356i
\(746\) 998.051 159.135i 1.33787 0.213317i
\(747\) 49.2481 49.2481i 0.0659278 0.0659278i
\(748\) 149.083 + 114.764i 0.199309 + 0.153428i
\(749\) 25.5740i 0.0341442i
\(750\) −510.960 + 513.681i −0.681280 + 0.684908i
\(751\) 530.192i 0.705982i 0.935627 + 0.352991i \(0.114835\pi\)
−0.935627 + 0.352991i \(0.885165\pi\)
\(752\) 100.959 + 15.5622i 0.134254 + 0.0206944i
\(753\) −31.9904 31.9904i −0.0424839 0.0424839i
\(754\) 366.371 58.4162i 0.485903 0.0774751i
\(755\) −296.601 + 914.523i −0.392849 + 1.21129i
\(756\) 9.39439 + 28.7106i 0.0124264 + 0.0379770i
\(757\) 558.257 558.257i 0.737459 0.737459i −0.234626 0.972086i \(-0.575387\pi\)
0.972086 + 0.234626i \(0.0753866\pi\)
\(758\) −735.646 533.316i −0.970510 0.703583i
\(759\) 746.437 + 141.144i 0.983448 + 0.185961i
\(760\) −700.330 + 971.348i −0.921487 + 1.27809i
\(761\) 1419.91i 1.86584i 0.360080 + 0.932921i \(0.382749\pi\)
−0.360080 + 0.932921i \(0.617251\pi\)
\(762\) −619.159 + 854.057i −0.812545 + 1.12081i
\(763\) −28.3678 + 28.3678i −0.0371792 + 0.0371792i
\(764\) 109.542 35.8432i 0.143379 0.0469151i
\(765\) 5.83786 + 11.4422i 0.00763119 + 0.0149571i
\(766\) 636.844 101.542i 0.831388 0.132561i
\(767\) 171.682 171.682i 0.223836 0.223836i
\(768\) −342.288 658.246i −0.445687 0.857091i
\(769\) −746.894 −0.971254 −0.485627 0.874166i \(-0.661409\pi\)
−0.485627 + 0.874166i \(0.661409\pi\)
\(770\) 28.1232 + 10.0239i 0.0365237 + 0.0130180i
\(771\) 1133.86i 1.47064i
\(772\) 630.125 + 319.423i 0.816224 + 0.413761i