Properties

Label 220.3.i.a.43.13
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.13
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.67372 - 1.09483i) q^{2} +(0.0944542 - 0.0944542i) q^{3} +(1.60268 + 3.66489i) q^{4} +(1.01027 - 4.89687i) q^{5} +(-0.261502 + 0.0546783i) q^{6} +(-6.56836 + 6.56836i) q^{7} +(1.33000 - 7.88867i) q^{8} +8.98216i q^{9} +(-7.05216 + 7.08992i) q^{10} +(-7.97654 - 7.57461i) q^{11} +(0.497544 + 0.194784i) q^{12} +(1.42743 - 1.42743i) q^{13} +(18.1848 - 3.80234i) q^{14} +(-0.367106 - 0.557954i) q^{15} +(-10.8628 + 11.7473i) q^{16} +(-14.5542 - 14.5542i) q^{17} +(9.83396 - 15.0336i) q^{18} +23.8822i q^{19} +(19.5656 - 4.14560i) q^{20} +1.24082i q^{21} +(5.05756 + 21.4108i) q^{22} +(-21.6435 + 21.6435i) q^{23} +(-0.619494 - 0.870742i) q^{24} +(-22.9587 - 9.89431i) q^{25} +(-3.95191 + 0.826319i) q^{26} +(1.69849 + 1.69849i) q^{27} +(-34.5993 - 13.5453i) q^{28} -0.979541 q^{29} +(0.00356623 + 1.33578i) q^{30} +42.2531i q^{31} +(31.0427 - 7.76870i) q^{32} +(-1.46887 + 0.0379638i) q^{33} +(8.42525 + 40.2941i) q^{34} +(25.5286 + 38.8002i) q^{35} +(-32.9186 + 14.3955i) q^{36} +(-7.62919 + 7.62919i) q^{37} +(26.1470 - 39.9721i) q^{38} -0.269653i q^{39} +(-37.2861 - 14.4825i) q^{40} +61.1443i q^{41} +(1.35849 - 2.07678i) q^{42} +(15.4025 + 15.4025i) q^{43} +(14.9763 - 41.3728i) q^{44} +(43.9845 + 9.07438i) q^{45} +(59.9213 - 12.5292i) q^{46} +(-62.3568 - 62.3568i) q^{47} +(0.0835414 + 2.13562i) q^{48} -37.2866i q^{49} +(27.5939 + 41.6963i) q^{50} -2.74942 q^{51} +(7.51907 + 2.94365i) q^{52} +(0.0107926 + 0.0107926i) q^{53} +(-0.983235 - 4.70236i) q^{54} +(-45.1504 + 31.4077i) q^{55} +(43.0796 + 60.5515i) q^{56} +(2.25577 + 2.25577i) q^{57} +(1.63948 + 1.07243i) q^{58} +26.3743 q^{59} +(1.45649 - 2.23963i) q^{60} -98.1345i q^{61} +(46.2601 - 70.7199i) q^{62} +(-58.9980 - 58.9980i) q^{63} +(-60.4622 - 20.9839i) q^{64} +(-5.54784 - 8.43201i) q^{65} +(2.50005 + 1.54463i) q^{66} +(-57.0549 - 57.0549i) q^{67} +(30.0138 - 76.6654i) q^{68} +4.08864i q^{69} +(-0.247996 - 92.8902i) q^{70} -30.7914i q^{71} +(70.8573 + 11.9463i) q^{72} +(17.1139 - 17.1139i) q^{73} +(21.1218 - 4.41644i) q^{74} +(-3.10311 + 1.23399i) q^{75} +(-87.5256 + 38.2755i) q^{76} +(102.146 - 2.64000i) q^{77} +(-0.295225 + 0.451324i) q^{78} -81.1764i q^{79} +(46.5506 + 65.0618i) q^{80} -80.5186 q^{81} +(66.9428 - 102.339i) q^{82} +(37.6780 + 37.6780i) q^{83} +(-4.54746 + 1.98863i) q^{84} +(-85.9738 + 56.5665i) q^{85} +(-8.91634 - 42.6428i) q^{86} +(-0.0925218 + 0.0925218i) q^{87} +(-70.3624 + 52.8500i) q^{88} +95.2458i q^{89} +(-63.6828 - 63.3436i) q^{90} +18.7517i q^{91} +(-114.009 - 44.6335i) q^{92} +(3.99099 + 3.99099i) q^{93} +(36.0976 + 172.638i) q^{94} +(116.948 + 24.1274i) q^{95} +(2.19832 - 3.66590i) q^{96} +(61.7662 - 61.7662i) q^{97} +(-40.8226 + 62.4073i) q^{98} +(68.0364 - 71.6465i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67372 1.09483i −0.836860 0.547417i
\(3\) 0.0944542 0.0944542i 0.0314847 0.0314847i −0.691189 0.722674i \(-0.742913\pi\)
0.722674 + 0.691189i \(0.242913\pi\)
\(4\) 1.60268 + 3.66489i 0.400670 + 0.916222i
\(5\) 1.01027 4.89687i 0.202054 0.979374i
\(6\) −0.261502 + 0.0546783i −0.0435836 + 0.00911306i
\(7\) −6.56836 + 6.56836i −0.938336 + 0.938336i −0.998206 0.0598697i \(-0.980931\pi\)
0.0598697 + 0.998206i \(0.480931\pi\)
\(8\) 1.33000 7.88867i 0.166250 0.986084i
\(9\) 8.98216i 0.998017i
\(10\) −7.05216 + 7.08992i −0.705216 + 0.708992i
\(11\) −7.97654 7.57461i −0.725140 0.688601i
\(12\) 0.497544 + 0.194784i 0.0414620 + 0.0162320i
\(13\) 1.42743 1.42743i 0.109802 0.109802i −0.650071 0.759873i \(-0.725261\pi\)
0.759873 + 0.650071i \(0.225261\pi\)
\(14\) 18.1848 3.80234i 1.29892 0.271596i
\(15\) −0.367106 0.557954i −0.0244737 0.0371970i
\(16\) −10.8628 + 11.7473i −0.678927 + 0.734206i
\(17\) −14.5542 14.5542i −0.856131 0.856131i 0.134749 0.990880i \(-0.456977\pi\)
−0.990880 + 0.134749i \(0.956977\pi\)
\(18\) 9.83396 15.0336i 0.546331 0.835201i
\(19\) 23.8822i 1.25696i 0.777827 + 0.628479i \(0.216322\pi\)
−0.777827 + 0.628479i \(0.783678\pi\)
\(20\) 19.5656 4.14560i 0.978282 0.207280i
\(21\) 1.24082i 0.0590866i
\(22\) 5.05756 + 21.4108i 0.229889 + 0.973217i
\(23\) −21.6435 + 21.6435i −0.941023 + 0.941023i −0.998355 0.0573324i \(-0.981741\pi\)
0.0573324 + 0.998355i \(0.481741\pi\)
\(24\) −0.619494 0.870742i −0.0258122 0.0362809i
\(25\) −22.9587 9.89431i −0.918349 0.395772i
\(26\) −3.95191 + 0.826319i −0.151996 + 0.0317815i
\(27\) 1.69849 + 1.69849i 0.0629071 + 0.0629071i
\(28\) −34.5993 13.5453i −1.23569 0.483761i
\(29\) −0.979541 −0.0337773 −0.0168886 0.999857i \(-0.505376\pi\)
−0.0168886 + 0.999857i \(0.505376\pi\)
\(30\) 0.00356623 + 1.33578i 0.000118874 + 0.0445260i
\(31\) 42.2531i 1.36300i 0.731816 + 0.681502i \(0.238673\pi\)
−0.731816 + 0.681502i \(0.761327\pi\)
\(32\) 31.0427 7.76870i 0.970083 0.242772i
\(33\) −1.46887 + 0.0379638i −0.0445113 + 0.00115042i
\(34\) 8.42525 + 40.2941i 0.247802 + 1.18512i
\(35\) 25.5286 + 38.8002i 0.729389 + 1.10858i
\(36\) −32.9186 + 14.3955i −0.914406 + 0.399876i
\(37\) −7.62919 + 7.62919i −0.206194 + 0.206194i −0.802648 0.596453i \(-0.796576\pi\)
0.596453 + 0.802648i \(0.296576\pi\)
\(38\) 26.1470 39.9721i 0.688079 1.05190i
\(39\) 0.269653i 0.00691418i
\(40\) −37.2861 14.4825i −0.932154 0.362063i
\(41\) 61.1443i 1.49133i 0.666324 + 0.745663i \(0.267867\pi\)
−0.666324 + 0.745663i \(0.732133\pi\)
\(42\) 1.35849 2.07678i 0.0323450 0.0494472i
\(43\) 15.4025 + 15.4025i 0.358199 + 0.358199i 0.863149 0.504950i \(-0.168489\pi\)
−0.504950 + 0.863149i \(0.668489\pi\)
\(44\) 14.9763 41.3728i 0.340370 0.940292i
\(45\) 43.9845 + 9.07438i 0.977433 + 0.201653i
\(46\) 59.9213 12.5292i 1.30264 0.272373i
\(47\) −62.3568 62.3568i −1.32674 1.32674i −0.908196 0.418544i \(-0.862540\pi\)
−0.418544 0.908196i \(-0.637460\pi\)
\(48\) 0.0835414 + 2.13562i 0.00174045 + 0.0444921i
\(49\) 37.2866i 0.760951i
\(50\) 27.5939 + 41.6963i 0.551877 + 0.833925i
\(51\) −2.74942 −0.0539101
\(52\) 7.51907 + 2.94365i 0.144598 + 0.0566087i
\(53\) 0.0107926 + 0.0107926i 0.000203633 + 0.000203633i 0.707209 0.707005i \(-0.249954\pi\)
−0.707005 + 0.707209i \(0.749954\pi\)
\(54\) −0.983235 4.70236i −0.0182080 0.0870808i
\(55\) −45.1504 + 31.4077i −0.820916 + 0.571049i
\(56\) 43.0796 + 60.5515i 0.769279 + 1.08128i
\(57\) 2.25577 + 2.25577i 0.0395750 + 0.0395750i
\(58\) 1.63948 + 1.07243i 0.0282669 + 0.0184902i
\(59\) 26.3743 0.447022 0.223511 0.974701i \(-0.428248\pi\)
0.223511 + 0.974701i \(0.428248\pi\)
\(60\) 1.45649 2.23963i 0.0242748 0.0373271i
\(61\) 98.1345i 1.60876i −0.594113 0.804382i \(-0.702497\pi\)
0.594113 0.804382i \(-0.297503\pi\)
\(62\) 46.2601 70.7199i 0.746131 1.14064i
\(63\) −58.9980 58.9980i −0.936476 0.936476i
\(64\) −60.4622 20.9839i −0.944722 0.327874i
\(65\) −5.54784 8.43201i −0.0853515 0.129723i
\(66\) 2.50005 + 1.54463i 0.0378795 + 0.0234035i
\(67\) −57.0549 57.0549i −0.851565 0.851565i 0.138761 0.990326i \(-0.455688\pi\)
−0.990326 + 0.138761i \(0.955688\pi\)
\(68\) 30.0138 76.6654i 0.441380 1.12743i
\(69\) 4.08864i 0.0592557i
\(70\) −0.247996 92.8902i −0.00354280 1.32700i
\(71\) 30.7914i 0.433682i −0.976207 0.216841i \(-0.930425\pi\)
0.976207 0.216841i \(-0.0695753\pi\)
\(72\) 70.8573 + 11.9463i 0.984129 + 0.165921i
\(73\) 17.1139 17.1139i 0.234437 0.234437i −0.580105 0.814542i \(-0.696988\pi\)
0.814542 + 0.580105i \(0.196988\pi\)
\(74\) 21.1218 4.41644i 0.285430 0.0596816i
\(75\) −3.10311 + 1.23399i −0.0413748 + 0.0164532i
\(76\) −87.5256 + 38.2755i −1.15165 + 0.503625i
\(77\) 102.146 2.64000i 1.32657 0.0342858i
\(78\) −0.295225 + 0.451324i −0.00378494 + 0.00578620i
\(79\) 81.1764i 1.02755i −0.857925 0.513775i \(-0.828247\pi\)
0.857925 0.513775i \(-0.171753\pi\)
\(80\) 46.5506 + 65.0618i 0.581883 + 0.813273i
\(81\) −80.5186 −0.994056
\(82\) 66.9428 102.339i 0.816376 1.24803i
\(83\) 37.6780 + 37.6780i 0.453951 + 0.453951i 0.896664 0.442712i \(-0.145984\pi\)
−0.442712 + 0.896664i \(0.645984\pi\)
\(84\) −4.54746 + 1.98863i −0.0541364 + 0.0236742i
\(85\) −85.9738 + 56.5665i −1.01146 + 0.665488i
\(86\) −8.91634 42.6428i −0.103678 0.495846i
\(87\) −0.0925218 + 0.0925218i −0.00106347 + 0.00106347i
\(88\) −70.3624 + 52.8500i −0.799573 + 0.600569i
\(89\) 95.2458i 1.07018i 0.844796 + 0.535089i \(0.179722\pi\)
−0.844796 + 0.535089i \(0.820278\pi\)
\(90\) −63.6828 63.3436i −0.707586 0.703818i
\(91\) 18.7517i 0.206063i
\(92\) −114.009 44.6335i −1.23923 0.485146i
\(93\) 3.99099 + 3.99099i 0.0429138 + 0.0429138i
\(94\) 36.0976 + 172.638i 0.384017 + 1.83658i
\(95\) 116.948 + 24.1274i 1.23103 + 0.253973i
\(96\) 2.19832 3.66590i 0.0228992 0.0381864i
\(97\) 61.7662 61.7662i 0.636765 0.636765i −0.312991 0.949756i \(-0.601331\pi\)
0.949756 + 0.312991i \(0.101331\pi\)
\(98\) −40.8226 + 62.4073i −0.416557 + 0.636809i
\(99\) 68.0364 71.6465i 0.687236 0.723703i
\(100\) −0.533951 99.9986i −0.00533951 0.999986i
\(101\) 46.9259i 0.464612i −0.972643 0.232306i \(-0.925373\pi\)
0.972643 0.232306i \(-0.0746271\pi\)
\(102\) 4.60175 + 3.01015i 0.0451152 + 0.0295113i
\(103\) −18.0637 + 18.0637i −0.175375 + 0.175375i −0.789336 0.613961i \(-0.789575\pi\)
0.613961 + 0.789336i \(0.289575\pi\)
\(104\) −9.36202 13.1590i −0.0900194 0.126529i
\(105\) 6.07613 + 1.25356i 0.0578679 + 0.0119387i
\(106\) −0.00624768 0.0298798i −5.89404e−5 0.000281885i
\(107\) −2.66110 + 2.66110i −0.0248701 + 0.0248701i −0.719432 0.694562i \(-0.755598\pi\)
0.694562 + 0.719432i \(0.255598\pi\)
\(108\) −3.50264 + 8.94692i −0.0324319 + 0.0828418i
\(109\) 82.5586 0.757419 0.378709 0.925516i \(-0.376368\pi\)
0.378709 + 0.925516i \(0.376368\pi\)
\(110\) 109.955 3.13562i 0.999594 0.0285057i
\(111\) 1.44122i 0.0129839i
\(112\) −5.80947 148.511i −0.0518703 1.32599i
\(113\) 56.9536 + 56.9536i 0.504014 + 0.504014i 0.912683 0.408668i \(-0.134007\pi\)
−0.408668 + 0.912683i \(0.634007\pi\)
\(114\) −1.30584 6.24523i −0.0114547 0.0547827i
\(115\) 84.1198 + 127.851i 0.731477 + 1.11175i
\(116\) −1.56989 3.58991i −0.0135335 0.0309475i
\(117\) 12.8214 + 12.8214i 0.109584 + 0.109584i
\(118\) −44.1432 28.8755i −0.374095 0.244708i
\(119\) 191.195 1.60668
\(120\) −4.88977 + 2.15390i −0.0407481 + 0.0179491i
\(121\) 6.25044 + 120.838i 0.0516565 + 0.998665i
\(122\) −107.441 + 164.250i −0.880664 + 1.34631i
\(123\) 5.77534 + 5.77534i 0.0469540 + 0.0469540i
\(124\) −154.853 + 67.7183i −1.24882 + 0.546115i
\(125\) −71.6456 + 102.430i −0.573165 + 0.819440i
\(126\) 34.1532 + 163.339i 0.271057 + 1.29634i
\(127\) 94.2281 94.2281i 0.741954 0.741954i −0.231000 0.972954i \(-0.574200\pi\)
0.972954 + 0.231000i \(0.0741997\pi\)
\(128\) 78.2229 + 101.317i 0.611116 + 0.791541i
\(129\) 2.90967 0.0225556
\(130\) 0.0538942 + 20.1868i 0.000414571 + 0.155283i
\(131\) −238.314 −1.81919 −0.909594 0.415498i \(-0.863607\pi\)
−0.909594 + 0.415498i \(0.863607\pi\)
\(132\) −2.49327 5.32241i −0.0188884 0.0403213i
\(133\) −156.867 156.867i −1.17945 1.17945i
\(134\) 33.0283 + 157.959i 0.246480 + 1.17880i
\(135\) 10.0332 6.60136i 0.0743202 0.0488990i
\(136\) −134.171 + 95.4563i −0.986549 + 0.701884i
\(137\) 56.7371 56.7371i 0.414139 0.414139i −0.469039 0.883178i \(-0.655399\pi\)
0.883178 + 0.469039i \(0.155399\pi\)
\(138\) 4.47638 6.84325i 0.0324376 0.0495887i
\(139\) 63.3949i 0.456079i −0.973652 0.228039i \(-0.926769\pi\)
0.973652 0.228039i \(-0.0732315\pi\)
\(140\) −101.284 + 155.744i −0.723459 + 1.11246i
\(141\) −11.7797 −0.0835442
\(142\) −33.7115 + 51.5362i −0.237405 + 0.362931i
\(143\) −22.1981 + 0.573723i −0.155232 + 0.00401205i
\(144\) −105.516 97.5716i −0.732750 0.677581i
\(145\) −0.989599 + 4.79669i −0.00682482 + 0.0330806i
\(146\) −47.3808 + 9.90703i −0.324526 + 0.0678564i
\(147\) −3.52188 3.52188i −0.0239583 0.0239583i
\(148\) −40.1873 15.7330i −0.271536 0.106304i
\(149\) −167.364 −1.12325 −0.561623 0.827393i \(-0.689823\pi\)
−0.561623 + 0.827393i \(0.689823\pi\)
\(150\) 6.54475 + 1.33203i 0.0436316 + 0.00888021i
\(151\) −34.8292 −0.230657 −0.115328 0.993327i \(-0.536792\pi\)
−0.115328 + 0.993327i \(0.536792\pi\)
\(152\) 188.399 + 31.7634i 1.23947 + 0.208970i
\(153\) 130.728 130.728i 0.854433 0.854433i
\(154\) −173.853 107.414i −1.12892 0.697491i
\(155\) 206.908 + 42.6870i 1.33489 + 0.275400i
\(156\) 0.988249 0.432168i 0.00633493 0.00277031i
\(157\) −174.574 + 174.574i −1.11193 + 1.11193i −0.119044 + 0.992889i \(0.537983\pi\)
−0.992889 + 0.119044i \(0.962017\pi\)
\(158\) −88.8746 + 135.867i −0.562498 + 0.859915i
\(159\) 0.00203881 1.28227e−5
\(160\) −6.68092 159.860i −0.0417557 0.999128i
\(161\) 284.325i 1.76599i
\(162\) 134.766 + 88.1544i 0.831886 + 0.544163i
\(163\) −88.4587 + 88.4587i −0.542691 + 0.542691i −0.924317 0.381626i \(-0.875364\pi\)
0.381626 + 0.924317i \(0.375364\pi\)
\(164\) −224.087 + 97.9948i −1.36639 + 0.597529i
\(165\) −1.29805 + 7.23123i −0.00786698 + 0.0438257i
\(166\) −21.8113 104.313i −0.131393 0.628394i
\(167\) −14.1920 + 14.1920i −0.0849821 + 0.0849821i −0.748320 0.663338i \(-0.769139\pi\)
0.663338 + 0.748320i \(0.269139\pi\)
\(168\) 9.78840 + 1.65029i 0.0582643 + 0.00982317i
\(169\) 164.925i 0.975887i
\(170\) 205.827 0.549512i 1.21075 0.00323242i
\(171\) −214.514 −1.25447
\(172\) −31.7633 + 81.1340i −0.184670 + 0.471709i
\(173\) −100.457 + 100.457i −0.580679 + 0.580679i −0.935090 0.354411i \(-0.884681\pi\)
0.354411 + 0.935090i \(0.384681\pi\)
\(174\) 0.256152 0.0535597i 0.00147214 0.000307814i
\(175\) 215.790 85.8117i 1.23309 0.490353i
\(176\) 175.629 11.4210i 0.997892 0.0648923i
\(177\) 2.49117 2.49117i 0.0140744 0.0140744i
\(178\) 104.278 159.415i 0.585833 0.895589i
\(179\) 176.489 0.985970 0.492985 0.870038i \(-0.335906\pi\)
0.492985 + 0.870038i \(0.335906\pi\)
\(180\) 37.2364 + 175.742i 0.206869 + 0.976342i
\(181\) 317.980 1.75679 0.878396 0.477933i \(-0.158614\pi\)
0.878396 + 0.477933i \(0.158614\pi\)
\(182\) 20.5300 31.3851i 0.112802 0.172446i
\(183\) −9.26922 9.26922i −0.0506515 0.0506515i
\(184\) 141.953 + 199.525i 0.771482 + 1.08437i
\(185\) 29.6516 + 45.0667i 0.160279 + 0.243604i
\(186\) −2.31033 11.0493i −0.0124211 0.0594046i
\(187\) 5.84975 + 226.335i 0.0312821 + 1.21035i
\(188\) 128.593 328.469i 0.684004 1.74718i
\(189\) −22.3126 −0.118056
\(190\) −169.323 168.421i −0.891173 0.886427i
\(191\) 364.294i 1.90730i −0.300919 0.953650i \(-0.597293\pi\)
0.300919 0.953650i \(-0.402707\pi\)
\(192\) −7.69293 + 3.72889i −0.0400673 + 0.0194213i
\(193\) −157.496 + 157.496i −0.816041 + 0.816041i −0.985532 0.169490i \(-0.945788\pi\)
0.169490 + 0.985532i \(0.445788\pi\)
\(194\) −171.003 + 35.7557i −0.881460 + 0.184308i
\(195\) −1.32046 0.272422i −0.00677157 0.00139704i
\(196\) 136.651 59.7585i 0.697200 0.304890i
\(197\) 111.489 + 111.489i 0.565933 + 0.565933i 0.930987 0.365054i \(-0.118949\pi\)
−0.365054 + 0.930987i \(0.618949\pi\)
\(198\) −192.315 + 45.4278i −0.971287 + 0.229433i
\(199\) 120.649 0.606275 0.303138 0.952947i \(-0.401966\pi\)
0.303138 + 0.952947i \(0.401966\pi\)
\(200\) −108.588 + 167.954i −0.542940 + 0.839771i
\(201\) −10.7781 −0.0536226
\(202\) −51.3760 + 78.5408i −0.254337 + 0.388816i
\(203\) 6.43397 6.43397i 0.0316944 0.0316944i
\(204\) −4.40643 10.0763i −0.0216002 0.0493936i
\(205\) 299.416 + 61.7722i 1.46057 + 0.301328i
\(206\) 50.0102 10.4568i 0.242768 0.0507613i
\(207\) −194.406 194.406i −0.939157 0.939157i
\(208\) 1.26251 + 32.2743i 0.00606975 + 0.155165i
\(209\) 180.898 190.497i 0.865543 0.911470i
\(210\) −8.79730 8.75045i −0.0418919 0.0416688i
\(211\) 121.309 0.574926 0.287463 0.957792i \(-0.407188\pi\)
0.287463 + 0.957792i \(0.407188\pi\)
\(212\) −0.0222565 + 0.0568506i −0.000104984 + 0.000268163i
\(213\) −2.90838 2.90838i −0.0136544 0.0136544i
\(214\) 7.36739 1.54048i 0.0344271 0.00719848i
\(215\) 90.9850 59.8636i 0.423186 0.278435i
\(216\) 15.6578 11.1398i 0.0724899 0.0515733i
\(217\) −277.534 277.534i −1.27896 1.27896i
\(218\) −138.180 90.3879i −0.633853 0.414623i
\(219\) 3.23296i 0.0147624i
\(220\) −187.467 115.135i −0.852125 0.523339i
\(221\) −41.5502 −0.188010
\(222\) 1.57789 2.41220i 0.00710763 0.0108657i
\(223\) −151.819 + 151.819i −0.680801 + 0.680801i −0.960181 0.279380i \(-0.909871\pi\)
0.279380 + 0.960181i \(0.409871\pi\)
\(224\) −152.872 + 254.927i −0.682463 + 1.13807i
\(225\) 88.8722 206.219i 0.394988 0.916528i
\(226\) −32.9697 157.679i −0.145884 0.697696i
\(227\) −102.712 + 102.712i −0.452478 + 0.452478i −0.896176 0.443698i \(-0.853666\pi\)
0.443698 + 0.896176i \(0.353666\pi\)
\(228\) −4.65188 + 11.8824i −0.0204030 + 0.0521160i
\(229\) 157.627i 0.688329i −0.938909 0.344164i \(-0.888162\pi\)
0.938909 0.344164i \(-0.111838\pi\)
\(230\) −0.817177 306.085i −0.00355294 1.33080i
\(231\) 9.39872 9.89744i 0.0406871 0.0428460i
\(232\) −1.30279 + 7.72727i −0.00561549 + 0.0333072i
\(233\) −18.2635 + 18.2635i −0.0783843 + 0.0783843i −0.745212 0.666828i \(-0.767652\pi\)
0.666828 + 0.745212i \(0.267652\pi\)
\(234\) −7.42213 35.4967i −0.0317185 0.151695i
\(235\) −368.350 + 242.356i −1.56745 + 1.03130i
\(236\) 42.2696 + 96.6590i 0.179109 + 0.409572i
\(237\) −7.66745 7.66745i −0.0323521 0.0323521i
\(238\) −320.006 209.326i −1.34456 0.879522i
\(239\) 251.776i 1.05346i −0.850033 0.526729i \(-0.823418\pi\)
0.850033 0.526729i \(-0.176582\pi\)
\(240\) 10.5423 + 1.74846i 0.0439261 + 0.00728524i
\(241\) 292.983i 1.21570i 0.794053 + 0.607848i \(0.207967\pi\)
−0.794053 + 0.607848i \(0.792033\pi\)
\(242\) 121.836 209.093i 0.503456 0.864021i
\(243\) −22.8917 + 22.8917i −0.0942047 + 0.0942047i
\(244\) 359.652 157.278i 1.47398 0.644583i
\(245\) −182.588 37.6694i −0.745256 0.153753i
\(246\) −3.34327 15.9893i −0.0135905 0.0649973i
\(247\) 34.0901 + 34.0901i 0.138017 + 0.138017i
\(248\) 333.321 + 56.1968i 1.34404 + 0.226600i
\(249\) 7.11769 0.0285851
\(250\) 232.058 92.9992i 0.928234 0.371997i
\(251\) 115.798i 0.461347i −0.973031 0.230673i \(-0.925907\pi\)
0.973031 0.230673i \(-0.0740929\pi\)
\(252\) 121.666 310.776i 0.482802 1.23324i
\(253\) 336.582 8.69913i 1.33036 0.0343839i
\(254\) −260.876 + 54.5475i −1.02707 + 0.214754i
\(255\) −2.77765 + 13.4635i −0.0108927 + 0.0527982i
\(256\) −19.9978 255.218i −0.0781166 0.996944i
\(257\) −140.617 + 140.617i −0.547146 + 0.547146i −0.925614 0.378468i \(-0.876451\pi\)
0.378468 + 0.925614i \(0.376451\pi\)
\(258\) −4.86997 3.18560i −0.0188759 0.0123473i
\(259\) 100.222i 0.386959i
\(260\) 22.0110 33.8461i 0.0846576 0.130177i
\(261\) 8.79839i 0.0337103i
\(262\) 398.870 + 260.914i 1.52241 + 0.995854i
\(263\) 245.123 + 245.123i 0.932027 + 0.932027i 0.997832 0.0658056i \(-0.0209617\pi\)
−0.0658056 + 0.997832i \(0.520962\pi\)
\(264\) −1.65412 + 11.6379i −0.00626561 + 0.0440831i
\(265\) 0.0637532 0.0419464i 0.000240578 0.000158288i
\(266\) 90.8082 + 434.294i 0.341384 + 1.63268i
\(267\) 8.99637 + 8.99637i 0.0336943 + 0.0336943i
\(268\) 117.659 300.541i 0.439026 1.12142i
\(269\) 35.8456i 0.133255i 0.997778 + 0.0666276i \(0.0212239\pi\)
−0.997778 + 0.0666276i \(0.978776\pi\)
\(270\) −24.0202 + 0.0641286i −0.0889637 + 0.000237513i
\(271\) 129.306 0.477145 0.238573 0.971125i \(-0.423320\pi\)
0.238573 + 0.971125i \(0.423320\pi\)
\(272\) 329.073 12.8727i 1.20983 0.0473261i
\(273\) 1.77118 + 1.77118i 0.00648783 + 0.00648783i
\(274\) −157.080 + 32.8444i −0.573283 + 0.119870i
\(275\) 108.186 + 252.826i 0.393402 + 0.919366i
\(276\) −14.9844 + 6.55279i −0.0542914 + 0.0237420i
\(277\) −92.4412 92.4412i −0.333723 0.333723i 0.520276 0.853998i \(-0.325829\pi\)
−0.853998 + 0.520276i \(0.825829\pi\)
\(278\) −69.4069 + 106.105i −0.249665 + 0.381674i
\(279\) −379.524 −1.36030
\(280\) 340.035 149.782i 1.21441 0.534937i
\(281\) 148.143i 0.527199i 0.964632 + 0.263599i \(0.0849097\pi\)
−0.964632 + 0.263599i \(0.915090\pi\)
\(282\) 19.7160 + 12.8968i 0.0699148 + 0.0457335i
\(283\) 198.091 + 198.091i 0.699969 + 0.699969i 0.964404 0.264435i \(-0.0851853\pi\)
−0.264435 + 0.964404i \(0.585185\pi\)
\(284\) 112.847 49.3488i 0.397349 0.173763i
\(285\) 13.3252 8.76730i 0.0467550 0.0307625i
\(286\) 37.7816 + 23.3430i 0.132104 + 0.0816189i
\(287\) −401.618 401.618i −1.39936 1.39936i
\(288\) 69.7797 + 278.830i 0.242291 + 0.968160i
\(289\) 134.651i 0.465920i
\(290\) 6.90788 6.94487i 0.0238203 0.0239478i
\(291\) 11.6682i 0.0400968i
\(292\) 90.1488 + 35.2925i 0.308729 + 0.120865i
\(293\) −257.992 + 257.992i −0.880517 + 0.880517i −0.993587 0.113070i \(-0.963932\pi\)
0.113070 + 0.993587i \(0.463932\pi\)
\(294\) 2.03877 + 9.75050i 0.00693459 + 0.0331650i
\(295\) 26.6451 129.152i 0.0903225 0.437802i
\(296\) 50.0373 + 70.3310i 0.169045 + 0.237605i
\(297\) −0.682670 26.4135i −0.00229855 0.0889343i
\(298\) 280.120 + 183.235i 0.940000 + 0.614883i
\(299\) 61.7891i 0.206653i
\(300\) −9.49572 9.39485i −0.0316524 0.0313162i
\(301\) −202.339 −0.672222
\(302\) 58.2943 + 38.1322i 0.193028 + 0.126265i
\(303\) −4.43235 4.43235i −0.0146282 0.0146282i
\(304\) −280.551 259.428i −0.922866 0.853382i
\(305\) −480.552 99.1422i −1.57558 0.325056i
\(306\) −361.928 + 75.6770i −1.18277 + 0.247310i
\(307\) −175.702 + 175.702i −0.572318 + 0.572318i −0.932776 0.360457i \(-0.882621\pi\)
0.360457 + 0.932776i \(0.382621\pi\)
\(308\) 173.382 + 370.121i 0.562928 + 1.20169i
\(309\) 3.41238i 0.0110433i
\(310\) −299.571 297.976i −0.966359 0.961213i
\(311\) 254.241i 0.817497i −0.912647 0.408748i \(-0.865965\pi\)
0.912647 0.408748i \(-0.134035\pi\)
\(312\) −2.12720 0.358639i −0.00681796 0.00114949i
\(313\) −213.752 213.752i −0.682912 0.682912i 0.277743 0.960655i \(-0.410414\pi\)
−0.960655 + 0.277743i \(0.910414\pi\)
\(314\) 483.316 101.058i 1.53922 0.321842i
\(315\) −348.509 + 229.302i −1.10638 + 0.727942i
\(316\) 297.503 130.100i 0.941464 0.411708i
\(317\) 393.139 393.139i 1.24019 1.24019i 0.280263 0.959923i \(-0.409578\pi\)
0.959923 0.280263i \(-0.0904217\pi\)
\(318\) −0.00341239 0.00223215i −1.07308e−5 7.01935e-6i
\(319\) 7.81335 + 7.41964i 0.0244933 + 0.0232591i
\(320\) −163.839 + 274.876i −0.511995 + 0.858988i
\(321\) 0.502704i 0.00156605i
\(322\) −311.288 + 475.880i −0.966733 + 1.47789i
\(323\) 347.587 347.587i 1.07612 1.07612i
\(324\) −129.046 295.092i −0.398289 0.910777i
\(325\) −46.8953 + 18.6485i −0.144293 + 0.0573800i
\(326\) 244.903 51.2076i 0.751235 0.157079i
\(327\) 7.79801 7.79801i 0.0238471 0.0238471i
\(328\) 482.347 + 81.3222i 1.47057 + 0.247933i
\(329\) 819.163 2.48986
\(330\) 10.0896 10.6819i 0.0305745 0.0323694i
\(331\) 482.147i 1.45664i 0.685239 + 0.728319i \(0.259698\pi\)
−0.685239 + 0.728319i \(0.740302\pi\)
\(332\) −77.6998 + 198.471i −0.234036 + 0.597805i
\(333\) −68.5266 68.5266i −0.205785 0.205785i
\(334\) 39.2913 8.21557i 0.117639 0.0245975i
\(335\) −337.031 + 221.750i −1.00606 + 0.661939i
\(336\) −14.5763 13.4788i −0.0433817 0.0401155i
\(337\) 314.946 + 314.946i 0.934557 + 0.934557i 0.997986 0.0634292i \(-0.0202037\pi\)
−0.0634292 + 0.997986i \(0.520204\pi\)
\(338\) 180.565 276.038i 0.534217 0.816681i
\(339\) 10.7590 0.0317375
\(340\) −345.099 224.427i −1.01500 0.660078i
\(341\) 320.051 337.034i 0.938566 0.988369i
\(342\) 359.036 + 234.857i 1.04981 + 0.686715i
\(343\) −76.9379 76.9379i −0.224309 0.224309i
\(344\) 141.991 101.020i 0.412764 0.293663i
\(345\) 20.0216 + 4.13063i 0.0580335 + 0.0119728i
\(346\) 278.122 58.1536i 0.803821 0.168074i
\(347\) −461.603 + 461.603i −1.33027 + 1.33027i −0.425141 + 0.905127i \(0.639775\pi\)
−0.905127 + 0.425141i \(0.860225\pi\)
\(348\) −0.487365 0.190799i −0.00140047 0.000548274i
\(349\) −373.881 −1.07129 −0.535646 0.844443i \(-0.679932\pi\)
−0.535646 + 0.844443i \(0.679932\pi\)
\(350\) −455.122 92.6296i −1.30035 0.264656i
\(351\) 4.84894 0.0138147
\(352\) −306.458 173.169i −0.870619 0.491957i
\(353\) 343.128 + 343.128i 0.972033 + 0.972033i 0.999619 0.0275863i \(-0.00878211\pi\)
−0.0275863 + 0.999619i \(0.508782\pi\)
\(354\) −6.89693 + 1.44210i −0.0194828 + 0.00407374i
\(355\) −150.782 31.1076i −0.424737 0.0876270i
\(356\) −349.065 + 152.649i −0.980521 + 0.428788i
\(357\) 18.0591 18.0591i 0.0505858 0.0505858i
\(358\) −295.393 193.226i −0.825119 0.539737i
\(359\) 169.984i 0.473493i −0.971572 0.236746i \(-0.923919\pi\)
0.971572 0.236746i \(-0.0760810\pi\)
\(360\) 130.084 334.910i 0.361345 0.930306i
\(361\) −209.359 −0.579942
\(362\) −532.209 348.135i −1.47019 0.961698i
\(363\) 12.0041 + 10.8233i 0.0330691 + 0.0298163i
\(364\) −68.7229 + 30.0530i −0.188799 + 0.0825631i
\(365\) −66.5150 101.094i −0.182233 0.276971i
\(366\) 5.36583 + 25.6623i 0.0146608 + 0.0701157i
\(367\) 260.278 + 260.278i 0.709204 + 0.709204i 0.966368 0.257164i \(-0.0827880\pi\)
−0.257164 + 0.966368i \(0.582788\pi\)
\(368\) −19.1429 489.363i −0.0520188 1.32979i
\(369\) −549.208 −1.48837
\(370\) −0.288049 107.893i −0.000778511 0.291602i
\(371\) −0.141779 −0.000382153
\(372\) −8.23025 + 21.0228i −0.0221243 + 0.0565129i
\(373\) 339.419 339.419i 0.909971 0.909971i −0.0862979 0.996269i \(-0.527504\pi\)
0.996269 + 0.0862979i \(0.0275037\pi\)
\(374\) 238.008 385.226i 0.636386 1.03002i
\(375\) 2.90772 + 16.4422i 0.00775391 + 0.0438458i
\(376\) −574.847 + 408.977i −1.52885 + 1.08771i
\(377\) −1.39822 + 1.39822i −0.00370882 + 0.00370882i
\(378\) 37.3450 + 24.4286i 0.0987964 + 0.0646258i
\(379\) 116.272 0.306786 0.153393 0.988165i \(-0.450980\pi\)
0.153393 + 0.988165i \(0.450980\pi\)
\(380\) 99.0061 + 467.270i 0.260542 + 1.22966i
\(381\) 17.8005i 0.0467204i
\(382\) −398.841 + 609.727i −1.04409 + 1.59614i
\(383\) −316.783 + 316.783i −0.827109 + 0.827109i −0.987116 0.160007i \(-0.948848\pi\)
0.160007 + 0.987116i \(0.448848\pi\)
\(384\) 16.9583 + 2.18135i 0.0441623 + 0.00568061i
\(385\) 90.2666 502.861i 0.234459 1.30613i
\(386\) 436.036 91.1724i 1.12963 0.236198i
\(387\) −138.348 + 138.348i −0.357488 + 0.357488i
\(388\) 325.358 + 127.375i 0.838552 + 0.328286i
\(389\) 99.0400i 0.254601i 0.991864 + 0.127301i \(0.0406313\pi\)
−0.991864 + 0.127301i \(0.959369\pi\)
\(390\) 1.91182 + 1.90164i 0.00490210 + 0.00487599i
\(391\) 630.009 1.61128
\(392\) −294.142 49.5913i −0.750361 0.126508i
\(393\) −22.5097 + 22.5097i −0.0572767 + 0.0572767i
\(394\) −64.5394 308.663i −0.163806 0.783408i
\(395\) −397.510 82.0099i −1.00636 0.207620i
\(396\) 371.617 + 134.519i 0.938427 + 0.339695i
\(397\) −210.268 + 210.268i −0.529643 + 0.529643i −0.920466 0.390823i \(-0.872191\pi\)
0.390823 + 0.920466i \(0.372191\pi\)
\(398\) −201.932 132.090i −0.507368 0.331885i
\(399\) −29.6335 −0.0742693
\(400\) 365.628 162.223i 0.914070 0.405557i
\(401\) −343.983 −0.857812 −0.428906 0.903349i \(-0.641101\pi\)
−0.428906 + 0.903349i \(0.641101\pi\)
\(402\) 18.0396 + 11.8003i 0.0448746 + 0.0293539i
\(403\) 60.3133 + 60.3133i 0.149661 + 0.149661i
\(404\) 171.978 75.2072i 0.425688 0.186156i
\(405\) −81.3453 + 394.289i −0.200853 + 0.973553i
\(406\) −17.8128 + 3.72455i −0.0438739 + 0.00917376i
\(407\) 118.643 3.06638i 0.291505 0.00753411i
\(408\) −3.65673 + 21.6892i −0.00896258 + 0.0531599i
\(409\) −326.947 −0.799381 −0.399690 0.916650i \(-0.630882\pi\)
−0.399690 + 0.916650i \(0.630882\pi\)
\(410\) −433.508 431.200i −1.05734 1.05171i
\(411\) 10.7181i 0.0260781i
\(412\) −95.1516 37.2510i −0.230950 0.0904151i
\(413\) −173.236 + 173.236i −0.419457 + 0.419457i
\(414\) 112.539 + 538.222i 0.271833 + 1.30005i
\(415\) 222.569 146.439i 0.536311 0.352866i
\(416\) 33.2219 55.4004i 0.0798603 0.133174i
\(417\) −5.98792 5.98792i −0.0143595 0.0143595i
\(418\) −511.336 + 120.786i −1.22329 + 0.288961i
\(419\) 32.6169 0.0778446 0.0389223 0.999242i \(-0.487608\pi\)
0.0389223 + 0.999242i \(0.487608\pi\)
\(420\) 5.14394 + 24.2774i 0.0122475 + 0.0578033i
\(421\) −55.1991 −0.131114 −0.0655572 0.997849i \(-0.520882\pi\)
−0.0655572 + 0.997849i \(0.520882\pi\)
\(422\) −203.038 132.813i −0.481132 0.314724i
\(423\) 560.099 560.099i 1.32411 1.32411i
\(424\) 0.0994931 0.0707848i 0.000234654 0.000166945i
\(425\) 190.142 + 478.150i 0.447394 + 1.12506i
\(426\) 1.68362 + 8.05201i 0.00395217 + 0.0189014i
\(427\) 644.583 + 644.583i 1.50956 + 1.50956i
\(428\) −14.0175 5.48774i −0.0327512 0.0128218i
\(429\) −2.04252 + 2.15090i −0.00476111 + 0.00501375i
\(430\) −217.824 + 0.581542i −0.506568 + 0.00135242i
\(431\) −691.489 −1.60438 −0.802191 0.597068i \(-0.796332\pi\)
−0.802191 + 0.597068i \(0.796332\pi\)
\(432\) −38.4031 + 1.50225i −0.0888960 + 0.00347744i
\(433\) −149.026 149.026i −0.344170 0.344170i 0.513762 0.857933i \(-0.328251\pi\)
−0.857933 + 0.513762i \(0.828251\pi\)
\(434\) 160.661 + 768.367i 0.370186 + 1.77043i
\(435\) 0.359596 + 0.546539i 0.000826656 + 0.00125641i
\(436\) 132.315 + 302.568i 0.303475 + 0.693964i
\(437\) −516.895 516.895i −1.18283 1.18283i
\(438\) −3.53956 + 5.41108i −0.00808118 + 0.0123541i
\(439\) 327.610i 0.746265i 0.927778 + 0.373133i \(0.121716\pi\)
−0.927778 + 0.373133i \(0.878284\pi\)
\(440\) 187.715 + 397.949i 0.426625 + 0.904429i
\(441\) 334.914 0.759442
\(442\) 69.5434 + 45.4905i 0.157338 + 0.102920i
\(443\) −7.21361 + 7.21361i −0.0162835 + 0.0162835i −0.715202 0.698918i \(-0.753665\pi\)
0.698918 + 0.715202i \(0.253665\pi\)
\(444\) −5.28191 + 2.30981i −0.0118962 + 0.00520228i
\(445\) 466.407 + 96.2238i 1.04810 + 0.216233i
\(446\) 420.318 87.8859i 0.942417 0.197053i
\(447\) −15.8082 + 15.8082i −0.0353651 + 0.0353651i
\(448\) 534.967 259.307i 1.19412 0.578811i
\(449\) 343.710i 0.765502i 0.923852 + 0.382751i \(0.125023\pi\)
−0.923852 + 0.382751i \(0.874977\pi\)
\(450\) −374.522 + 247.852i −0.832272 + 0.550783i
\(451\) 463.145 487.720i 1.02693 1.08142i
\(452\) −117.450 + 300.007i −0.259846 + 0.663733i
\(453\) −3.28976 + 3.28976i −0.00726217 + 0.00726217i
\(454\) 284.365 59.4590i 0.626355 0.130967i
\(455\) 91.8247 + 18.9442i 0.201812 + 0.0416357i
\(456\) 20.7952 14.7949i 0.0456036 0.0324449i
\(457\) −139.720 139.720i −0.305733 0.305733i 0.537519 0.843252i \(-0.319362\pi\)
−0.843252 + 0.537519i \(0.819362\pi\)
\(458\) −172.576 + 263.824i −0.376803 + 0.576035i
\(459\) 49.4404i 0.107713i
\(460\) −333.744 + 513.195i −0.725530 + 1.11564i
\(461\) 276.382i 0.599528i 0.954013 + 0.299764i \(0.0969079\pi\)
−0.954013 + 0.299764i \(0.903092\pi\)
\(462\) −26.5669 + 6.27551i −0.0575040 + 0.0135834i
\(463\) −120.737 + 120.737i −0.260771 + 0.260771i −0.825367 0.564596i \(-0.809032\pi\)
0.564596 + 0.825367i \(0.309032\pi\)
\(464\) 10.6406 11.5070i 0.0229323 0.0247995i
\(465\) 23.5753 15.5114i 0.0506996 0.0333578i
\(466\) 50.5636 10.5725i 0.108506 0.0226878i
\(467\) 129.275 + 129.275i 0.276821 + 0.276821i 0.831838 0.555018i \(-0.187289\pi\)
−0.555018 + 0.831838i \(0.687289\pi\)
\(468\) −26.4404 + 67.5375i −0.0564965 + 0.144311i
\(469\) 749.513 1.59811
\(470\) 881.855 2.35436i 1.87629 0.00500927i
\(471\) 32.9784i 0.0700179i
\(472\) 35.0779 208.058i 0.0743177 0.440801i
\(473\) −6.19071 239.527i −0.0130882 0.506400i
\(474\) 4.43859 + 21.2278i 0.00936412 + 0.0447843i
\(475\) 236.298 548.305i 0.497469 1.15433i
\(476\) 306.424 + 700.707i 0.643748 + 1.47207i
\(477\) −0.0969405 + 0.0969405i −0.000203230 + 0.000203230i
\(478\) −275.653 + 421.403i −0.576680 + 0.881597i
\(479\) 520.551i 1.08674i −0.839492 0.543372i \(-0.817147\pi\)
0.839492 0.543372i \(-0.182853\pi\)
\(480\) −15.7305 14.4685i −0.0327720 0.0301426i
\(481\) 21.7802i 0.0452811i
\(482\) 320.767 490.371i 0.665492 1.01737i
\(483\) −26.8557 26.8557i −0.0556018 0.0556018i
\(484\) −432.842 + 216.573i −0.894302 + 0.447464i
\(485\) −240.061 364.862i −0.494971 0.752293i
\(486\) 63.3770 13.2517i 0.130405 0.0272669i
\(487\) −266.299 266.299i −0.546816 0.546816i 0.378703 0.925518i \(-0.376370\pi\)
−0.925518 + 0.378703i \(0.876370\pi\)
\(488\) −774.151 130.519i −1.58637 0.267458i
\(489\) 16.7106i 0.0341730i
\(490\) 264.359 + 262.951i 0.539508 + 0.536635i
\(491\) 115.652 0.235544 0.117772 0.993041i \(-0.462425\pi\)
0.117772 + 0.993041i \(0.462425\pi\)
\(492\) −11.9100 + 30.4220i −0.0242072 + 0.0618334i
\(493\) 14.2565 + 14.2565i 0.0289178 + 0.0289178i
\(494\) −19.7343 94.3802i −0.0399480 0.191053i
\(495\) −282.109 405.548i −0.569917 0.819288i
\(496\) −496.360 458.989i −1.00073 0.925380i
\(497\) 202.249 + 202.249i 0.406940 + 0.406940i
\(498\) −11.9130 7.79268i −0.0239217 0.0156479i
\(499\) 408.511 0.818659 0.409330 0.912387i \(-0.365763\pi\)
0.409330 + 0.912387i \(0.365763\pi\)
\(500\) −490.220 98.4107i −0.980439 0.196821i
\(501\) 2.68099i 0.00535128i
\(502\) −126.779 + 193.813i −0.252549 + 0.386083i
\(503\) −181.279 181.279i −0.360396 0.360396i 0.503563 0.863959i \(-0.332022\pi\)
−0.863959 + 0.503563i \(0.832022\pi\)
\(504\) −543.883 + 386.948i −1.07913 + 0.767754i
\(505\) −229.790 47.4077i −0.455030 0.0938766i
\(506\) −572.868 353.941i −1.13215 0.699488i
\(507\) 15.5779 + 15.5779i 0.0307255 + 0.0307255i
\(508\) 496.353 + 194.318i 0.977073 + 0.382516i
\(509\) 411.402i 0.808256i −0.914702 0.404128i \(-0.867575\pi\)
0.914702 0.404128i \(-0.132425\pi\)
\(510\) 19.3893 19.4931i 0.0380183 0.0382218i
\(511\) 224.821i 0.439962i
\(512\) −245.950 + 449.057i −0.480371 + 0.877065i
\(513\) −40.5637 + 40.5637i −0.0790715 + 0.0790715i
\(514\) 389.305 81.4011i 0.757402 0.158368i
\(515\) 70.2063 + 106.705i 0.136323 + 0.207193i
\(516\) 4.66327 + 10.6636i 0.00903735 + 0.0206659i
\(517\) 25.0629 + 969.721i 0.0484776 + 1.87567i
\(518\) −109.727 + 167.744i −0.211828 + 0.323831i
\(519\) 18.9773i 0.0365651i
\(520\) −73.8960 + 32.5505i −0.142108 + 0.0625971i
\(521\) 261.653 0.502213 0.251106 0.967960i \(-0.419206\pi\)
0.251106 + 0.967960i \(0.419206\pi\)
\(522\) −9.63277 + 14.7260i −0.0184536 + 0.0282108i
\(523\) −615.582 615.582i −1.17702 1.17702i −0.980500 0.196521i \(-0.937036\pi\)
−0.196521 0.980500i \(-0.562964\pi\)
\(524\) −381.941 873.393i −0.728894 1.66678i
\(525\) 12.2770 28.4876i 0.0233848 0.0542621i
\(526\) −141.899 678.636i −0.269769 1.29018i
\(527\) 614.961 614.961i 1.16691 1.16691i
\(528\) 15.5101 17.6677i 0.0293753 0.0334615i
\(529\) 407.884i 0.771047i
\(530\) −0.152629 0.000407486i −0.000287980 7.68842e-7i
\(531\) 236.898i 0.446136i
\(532\) 323.492 826.306i 0.608068 1.55321i
\(533\) 87.2791 + 87.2791i 0.163751 + 0.163751i
\(534\) −5.20788 24.9069i −0.00975259 0.0466422i
\(535\) 10.3426 + 15.7195i 0.0193320 + 0.0293822i
\(536\) −525.970 + 374.204i −0.981288 + 0.698141i
\(537\) 16.6701 16.6701i 0.0310430 0.0310430i
\(538\) 39.2450 59.9956i 0.0729461 0.111516i
\(539\) −282.431 + 297.418i −0.523992 + 0.551796i
\(540\) 40.2733 + 26.1908i 0.0745802 + 0.0485014i
\(541\) 887.533i 1.64054i 0.571976 + 0.820270i \(0.306177\pi\)
−0.571976 + 0.820270i \(0.693823\pi\)
\(542\) −216.423 141.569i −0.399304 0.261197i
\(543\) 30.0345 30.0345i 0.0553122 0.0553122i
\(544\) −564.869 338.735i −1.03836 0.622674i
\(545\) 83.4063 404.279i 0.153039 0.741796i
\(546\) −1.02531 4.90360i −0.00187786 0.00898095i
\(547\) 282.555 282.555i 0.516553 0.516553i −0.399973 0.916527i \(-0.630981\pi\)
0.916527 + 0.399973i \(0.130981\pi\)
\(548\) 298.866 + 117.004i 0.545377 + 0.213510i
\(549\) 881.460 1.60557
\(550\) 95.7296 541.605i 0.174054 0.984736i
\(551\) 23.3936i 0.0424566i
\(552\) 32.2540 + 5.43791i 0.0584311 + 0.00985129i
\(553\) 533.195 + 533.195i 0.964187 + 0.964187i
\(554\) 53.5130 + 255.928i 0.0965939 + 0.461965i
\(555\) 7.05746 + 1.45602i 0.0127161 + 0.00262345i
\(556\) 232.335 101.602i 0.417869 0.182737i
\(557\) −346.067 346.067i −0.621305 0.621305i 0.324560 0.945865i \(-0.394784\pi\)
−0.945865 + 0.324560i \(0.894784\pi\)
\(558\) 635.218 + 415.516i 1.13838 + 0.744652i
\(559\) 43.9720 0.0786619
\(560\) −733.110 121.588i −1.30913 0.217121i
\(561\) 21.9308 + 20.8258i 0.0390924 + 0.0371226i
\(562\) 162.192 247.950i 0.288597 0.441192i
\(563\) 468.360 + 468.360i 0.831900 + 0.831900i 0.987777 0.155877i \(-0.0498203\pi\)
−0.155877 + 0.987777i \(0.549820\pi\)
\(564\) −18.8791 43.1714i −0.0334737 0.0765450i
\(565\) 336.433 221.356i 0.595457 0.391781i
\(566\) −114.672 548.426i −0.202602 0.968951i
\(567\) 528.874 528.874i 0.932759 0.932759i
\(568\) −242.903 40.9527i −0.427647 0.0720998i
\(569\) −556.715 −0.978410 −0.489205 0.872169i \(-0.662713\pi\)
−0.489205 + 0.872169i \(0.662713\pi\)
\(570\) −31.9013 + 0.0851695i −0.0559673 + 0.000149420i
\(571\) 396.901 0.695098 0.347549 0.937662i \(-0.387014\pi\)
0.347549 + 0.937662i \(0.387014\pi\)
\(572\) −37.6792 80.4342i −0.0658727 0.140619i
\(573\) −34.4091 34.4091i −0.0600508 0.0600508i
\(574\) 232.491 + 1111.90i 0.405037 + 1.93711i
\(575\) 711.055 282.760i 1.23662 0.491756i
\(576\) 188.481 543.081i 0.327224 0.942849i
\(577\) −8.74062 + 8.74062i −0.0151484 + 0.0151484i −0.714640 0.699492i \(-0.753410\pi\)
0.699492 + 0.714640i \(0.253410\pi\)
\(578\) 147.420 225.368i 0.255052 0.389910i
\(579\) 29.7523i 0.0513857i
\(580\) −19.1653 + 4.06079i −0.0330437 + 0.00700136i
\(581\) −494.964 −0.851918
\(582\) −12.7747 + 19.5292i −0.0219496 + 0.0335554i
\(583\) −0.00433783 0.167837i −7.44053e−6 0.000287885i
\(584\) −112.244 157.768i −0.192199 0.270150i
\(585\) 75.7377 49.8316i 0.129466 0.0851822i
\(586\) 714.264 149.348i 1.21888 0.254860i
\(587\) 306.743 + 306.743i 0.522560 + 0.522560i 0.918344 0.395783i \(-0.129527\pi\)
−0.395783 + 0.918344i \(0.629527\pi\)
\(588\) 7.26284 18.5517i 0.0123518 0.0315506i
\(589\) −1009.10 −1.71324
\(590\) −185.996 + 186.992i −0.315248 + 0.316935i
\(591\) 21.0612 0.0356365
\(592\) −6.74774 172.497i −0.0113982 0.291380i
\(593\) 519.759 519.759i 0.876490 0.876490i −0.116680 0.993170i \(-0.537225\pi\)
0.993170 + 0.116680i \(0.0372251\pi\)
\(594\) −27.7758 + 44.9562i −0.0467606 + 0.0756839i
\(595\) 193.158 936.256i 0.324635 1.57354i
\(596\) −268.230 613.369i −0.450051 1.02914i
\(597\) 11.3958 11.3958i 0.0190884 0.0190884i
\(598\) 67.6488 103.418i 0.113125 0.172939i
\(599\) −727.843 −1.21510 −0.607548 0.794283i \(-0.707847\pi\)
−0.607548 + 0.794283i \(0.707847\pi\)
\(600\) 5.60739 + 26.1206i 0.00934564 + 0.0435343i
\(601\) 870.044i 1.44766i −0.689978 0.723830i \(-0.742380\pi\)
0.689978 0.723830i \(-0.257620\pi\)
\(602\) 338.658 + 221.527i 0.562556 + 0.367985i
\(603\) 512.476 512.476i 0.849877 0.849877i
\(604\) −55.8201 127.645i −0.0924173 0.211333i
\(605\) 598.045 + 91.4716i 0.988504 + 0.151193i
\(606\) 2.56583 + 12.2712i 0.00423404 + 0.0202495i
\(607\) 251.374 251.374i 0.414126 0.414126i −0.469047 0.883173i \(-0.655403\pi\)
0.883173 + 0.469047i \(0.155403\pi\)
\(608\) 185.534 + 741.367i 0.305154 + 1.21935i
\(609\) 1.21543i 0.00199578i
\(610\) 695.766 + 692.061i 1.14060 + 1.13453i
\(611\) −178.020 −0.291358
\(612\) 688.621 + 269.589i 1.12520 + 0.440505i
\(613\) −571.963 + 571.963i −0.933055 + 0.933055i −0.997896 0.0648405i \(-0.979346\pi\)
0.0648405 + 0.997896i \(0.479346\pi\)
\(614\) 486.440 101.712i 0.792247 0.165654i
\(615\) 34.1157 22.4465i 0.0554728 0.0364983i
\(616\) 115.028 809.303i 0.186733 1.31380i
\(617\) −99.1961 + 99.1961i −0.160772 + 0.160772i −0.782908 0.622137i \(-0.786265\pi\)
0.622137 + 0.782908i \(0.286265\pi\)
\(618\) 3.73598 5.71136i 0.00604528 0.00924169i
\(619\) −481.347 −0.777620 −0.388810 0.921318i \(-0.627114\pi\)
−0.388810 + 0.921318i \(0.627114\pi\)
\(620\) 175.165 + 826.709i 0.282524 + 1.33340i
\(621\) −73.5226 −0.118394
\(622\) −278.352 + 425.529i −0.447511 + 0.684130i
\(623\) −625.608 625.608i −1.00419 1.00419i
\(624\) 3.16769 + 2.92920i 0.00507643 + 0.00469422i
\(625\) 429.205 + 454.321i 0.686729 + 0.726914i
\(626\) 123.738 + 591.783i 0.197665 + 0.945340i
\(627\) −0.906658 35.0799i −0.00144603 0.0559488i
\(628\) −919.578 360.007i −1.46430 0.573260i
\(629\) 222.074 0.353059
\(630\) 834.355 2.22754i 1.32437 0.00353578i
\(631\) 385.380i 0.610744i 0.952233 + 0.305372i \(0.0987808\pi\)
−0.952233 + 0.305372i \(0.901219\pi\)
\(632\) −640.374 107.965i −1.01325 0.170831i
\(633\) 11.4582 11.4582i 0.0181014 0.0181014i
\(634\) −1088.43 + 227.583i −1.71676 + 0.358964i
\(635\) −366.227 556.619i −0.576736 0.876565i
\(636\) 0.00326756 + 0.00747200i 5.13767e−6 + 1.17484e-5i
\(637\) −53.2239 53.2239i −0.0835540 0.0835540i
\(638\) −4.95409 20.9727i −0.00776503 0.0328726i
\(639\) 276.573 0.432822
\(640\) 575.164 280.690i 0.898693 0.438578i
\(641\) 897.824 1.40066 0.700331 0.713819i \(-0.253036\pi\)
0.700331 + 0.713819i \(0.253036\pi\)
\(642\) 0.550377 0.841385i 0.000857284 0.00131057i
\(643\) −320.216 + 320.216i −0.498003 + 0.498003i −0.910816 0.412813i \(-0.864546\pi\)
0.412813 + 0.910816i \(0.364546\pi\)
\(644\) 1042.02 455.682i 1.61804 0.707580i
\(645\) 2.93955 14.2483i 0.00455744 0.0220904i
\(646\) −962.313 + 201.214i −1.48965 + 0.311476i
\(647\) −497.330 497.330i −0.768670 0.768670i 0.209202 0.977872i \(-0.432913\pi\)
−0.977872 + 0.209202i \(0.932913\pi\)
\(648\) −107.090 + 635.184i −0.165262 + 0.980222i
\(649\) −210.376 199.775i −0.324154 0.307820i
\(650\) 98.9066 + 20.1302i 0.152164 + 0.0309695i
\(651\) −52.4284 −0.0805352
\(652\) −465.962 182.420i −0.714666 0.279786i
\(653\) −357.269 357.269i −0.547119 0.547119i 0.378487 0.925606i \(-0.376444\pi\)
−0.925606 + 0.378487i \(0.876444\pi\)
\(654\) −21.5892 + 4.51417i −0.0330110 + 0.00690240i
\(655\) −240.761 + 1166.99i −0.367574 + 1.78167i
\(656\) −718.280 664.200i −1.09494 1.01250i
\(657\) 153.720 + 153.720i 0.233972 + 0.233972i
\(658\) −1371.05 896.847i −2.08366 1.36299i
\(659\) 794.549i 1.20569i 0.797859 + 0.602844i \(0.205966\pi\)
−0.797859 + 0.602844i \(0.794034\pi\)
\(660\) −28.5820 + 6.83215i −0.0433061 + 0.0103517i
\(661\) −201.089 −0.304220 −0.152110 0.988364i \(-0.548607\pi\)
−0.152110 + 0.988364i \(0.548607\pi\)
\(662\) 527.870 806.979i 0.797387 1.21900i
\(663\) −3.92459 + 3.92459i −0.00591944 + 0.00591944i
\(664\) 347.341 247.117i 0.523104 0.372164i
\(665\) −926.634 + 609.679i −1.39343 + 0.916810i
\(666\) 39.6692 + 189.719i 0.0595633 + 0.284864i
\(667\) 21.2007 21.2007i 0.0317852 0.0317852i
\(668\) −74.7574 29.2669i −0.111912 0.0438127i
\(669\) 28.6798i 0.0428697i
\(670\) 806.875 2.15418i 1.20429 0.00321519i
\(671\) −743.331 + 782.774i −1.10780 + 1.16658i
\(672\) 9.63954 + 38.5183i 0.0143446 + 0.0573189i
\(673\) −19.0447 + 19.0447i −0.0282983 + 0.0282983i −0.721114 0.692816i \(-0.756370\pi\)
0.692816 + 0.721114i \(0.256370\pi\)
\(674\) −182.318 871.944i −0.270502 1.29369i
\(675\) −22.1898 55.8006i −0.0328737 0.0826675i
\(676\) −604.432 + 264.322i −0.894130 + 0.391009i
\(677\) 289.484 + 289.484i 0.427599 + 0.427599i 0.887810 0.460211i \(-0.152226\pi\)
−0.460211 + 0.887810i \(0.652226\pi\)
\(678\) −18.0076 11.7793i −0.0265599 0.0173737i
\(679\) 811.405i 1.19500i
\(680\) 331.889 + 753.453i 0.488072 + 1.10802i
\(681\) 19.4033i 0.0284923i
\(682\) −904.672 + 213.698i −1.32650 + 0.313340i
\(683\) −104.564 + 104.564i −0.153095 + 0.153095i −0.779499 0.626404i \(-0.784526\pi\)
0.626404 + 0.779499i \(0.284526\pi\)
\(684\) −343.797 786.169i −0.502627 1.14937i
\(685\) −220.515 335.154i −0.321919 0.489276i
\(686\) 44.5384 + 213.007i 0.0649247 + 0.310505i
\(687\) −14.8886 14.8886i −0.0216719 0.0216719i
\(688\) −348.253 + 13.6230i −0.506182 + 0.0198009i
\(689\) 0.0308112 4.47187e−5
\(690\) −28.9882 28.8338i −0.0420118 0.0417881i
\(691\) 251.878i 0.364512i −0.983251 0.182256i \(-0.941660\pi\)
0.983251 0.182256i \(-0.0583400\pi\)
\(692\) −529.167 207.164i −0.764692 0.299370i
\(693\) 23.7129 + 917.487i 0.0342178 + 1.32394i
\(694\) 1277.97 267.216i 1.84146 0.385038i
\(695\) −310.437 64.0458i −0.446672 0.0921523i
\(696\) 0.606819 + 0.852928i 0.000871867 + 0.00122547i
\(697\) 889.908 889.908i 1.27677 1.27677i
\(698\) 625.772 + 409.337i 0.896522 + 0.586443i
\(699\) 3.45014i 0.00493582i
\(700\) 660.333 + 653.319i 0.943333 + 0.933313i
\(701\) 646.696i 0.922533i −0.887262 0.461267i \(-0.847395\pi\)
0.887262 0.461267i \(-0.152605\pi\)
\(702\) −8.11578 5.30878i −0.0115609 0.00756237i
\(703\) −182.202 182.202i −0.259177 0.259177i
\(704\) 323.334 + 625.357i 0.459281 + 0.888291i
\(705\) −11.9007 + 57.6838i −0.0168804 + 0.0818210i
\(706\) −198.632 949.967i −0.281349 1.34556i
\(707\) 308.226 + 308.226i 0.435963 + 0.435963i
\(708\) 13.1224 + 5.13731i 0.0185345 + 0.00725608i
\(709\) 956.497i 1.34908i 0.738238 + 0.674540i \(0.235658\pi\)
−0.738238 + 0.674540i \(0.764342\pi\)
\(710\) 218.309 + 217.146i 0.307477 + 0.305840i
\(711\) 729.139 1.02551
\(712\) 751.363 + 126.677i 1.05528 + 0.177918i
\(713\) −914.507 914.507i −1.28262 1.28262i
\(714\) −49.9977 + 10.4542i −0.0700248 + 0.0146417i
\(715\) −19.6166 + 109.281i −0.0274358 + 0.152841i
\(716\) 282.855 + 646.812i 0.395049 + 0.903368i
\(717\) −23.7814 23.7814i −0.0331679 0.0331679i
\(718\) −186.104 + 284.505i −0.259198 + 0.396247i
\(719\) −715.042 −0.994495 −0.497248 0.867609i \(-0.665656\pi\)
−0.497248 + 0.867609i \(0.665656\pi\)
\(720\) −584.395 + 418.125i −0.811660 + 0.580729i
\(721\) 237.297i 0.329122i
\(722\) 350.409 + 229.213i 0.485331 + 0.317470i
\(723\) 27.6735 + 27.6735i 0.0382759 + 0.0382759i
\(724\) 509.620 + 1165.36i 0.703894 + 1.60961i
\(725\) 22.4890 + 9.69188i 0.0310193 + 0.0133681i
\(726\) −8.24175 31.2577i −0.0113523 0.0430547i
\(727\) 330.247 + 330.247i 0.454260 + 0.454260i 0.896766 0.442506i \(-0.145910\pi\)
−0.442506 + 0.896766i \(0.645910\pi\)
\(728\) 147.926 + 24.9398i 0.203195 + 0.0342580i
\(729\) 720.343i 0.988124i
\(730\) 0.646157 + 242.026i 0.000885146 + 0.331543i
\(731\) 448.344i 0.613330i
\(732\) 19.1151 48.8263i 0.0261135 0.0667026i
\(733\) 397.903 397.903i 0.542841 0.542841i −0.381519 0.924361i \(-0.624599\pi\)
0.924361 + 0.381519i \(0.124599\pi\)
\(734\) −150.672 720.593i −0.205275 0.981735i
\(735\) −20.8042 + 13.6881i −0.0283051 + 0.0186233i
\(736\) −503.731 + 840.015i −0.684417 + 1.14132i
\(737\) 22.9319 + 887.269i 0.0311152 + 1.20389i
\(738\) 919.221 + 601.291i 1.24556 + 0.814758i
\(739\) 785.106i 1.06239i 0.847250 + 0.531195i \(0.178257\pi\)
−0.847250 + 0.531195i \(0.821743\pi\)
\(740\) −117.642 + 180.897i −0.158976 + 0.244456i
\(741\) 6.43991 0.00869083
\(742\) 0.237298 + 0.155224i 0.000319809 + 0.000209197i
\(743\) 756.814 + 756.814i 1.01859 + 1.01859i 0.999824 + 0.0187678i \(0.00597433\pi\)
0.0187678 + 0.999824i \(0.494026\pi\)
\(744\) 36.7916 26.1755i 0.0494511 0.0351822i
\(745\) −169.082 + 819.558i −0.226956 + 1.10008i
\(746\) −939.701 + 196.486i −1.25965 + 0.263385i
\(747\) −338.429 + 338.429i −0.453051 + 0.453051i
\(748\) −820.117 + 384.181i −1.09641 + 0.513611i
\(749\) 34.9581i 0.0466730i
\(750\) 13.1347 30.7031i 0.0175130 0.0409374i
\(751\) 1381.45i 1.83948i 0.392526 + 0.919741i \(0.371601\pi\)
−0.392526 + 0.919741i \(0.628399\pi\)
\(752\) 1409.90 55.1524i 1.87486 0.0733409i
\(753\) −10.9376 10.9376i −0.0145254 0.0145254i
\(754\) 3.87106 0.809414i 0.00513403 0.00107349i
\(755\) −35.1868 + 170.554i −0.0466051 + 0.225899i
\(756\) −35.7599 81.7731i −0.0473015 0.108166i
\(757\) 467.852 467.852i 0.618034 0.618034i −0.326993 0.945027i \(-0.606035\pi\)
0.945027 + 0.326993i \(0.106035\pi\)
\(758\) −194.606 127.298i −0.256737 0.167940i
\(759\) 30.9699 32.6132i 0.0408036 0.0429687i
\(760\) 345.874 890.475i 0.455098 1.17168i
\(761\) 10.2127i 0.0134201i −0.999977 0.00671003i \(-0.997864\pi\)
0.999977 0.00671003i \(-0.00213589\pi\)
\(762\) −19.4886 + 29.7930i −0.0255755 + 0.0390985i
\(763\) −542.274 + 542.274i −0.710713 + 0.710713i
\(764\) 1335.10 583.847i 1.74751 0.764198i
\(765\) −508.089 772.230i −0.664169 1.00945i
\(766\) 877.030 183.382i 1.14495 0.239401i
\(767\) 37.6474 37.6474i 0.0490840 0.0490840i
\(768\) −25.9953 22.2175i −0.0338480 0.0289291i
\(769\) −319.451 −0.415411 −0.207705 0.978191i \(-0.566600\pi\)
−0.207705 + 0.978191i \(0.566600\pi\)
\(770\) −701.630 + 742.821i −0.911207 + 0.964703i
\(771\) 26.5637i 0.0344535i
\(772\) −829.621 324.790i