Properties

Label 220.3.i.a.43.12
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.12
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71305 + 1.03221i) q^{2} +(-2.84767 + 2.84767i) q^{3} +(1.86907 - 3.53646i) q^{4} +(-4.99552 + 0.211543i) q^{5} +(1.93880 - 7.81761i) q^{6} +(-7.03107 + 7.03107i) q^{7} +(0.448578 + 7.98741i) q^{8} -7.21849i q^{9} +(8.33922 - 5.51883i) q^{10} +(-5.03383 - 9.78062i) q^{11} +(4.74819 + 15.3932i) q^{12} +(-1.58388 + 1.58388i) q^{13} +(4.78700 - 19.3021i) q^{14} +(13.6232 - 14.8280i) q^{15} +(-9.01315 - 13.2198i) q^{16} +(-0.925270 - 0.925270i) q^{17} +(7.45103 + 12.3656i) q^{18} +22.8764i q^{19} +(-8.58887 + 18.0619i) q^{20} -40.0444i q^{21} +(18.7189 + 11.5587i) q^{22} +(19.2468 - 19.2468i) q^{23} +(-24.0230 - 21.4681i) q^{24} +(24.9105 - 2.11354i) q^{25} +(1.07836 - 4.34817i) q^{26} +(-5.07315 - 5.07315i) q^{27} +(11.7236 + 38.0067i) q^{28} +41.7404 q^{29} +(-8.03154 + 39.4632i) q^{30} +35.7503i q^{31} +(29.0856 + 13.3427i) q^{32} +(42.1867 + 13.5173i) q^{33} +(2.54011 + 0.629956i) q^{34} +(33.6365 - 36.6113i) q^{35} +(-25.5279 - 13.4919i) q^{36} +(0.765756 - 0.765756i) q^{37} +(-23.6133 - 39.1884i) q^{38} -9.02075i q^{39} +(-3.93057 - 39.8064i) q^{40} -27.8390i q^{41} +(41.3344 + 68.5980i) q^{42} +(-48.0507 - 48.0507i) q^{43} +(-43.9974 - 0.478692i) q^{44} +(1.52702 + 36.0601i) q^{45} +(-13.1039 + 52.8375i) q^{46} +(14.5319 + 14.5319i) q^{47} +(63.3122 + 11.9792i) q^{48} -49.8720i q^{49} +(-40.4913 + 29.3335i) q^{50} +5.26974 q^{51} +(2.64095 + 8.56172i) q^{52} +(-33.3564 - 33.3564i) q^{53} +(13.9271 + 3.45398i) q^{54} +(27.2157 + 47.7944i) q^{55} +(-59.3141 - 53.0061i) q^{56} +(-65.1445 - 65.1445i) q^{57} +(-71.5033 + 43.0850i) q^{58} -74.0986 q^{59} +(-26.9760 - 75.8926i) q^{60} -24.4634i q^{61} +(-36.9019 - 61.2419i) q^{62} +(50.7538 + 50.7538i) q^{63} +(-63.5976 + 7.16596i) q^{64} +(7.57725 - 8.24737i) q^{65} +(-86.2207 + 20.3899i) q^{66} +(23.1532 + 23.1532i) q^{67} +(-5.00158 + 1.54279i) q^{68} +109.617i q^{69} +(-19.8303 + 97.4369i) q^{70} -126.669i q^{71} +(57.6571 - 3.23806i) q^{72} +(-70.6214 + 70.6214i) q^{73} +(-0.521353 + 2.10220i) q^{74} +(-64.9183 + 76.9556i) q^{75} +(80.9016 + 42.7576i) q^{76} +(104.162 + 33.3750i) q^{77} +(9.31134 + 15.4530i) q^{78} +6.19455i q^{79} +(47.8220 + 64.1331i) q^{80} +93.8598 q^{81} +(28.7358 + 47.6896i) q^{82} +(-56.4297 - 56.4297i) q^{83} +(-141.616 - 74.8458i) q^{84} +(4.81794 + 4.42648i) q^{85} +(131.912 + 32.7146i) q^{86} +(-118.863 + 118.863i) q^{87} +(75.8638 - 44.5947i) q^{88} +107.129i q^{89} +(-39.8376 - 60.1966i) q^{90} -22.2728i q^{91} +(-32.0920 - 104.039i) q^{92} +(-101.805 - 101.805i) q^{93} +(-39.8937 - 9.89379i) q^{94} +(-4.83934 - 114.280i) q^{95} +(-120.822 + 44.8308i) q^{96} +(54.6816 - 54.6816i) q^{97} +(51.4786 + 85.4332i) q^{98} +(-70.6013 + 36.3367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.71305 + 1.03221i −0.856524 + 0.516107i
\(3\) −2.84767 + 2.84767i −0.949225 + 0.949225i −0.998772 0.0495472i \(-0.984222\pi\)
0.0495472 + 0.998772i \(0.484222\pi\)
\(4\) 1.86907 3.53646i 0.467268 0.884116i
\(5\) −4.99552 + 0.211543i −0.999105 + 0.0423086i
\(6\) 1.93880 7.81761i 0.323133 1.30294i
\(7\) −7.03107 + 7.03107i −1.00444 + 1.00444i −0.00444905 + 0.999990i \(0.501416\pi\)
−0.999990 + 0.00444905i \(0.998584\pi\)
\(8\) 0.448578 + 7.98741i 0.0560723 + 0.998427i
\(9\) 7.21849i 0.802055i
\(10\) 8.33922 5.51883i 0.833922 0.551883i
\(11\) −5.03383 9.78062i −0.457621 0.889147i
\(12\) 4.74819 + 15.3932i 0.395683 + 1.28277i
\(13\) −1.58388 + 1.58388i −0.121837 + 0.121837i −0.765396 0.643559i \(-0.777457\pi\)
0.643559 + 0.765396i \(0.277457\pi\)
\(14\) 4.78700 19.3021i 0.341929 1.37872i
\(15\) 13.6232 14.8280i 0.908214 0.988535i
\(16\) −9.01315 13.2198i −0.563322 0.826237i
\(17\) −0.925270 0.925270i −0.0544277 0.0544277i 0.679369 0.733797i \(-0.262254\pi\)
−0.733797 + 0.679369i \(0.762254\pi\)
\(18\) 7.45103 + 12.3656i 0.413946 + 0.686979i
\(19\) 22.8764i 1.20402i 0.798488 + 0.602011i \(0.205633\pi\)
−0.798488 + 0.602011i \(0.794367\pi\)
\(20\) −8.58887 + 18.0619i −0.429443 + 0.903094i
\(21\) 40.0444i 1.90688i
\(22\) 18.7189 + 11.5587i 0.850859 + 0.525395i
\(23\) 19.2468 19.2468i 0.836817 0.836817i −0.151621 0.988439i \(-0.548449\pi\)
0.988439 + 0.151621i \(0.0484494\pi\)
\(24\) −24.0230 21.4681i −1.00096 0.894506i
\(25\) 24.9105 2.11354i 0.996420 0.0845415i
\(26\) 1.07836 4.34817i 0.0414754 0.167237i
\(27\) −5.07315 5.07315i −0.187894 0.187894i
\(28\) 11.7236 + 38.0067i 0.418699 + 1.35738i
\(29\) 41.7404 1.43932 0.719662 0.694324i \(-0.244297\pi\)
0.719662 + 0.694324i \(0.244297\pi\)
\(30\) −8.03154 + 39.4632i −0.267718 + 1.31544i
\(31\) 35.7503i 1.15323i 0.817015 + 0.576617i \(0.195628\pi\)
−0.817015 + 0.576617i \(0.804372\pi\)
\(32\) 29.0856 + 13.3427i 0.908926 + 0.416958i
\(33\) 42.1867 + 13.5173i 1.27839 + 0.409615i
\(34\) 2.54011 + 0.629956i 0.0747091 + 0.0185281i
\(35\) 33.6365 36.6113i 0.961043 1.04604i
\(36\) −25.5279 13.4919i −0.709109 0.374774i
\(37\) 0.765756 0.765756i 0.0206961 0.0206961i −0.696683 0.717379i \(-0.745342\pi\)
0.717379 + 0.696683i \(0.245342\pi\)
\(38\) −23.6133 39.1884i −0.621403 1.03127i
\(39\) 9.02075i 0.231301i
\(40\) −3.93057 39.8064i −0.0982641 0.995160i
\(41\) 27.8390i 0.679000i −0.940606 0.339500i \(-0.889742\pi\)
0.940606 0.339500i \(-0.110258\pi\)
\(42\) 41.3344 + 68.5980i 0.984152 + 1.63329i
\(43\) −48.0507 48.0507i −1.11746 1.11746i −0.992113 0.125345i \(-0.959996\pi\)
−0.125345 0.992113i \(-0.540004\pi\)
\(44\) −43.9974 0.478692i −0.999941 0.0108794i
\(45\) 1.52702 + 36.0601i 0.0339338 + 0.801337i
\(46\) −13.1039 + 52.8375i −0.284867 + 1.14864i
\(47\) 14.5319 + 14.5319i 0.309188 + 0.309188i 0.844595 0.535406i \(-0.179841\pi\)
−0.535406 + 0.844595i \(0.679841\pi\)
\(48\) 63.3122 + 11.9792i 1.31900 + 0.249566i
\(49\) 49.8720i 1.01780i
\(50\) −40.4913 + 29.3335i −0.809825 + 0.586671i
\(51\) 5.26974 0.103328
\(52\) 2.64095 + 8.56172i 0.0507876 + 0.164648i
\(53\) −33.3564 33.3564i −0.629365 0.629365i 0.318543 0.947908i \(-0.396806\pi\)
−0.947908 + 0.318543i \(0.896806\pi\)
\(54\) 13.9271 + 3.45398i 0.257910 + 0.0639626i
\(55\) 27.2157 + 47.7944i 0.494830 + 0.868990i
\(56\) −59.3141 53.0061i −1.05918 0.946538i
\(57\) −65.1445 65.1445i −1.14289 1.14289i
\(58\) −71.5033 + 43.0850i −1.23282 + 0.742845i
\(59\) −74.0986 −1.25591 −0.627954 0.778250i \(-0.716107\pi\)
−0.627954 + 0.778250i \(0.716107\pi\)
\(60\) −26.9760 75.8926i −0.449601 1.26488i
\(61\) 24.4634i 0.401039i −0.979690 0.200520i \(-0.935737\pi\)
0.979690 0.200520i \(-0.0642630\pi\)
\(62\) −36.9019 61.2419i −0.595192 0.987773i
\(63\) 50.7538 + 50.7538i 0.805615 + 0.805615i
\(64\) −63.5976 + 7.16596i −0.993712 + 0.111968i
\(65\) 7.57725 8.24737i 0.116573 0.126883i
\(66\) −86.2207 + 20.3899i −1.30637 + 0.308938i
\(67\) 23.1532 + 23.1532i 0.345571 + 0.345571i 0.858457 0.512886i \(-0.171424\pi\)
−0.512886 + 0.858457i \(0.671424\pi\)
\(68\) −5.00158 + 1.54279i −0.0735527 + 0.0226881i
\(69\) 109.617i 1.58866i
\(70\) −19.8303 + 97.4369i −0.283291 + 1.39196i
\(71\) 126.669i 1.78407i −0.451962 0.892037i \(-0.649276\pi\)
0.451962 0.892037i \(-0.350724\pi\)
\(72\) 57.6571 3.23806i 0.800793 0.0449731i
\(73\) −70.6214 + 70.6214i −0.967416 + 0.967416i −0.999486 0.0320692i \(-0.989790\pi\)
0.0320692 + 0.999486i \(0.489790\pi\)
\(74\) −0.521353 + 2.10220i −0.00704531 + 0.0284081i
\(75\) −64.9183 + 76.9556i −0.865578 + 1.02608i
\(76\) 80.9016 + 42.7576i 1.06449 + 0.562600i
\(77\) 104.162 + 33.3750i 1.35275 + 0.433442i
\(78\) 9.31134 + 15.4530i 0.119376 + 0.198115i
\(79\) 6.19455i 0.0784120i 0.999231 + 0.0392060i \(0.0124829\pi\)
−0.999231 + 0.0392060i \(0.987517\pi\)
\(80\) 47.8220 + 64.1331i 0.597775 + 0.801664i
\(81\) 93.8598 1.15876
\(82\) 28.7358 + 47.6896i 0.350437 + 0.581580i
\(83\) −56.4297 56.4297i −0.679876 0.679876i 0.280096 0.959972i \(-0.409634\pi\)
−0.959972 + 0.280096i \(0.909634\pi\)
\(84\) −141.616 74.8458i −1.68590 0.891022i
\(85\) 4.81794 + 4.42648i 0.0566817 + 0.0520762i
\(86\) 131.912 + 32.7146i 1.53386 + 0.380402i
\(87\) −118.863 + 118.863i −1.36624 + 1.36624i
\(88\) 75.8638 44.5947i 0.862088 0.506758i
\(89\) 107.129i 1.20370i 0.798609 + 0.601850i \(0.205570\pi\)
−0.798609 + 0.601850i \(0.794430\pi\)
\(90\) −39.8376 60.1966i −0.442640 0.668851i
\(91\) 22.2728i 0.244756i
\(92\) −32.0920 104.039i −0.348826 1.13086i
\(93\) −101.805 101.805i −1.09468 1.09468i
\(94\) −39.8937 9.89379i −0.424402 0.105253i
\(95\) −4.83934 114.280i −0.0509405 1.20294i
\(96\) −120.822 + 44.8308i −1.25856 + 0.466988i
\(97\) 54.6816 54.6816i 0.563728 0.563728i −0.366637 0.930364i \(-0.619491\pi\)
0.930364 + 0.366637i \(0.119491\pi\)
\(98\) 51.4786 + 85.4332i 0.525291 + 0.871767i
\(99\) −70.6013 + 36.3367i −0.713145 + 0.367037i
\(100\) 39.0850 92.0454i 0.390850 0.920454i
\(101\) 154.516i 1.52986i −0.644112 0.764931i \(-0.722773\pi\)
0.644112 0.764931i \(-0.277227\pi\)
\(102\) −9.02731 + 5.43949i −0.0885031 + 0.0533284i
\(103\) 106.792 106.792i 1.03681 1.03681i 0.0375172 0.999296i \(-0.488055\pi\)
0.999296 0.0375172i \(-0.0119449\pi\)
\(104\) −13.3616 11.9406i −0.128477 0.114814i
\(105\) 8.47112 + 200.043i 0.0806773 + 1.90517i
\(106\) 91.5720 + 22.7102i 0.863886 + 0.214247i
\(107\) −38.8903 + 38.8903i −0.363460 + 0.363460i −0.865085 0.501625i \(-0.832736\pi\)
0.501625 + 0.865085i \(0.332736\pi\)
\(108\) −27.4231 + 8.45894i −0.253918 + 0.0783235i
\(109\) −102.110 −0.936789 −0.468394 0.883520i \(-0.655167\pi\)
−0.468394 + 0.883520i \(0.655167\pi\)
\(110\) −95.9558 53.7818i −0.872325 0.488926i
\(111\) 4.36125i 0.0392905i
\(112\) 156.322 + 29.5772i 1.39573 + 0.264082i
\(113\) 64.6218 + 64.6218i 0.571874 + 0.571874i 0.932652 0.360778i \(-0.117489\pi\)
−0.360778 + 0.932652i \(0.617489\pi\)
\(114\) 178.839 + 44.3527i 1.56876 + 0.389058i
\(115\) −92.0763 + 100.219i −0.800663 + 0.871473i
\(116\) 78.0157 147.613i 0.672550 1.27253i
\(117\) 11.4332 + 11.4332i 0.0977199 + 0.0977199i
\(118\) 126.934 76.4856i 1.07572 0.648183i
\(119\) 13.0113 0.109339
\(120\) 124.549 + 102.163i 1.03791 + 0.851356i
\(121\) −70.3210 + 98.4680i −0.581166 + 0.813785i
\(122\) 25.2514 + 41.9070i 0.206979 + 0.343500i
\(123\) 79.2764 + 79.2764i 0.644524 + 0.644524i
\(124\) 126.430 + 66.8197i 1.01959 + 0.538869i
\(125\) −123.994 + 15.8279i −0.991951 + 0.126623i
\(126\) −139.332 34.5549i −1.10581 0.274245i
\(127\) 7.48217 7.48217i 0.0589147 0.0589147i −0.677036 0.735950i \(-0.736736\pi\)
0.735950 + 0.677036i \(0.236736\pi\)
\(128\) 101.549 77.9219i 0.793351 0.608765i
\(129\) 273.665 2.12144
\(130\) −4.46715 + 21.9495i −0.0343627 + 0.168842i
\(131\) −25.7347 −0.196448 −0.0982242 0.995164i \(-0.531316\pi\)
−0.0982242 + 0.995164i \(0.531316\pi\)
\(132\) 126.653 123.927i 0.959495 0.938841i
\(133\) −160.846 160.846i −1.20937 1.20937i
\(134\) −63.5617 15.7635i −0.474341 0.117638i
\(135\) 26.4162 + 24.2699i 0.195676 + 0.179777i
\(136\) 6.97546 7.80557i 0.0512902 0.0573939i
\(137\) −73.9786 + 73.9786i −0.539990 + 0.539990i −0.923526 0.383536i \(-0.874706\pi\)
0.383536 + 0.923526i \(0.374706\pi\)
\(138\) −113.148 187.780i −0.819916 1.36072i
\(139\) 107.789i 0.775458i −0.921773 0.387729i \(-0.873260\pi\)
0.921773 0.387729i \(-0.126740\pi\)
\(140\) −66.6054 187.383i −0.475753 1.33845i
\(141\) −82.7639 −0.586978
\(142\) 130.750 + 216.991i 0.920773 + 1.52810i
\(143\) 23.4643 + 7.51834i 0.164086 + 0.0525758i
\(144\) −95.4270 + 65.0614i −0.662688 + 0.451815i
\(145\) −208.515 + 8.82989i −1.43804 + 0.0608958i
\(146\) 48.0815 193.874i 0.329325 1.32791i
\(147\) 142.019 + 142.019i 0.966117 + 0.966117i
\(148\) −1.27682 4.13932i −0.00862714 0.0279684i
\(149\) 29.1329 0.195523 0.0977613 0.995210i \(-0.468832\pi\)
0.0977613 + 0.995210i \(0.468832\pi\)
\(150\) 31.7736 198.838i 0.211824 1.32559i
\(151\) 286.899 1.89999 0.949996 0.312263i \(-0.101087\pi\)
0.949996 + 0.312263i \(0.101087\pi\)
\(152\) −182.723 + 10.2619i −1.20213 + 0.0675122i
\(153\) −6.67906 + 6.67906i −0.0436540 + 0.0436540i
\(154\) −212.884 + 50.3439i −1.38236 + 0.326909i
\(155\) −7.56272 178.591i −0.0487917 1.15220i
\(156\) −31.9016 16.8604i −0.204497 0.108080i
\(157\) 76.1468 76.1468i 0.485011 0.485011i −0.421716 0.906728i \(-0.638572\pi\)
0.906728 + 0.421716i \(0.138572\pi\)
\(158\) −6.39410 10.6116i −0.0404690 0.0671618i
\(159\) 189.976 1.19482
\(160\) −148.120 60.5007i −0.925753 0.378129i
\(161\) 270.651i 1.68106i
\(162\) −160.786 + 96.8834i −0.992509 + 0.598045i
\(163\) 54.2711 54.2711i 0.332952 0.332952i −0.520755 0.853706i \(-0.674349\pi\)
0.853706 + 0.520755i \(0.174349\pi\)
\(164\) −98.4517 52.0331i −0.600315 0.317275i
\(165\) −213.604 58.6017i −1.29457 0.355162i
\(166\) 154.914 + 38.4193i 0.933219 + 0.231442i
\(167\) 133.358 133.358i 0.798550 0.798550i −0.184316 0.982867i \(-0.559007\pi\)
0.982867 + 0.184316i \(0.0590071\pi\)
\(168\) 319.851 17.9631i 1.90388 0.106923i
\(169\) 163.983i 0.970312i
\(170\) −12.8224 2.60962i −0.0754261 0.0153507i
\(171\) 165.133 0.965691
\(172\) −259.740 + 80.1194i −1.51011 + 0.465811i
\(173\) −125.321 + 125.321i −0.724399 + 0.724399i −0.969498 0.245099i \(-0.921180\pi\)
0.245099 + 0.969498i \(0.421180\pi\)
\(174\) 80.9261 326.310i 0.465093 1.87535i
\(175\) −160.287 + 190.008i −0.915926 + 1.08576i
\(176\) −83.9271 + 154.700i −0.476859 + 0.878980i
\(177\) 211.009 211.009i 1.19214 1.19214i
\(178\) −110.580 183.518i −0.621238 1.03100i
\(179\) 152.103 0.849738 0.424869 0.905255i \(-0.360320\pi\)
0.424869 + 0.905255i \(0.360320\pi\)
\(180\) 130.380 + 61.9987i 0.724331 + 0.344437i
\(181\) 76.9154 0.424947 0.212474 0.977167i \(-0.431848\pi\)
0.212474 + 0.977167i \(0.431848\pi\)
\(182\) 22.9903 + 38.1543i 0.126320 + 0.209639i
\(183\) 69.6637 + 69.6637i 0.380676 + 0.380676i
\(184\) 162.366 + 145.098i 0.882423 + 0.788578i
\(185\) −3.66336 + 3.98734i −0.0198019 + 0.0215532i
\(186\) 279.482 + 69.3124i 1.50259 + 0.372648i
\(187\) −4.39206 + 13.7074i −0.0234870 + 0.0733015i
\(188\) 78.5524 24.2303i 0.417832 0.128885i
\(189\) 71.3394 0.377457
\(190\) 126.251 + 190.771i 0.664479 + 1.00406i
\(191\) 4.70516i 0.0246343i −0.999924 0.0123172i \(-0.996079\pi\)
0.999924 0.0123172i \(-0.00392078\pi\)
\(192\) 160.699 201.511i 0.836973 1.04954i
\(193\) 118.695 118.695i 0.615000 0.615000i −0.329245 0.944245i \(-0.606794\pi\)
0.944245 + 0.329245i \(0.106794\pi\)
\(194\) −37.2291 + 150.115i −0.191903 + 0.773790i
\(195\) 1.90828 + 45.0634i 0.00978604 + 0.231094i
\(196\) −176.371 93.2143i −0.899850 0.475583i
\(197\) −210.870 210.870i −1.07040 1.07040i −0.997326 0.0730773i \(-0.976718\pi\)
−0.0730773 0.997326i \(-0.523282\pi\)
\(198\) 83.4363 135.122i 0.421395 0.682435i
\(199\) −85.9689 −0.432004 −0.216002 0.976393i \(-0.569302\pi\)
−0.216002 + 0.976393i \(0.569302\pi\)
\(200\) 28.0560 + 198.022i 0.140280 + 0.990112i
\(201\) −131.866 −0.656048
\(202\) 159.494 + 264.693i 0.789572 + 1.31036i
\(203\) −293.480 + 293.480i −1.44571 + 1.44571i
\(204\) 9.84951 18.6362i 0.0482819 0.0913541i
\(205\) 5.88915 + 139.070i 0.0287276 + 0.678392i
\(206\) −72.7075 + 293.171i −0.352949 + 1.42316i
\(207\) −138.933 138.933i −0.671173 0.671173i
\(208\) 35.2143 + 6.66282i 0.169300 + 0.0320328i
\(209\) 223.745 115.156i 1.07055 0.550986i
\(210\) −220.998 333.939i −1.05237 1.59019i
\(211\) −309.119 −1.46502 −0.732509 0.680758i \(-0.761651\pi\)
−0.732509 + 0.680758i \(0.761651\pi\)
\(212\) −180.309 + 55.6182i −0.850514 + 0.262350i
\(213\) 360.713 + 360.713i 1.69349 + 1.69349i
\(214\) 26.4779 106.764i 0.123728 0.498897i
\(215\) 250.203 + 229.874i 1.16374 + 1.06918i
\(216\) 38.2457 42.7971i 0.177063 0.198135i
\(217\) −251.363 251.363i −1.15835 1.15835i
\(218\) 174.919 105.399i 0.802382 0.483483i
\(219\) 402.213i 1.83659i
\(220\) 219.891 6.91603i 0.999506 0.0314365i
\(221\) 2.93104 0.0132626
\(222\) −4.50174 7.47102i −0.0202781 0.0336533i
\(223\) 61.5103 61.5103i 0.275831 0.275831i −0.555611 0.831442i \(-0.687516\pi\)
0.831442 + 0.555611i \(0.187516\pi\)
\(224\) −298.316 + 110.690i −1.33177 + 0.494152i
\(225\) −15.2565 179.816i −0.0678069 0.799183i
\(226\) −177.404 43.9967i −0.784972 0.194676i
\(227\) 20.6804 20.6804i 0.0911031 0.0911031i −0.660087 0.751190i \(-0.729480\pi\)
0.751190 + 0.660087i \(0.229480\pi\)
\(228\) −352.141 + 108.622i −1.54448 + 0.476410i
\(229\) 78.4887i 0.342746i 0.985206 + 0.171373i \(0.0548202\pi\)
−0.985206 + 0.171373i \(0.945180\pi\)
\(230\) 54.2834 266.723i 0.236015 1.15967i
\(231\) −391.659 + 201.577i −1.69549 + 0.872627i
\(232\) 18.7238 + 333.398i 0.0807062 + 1.43706i
\(233\) −70.5031 + 70.5031i −0.302588 + 0.302588i −0.842026 0.539437i \(-0.818637\pi\)
0.539437 + 0.842026i \(0.318637\pi\)
\(234\) −31.3872 7.78414i −0.134133 0.0332656i
\(235\) −75.6683 69.5201i −0.321993 0.295830i
\(236\) −138.495 + 262.047i −0.586845 + 1.11037i
\(237\) −17.6401 17.6401i −0.0744306 0.0744306i
\(238\) −22.2890 + 13.4304i −0.0936511 + 0.0564304i
\(239\) 18.5291i 0.0775277i −0.999248 0.0387638i \(-0.987658\pi\)
0.999248 0.0387638i \(-0.0123420\pi\)
\(240\) −318.812 46.4489i −1.32838 0.193537i
\(241\) 306.272i 1.27084i −0.772168 0.635419i \(-0.780828\pi\)
0.772168 0.635419i \(-0.219172\pi\)
\(242\) 18.8233 241.267i 0.0777823 0.996970i
\(243\) −221.624 + 221.624i −0.912032 + 0.912032i
\(244\) −86.5139 45.7238i −0.354565 0.187393i
\(245\) 10.5501 + 249.137i 0.0430615 + 1.01688i
\(246\) −217.635 53.9742i −0.884693 0.219407i
\(247\) −36.2335 36.2335i −0.146694 0.146694i
\(248\) −285.552 + 16.0368i −1.15142 + 0.0646645i
\(249\) 321.387 1.29071
\(250\) 196.070 155.102i 0.784279 0.620408i
\(251\) 166.067i 0.661622i −0.943697 0.330811i \(-0.892678\pi\)
0.943697 0.330811i \(-0.107322\pi\)
\(252\) 274.351 84.6265i 1.08870 0.335819i
\(253\) −285.131 91.3604i −1.12700 0.361108i
\(254\) −5.09412 + 20.5405i −0.0200556 + 0.0808682i
\(255\) −26.3251 + 1.11478i −0.103236 + 0.00437167i
\(256\) −93.5261 + 238.304i −0.365336 + 0.930876i
\(257\) −337.029 + 337.029i −1.31140 + 1.31140i −0.391010 + 0.920386i \(0.627874\pi\)
−0.920386 + 0.391010i \(0.872126\pi\)
\(258\) −468.802 + 282.481i −1.81706 + 1.09489i
\(259\) 10.7682i 0.0415759i
\(260\) −15.0041 42.2116i −0.0577081 0.162352i
\(261\) 301.303i 1.15442i
\(262\) 44.0849 26.5637i 0.168263 0.101388i
\(263\) −292.846 292.846i −1.11348 1.11348i −0.992676 0.120808i \(-0.961452\pi\)
−0.120808 0.992676i \(-0.538548\pi\)
\(264\) −89.0442 + 343.026i −0.337289 + 1.29934i
\(265\) 173.689 + 159.576i 0.655429 + 0.602174i
\(266\) 441.564 + 109.509i 1.66001 + 0.411689i
\(267\) −305.069 305.069i −1.14258 1.14258i
\(268\) 125.156 38.6056i 0.466998 0.144051i
\(269\) 249.221i 0.926472i −0.886235 0.463236i \(-0.846688\pi\)
0.886235 0.463236i \(-0.153312\pi\)
\(270\) −70.3040 14.3082i −0.260385 0.0529935i
\(271\) −341.070 −1.25856 −0.629280 0.777178i \(-0.716650\pi\)
−0.629280 + 0.777178i \(0.716650\pi\)
\(272\) −3.89228 + 20.5715i −0.0143099 + 0.0756305i
\(273\) 63.4256 + 63.4256i 0.232328 + 0.232328i
\(274\) 50.3672 203.091i 0.183822 0.741207i
\(275\) −146.067 233.001i −0.531153 0.847276i
\(276\) 387.657 + 204.882i 1.40456 + 0.742327i
\(277\) 115.235 + 115.235i 0.416012 + 0.416012i 0.883827 0.467815i \(-0.154959\pi\)
−0.467815 + 0.883827i \(0.654959\pi\)
\(278\) 111.261 + 184.647i 0.400219 + 0.664198i
\(279\) 258.063 0.924957
\(280\) 307.518 + 252.246i 1.09828 + 0.900878i
\(281\) 106.476i 0.378919i −0.981889 0.189459i \(-0.939326\pi\)
0.981889 0.189459i \(-0.0606735\pi\)
\(282\) 141.779 85.4301i 0.502761 0.302944i
\(283\) 241.292 + 241.292i 0.852623 + 0.852623i 0.990456 0.137833i \(-0.0440137\pi\)
−0.137833 + 0.990456i \(0.544014\pi\)
\(284\) −447.961 236.754i −1.57733 0.833640i
\(285\) 339.212 + 311.650i 1.19022 + 1.09351i
\(286\) −47.9561 + 11.3409i −0.167679 + 0.0396535i
\(287\) 195.738 + 195.738i 0.682014 + 0.682014i
\(288\) 96.3139 209.954i 0.334423 0.729008i
\(289\) 287.288i 0.994075i
\(290\) 348.082 230.358i 1.20028 0.794339i
\(291\) 311.431i 1.07021i
\(292\) 117.754 + 381.746i 0.403266 + 1.30735i
\(293\) 170.285 170.285i 0.581178 0.581178i −0.354049 0.935227i \(-0.615195\pi\)
0.935227 + 0.354049i \(0.115195\pi\)
\(294\) −389.880 96.6916i −1.32612 0.328883i
\(295\) 370.161 15.6750i 1.25478 0.0531357i
\(296\) 6.45991 + 5.77291i 0.0218240 + 0.0195031i
\(297\) −24.0812 + 75.1560i −0.0810814 + 0.253050i
\(298\) −49.9060 + 30.0714i −0.167470 + 0.100911i
\(299\) 60.9693i 0.203911i
\(300\) 150.814 + 373.417i 0.502713 + 1.24472i
\(301\) 675.696 2.24484
\(302\) −491.471 + 296.141i −1.62739 + 0.980599i
\(303\) 440.011 + 440.011i 1.45218 + 1.45218i
\(304\) 302.421 206.189i 0.994807 0.678252i
\(305\) 5.17506 + 122.207i 0.0169674 + 0.400680i
\(306\) 4.54734 18.3358i 0.0148606 0.0599208i
\(307\) −157.116 + 157.116i −0.511777 + 0.511777i −0.915071 0.403293i \(-0.867865\pi\)
0.403293 + 0.915071i \(0.367865\pi\)
\(308\) 312.715 305.983i 1.01531 0.993452i
\(309\) 608.216i 1.96834i
\(310\) 197.300 + 298.129i 0.636450 + 0.961707i
\(311\) 298.440i 0.959614i −0.877374 0.479807i \(-0.840707\pi\)
0.877374 0.479807i \(-0.159293\pi\)
\(312\) 72.0525 4.04651i 0.230937 0.0129696i
\(313\) 71.9061 + 71.9061i 0.229732 + 0.229732i 0.812581 0.582849i \(-0.198062\pi\)
−0.582849 + 0.812581i \(0.698062\pi\)
\(314\) −51.8434 + 209.043i −0.165106 + 0.665742i
\(315\) −264.278 242.805i −0.838978 0.770809i
\(316\) 21.9068 + 11.5780i 0.0693253 + 0.0366394i
\(317\) 138.594 138.594i 0.437206 0.437206i −0.453864 0.891071i \(-0.649955\pi\)
0.891071 + 0.453864i \(0.149955\pi\)
\(318\) −325.438 + 196.096i −1.02339 + 0.616654i
\(319\) −210.114 408.247i −0.658665 1.27977i
\(320\) 316.187 49.2514i 0.988085 0.153910i
\(321\) 221.494i 0.690011i
\(322\) −279.370 463.639i −0.867609 1.43987i
\(323\) 21.1669 21.1669i 0.0655321 0.0655321i
\(324\) 175.431 331.932i 0.541452 1.02448i
\(325\) −36.1077 + 42.8028i −0.111101 + 0.131701i
\(326\) −36.9497 + 148.989i −0.113343 + 0.457020i
\(327\) 290.776 290.776i 0.889223 0.889223i
\(328\) 222.362 12.4880i 0.677932 0.0380731i
\(329\) −204.349 −0.621122
\(330\) 426.404 120.098i 1.29213 0.363933i
\(331\) 223.320i 0.674682i 0.941383 + 0.337341i \(0.109527\pi\)
−0.941383 + 0.337341i \(0.890473\pi\)
\(332\) −305.033 + 94.0906i −0.918773 + 0.283405i
\(333\) −5.52760 5.52760i −0.0165994 0.0165994i
\(334\) −90.7947 + 366.102i −0.271841 + 1.09612i
\(335\) −120.560 110.765i −0.359882 0.330641i
\(336\) −529.379 + 360.926i −1.57553 + 1.07419i
\(337\) −393.070 393.070i −1.16638 1.16638i −0.983052 0.183329i \(-0.941313\pi\)
−0.183329 0.983052i \(-0.558687\pi\)
\(338\) −169.265 280.910i −0.500784 0.831095i
\(339\) −368.043 −1.08567
\(340\) 24.6591 8.76509i 0.0725269 0.0257797i
\(341\) 349.660 179.961i 1.02539 0.527744i
\(342\) −282.881 + 170.453i −0.827138 + 0.498400i
\(343\) 6.13113 + 6.13113i 0.0178750 + 0.0178750i
\(344\) 362.246 405.355i 1.05304 1.17836i
\(345\) −23.1888 547.595i −0.0672138 1.58723i
\(346\) 85.3229 344.039i 0.246598 0.994333i
\(347\) 316.110 316.110i 0.910981 0.910981i −0.0853686 0.996349i \(-0.527207\pi\)
0.996349 + 0.0853686i \(0.0272068\pi\)
\(348\) 198.192 + 642.518i 0.569516 + 1.84632i
\(349\) −115.743 −0.331643 −0.165821 0.986156i \(-0.553028\pi\)
−0.165821 + 0.986156i \(0.553028\pi\)
\(350\) 78.4508 490.943i 0.224145 1.40270i
\(351\) 16.0705 0.0457850
\(352\) −15.9128 351.640i −0.0452067 0.998978i
\(353\) −162.819 162.819i −0.461244 0.461244i 0.437819 0.899063i \(-0.355751\pi\)
−0.899063 + 0.437819i \(0.855751\pi\)
\(354\) −143.662 + 579.274i −0.405825 + 1.63637i
\(355\) 26.7960 + 632.779i 0.0754817 + 1.78248i
\(356\) 378.859 + 200.232i 1.06421 + 0.562450i
\(357\) −37.0519 + 37.0519i −0.103787 + 0.103787i
\(358\) −260.560 + 157.003i −0.727821 + 0.438555i
\(359\) 680.992i 1.89691i 0.316907 + 0.948457i \(0.397356\pi\)
−0.316907 + 0.948457i \(0.602644\pi\)
\(360\) −287.342 + 28.3728i −0.798173 + 0.0788132i
\(361\) −162.330 −0.449667
\(362\) −131.760 + 79.3931i −0.363977 + 0.219318i
\(363\) −80.1534 480.656i −0.220808 1.32412i
\(364\) −78.7668 41.6294i −0.216392 0.114366i
\(365\) 337.851 367.730i 0.925620 1.00748i
\(366\) −191.245 47.4295i −0.522528 0.129589i
\(367\) −40.4515 40.4515i −0.110222 0.110222i 0.649845 0.760067i \(-0.274834\pi\)
−0.760067 + 0.649845i \(0.774834\pi\)
\(368\) −427.913 80.9644i −1.16281 0.220012i
\(369\) −200.956 −0.544595
\(370\) 2.15973 10.6119i 0.00583710 0.0286808i
\(371\) 469.062 1.26432
\(372\) −550.311 + 169.749i −1.47933 + 0.456315i
\(373\) −58.9579 + 58.9579i −0.158064 + 0.158064i −0.781708 0.623644i \(-0.785651\pi\)
0.623644 + 0.781708i \(0.285651\pi\)
\(374\) −6.62513 28.0149i −0.0177142 0.0749063i
\(375\) 308.021 398.167i 0.821391 1.06178i
\(376\) −109.553 + 122.591i −0.291365 + 0.326039i
\(377\) −66.1118 + 66.1118i −0.175363 + 0.175363i
\(378\) −122.208 + 73.6375i −0.323301 + 0.194808i
\(379\) −162.871 −0.429740 −0.214870 0.976643i \(-0.568933\pi\)
−0.214870 + 0.976643i \(0.568933\pi\)
\(380\) −413.191 196.482i −1.08734 0.517059i
\(381\) 42.6136i 0.111847i
\(382\) 4.85673 + 8.06017i 0.0127140 + 0.0210999i
\(383\) 10.3018 10.3018i 0.0268975 0.0268975i −0.693530 0.720428i \(-0.743946\pi\)
0.720428 + 0.693530i \(0.243946\pi\)
\(384\) −67.2820 + 511.074i −0.175213 + 1.33092i
\(385\) −527.402 144.691i −1.36987 0.375821i
\(386\) −80.8117 + 325.849i −0.209357 + 0.844168i
\(387\) −346.854 + 346.854i −0.896263 + 0.896263i
\(388\) −91.1757 295.583i −0.234989 0.761812i
\(389\) 181.531i 0.466661i 0.972397 + 0.233331i \(0.0749625\pi\)
−0.972397 + 0.233331i \(0.925038\pi\)
\(390\) −49.7840 75.2260i −0.127651 0.192887i
\(391\) −35.6170 −0.0910920
\(392\) 398.348 22.3715i 1.01619 0.0570702i
\(393\) 73.2841 73.2841i 0.186474 0.186474i
\(394\) 578.892 + 143.567i 1.46927 + 0.364384i
\(395\) −1.31041 30.9450i −0.00331750 0.0783418i
\(396\) −3.45544 + 317.595i −0.00872585 + 0.802007i
\(397\) 317.675 317.675i 0.800189 0.800189i −0.182936 0.983125i \(-0.558560\pi\)
0.983125 + 0.182936i \(0.0585601\pi\)
\(398\) 147.269 88.7383i 0.370022 0.222960i
\(399\) 916.072 2.29592
\(400\) −252.463 310.262i −0.631157 0.775655i
\(401\) −84.5433 −0.210831 −0.105416 0.994428i \(-0.533617\pi\)
−0.105416 + 0.994428i \(0.533617\pi\)
\(402\) 225.892 136.114i 0.561921 0.338591i
\(403\) −56.6241 56.6241i −0.140507 0.140507i
\(404\) −546.440 288.801i −1.35258 0.714855i
\(405\) −468.879 + 19.8554i −1.15773 + 0.0490257i
\(406\) 199.811 805.679i 0.492146 1.98443i
\(407\) −11.3443 3.63488i −0.0278729 0.00893091i
\(408\) 2.36389 + 42.0916i 0.00579385 + 0.103166i
\(409\) 579.741 1.41746 0.708730 0.705480i \(-0.249269\pi\)
0.708730 + 0.705480i \(0.249269\pi\)
\(410\) −153.639 232.156i −0.374729 0.566233i
\(411\) 421.334i 1.02514i
\(412\) −178.064 577.266i −0.432194 1.40113i
\(413\) 520.993 520.993i 1.26148 1.26148i
\(414\) 381.407 + 94.5903i 0.921273 + 0.228479i
\(415\) 293.833 + 269.959i 0.708032 + 0.650503i
\(416\) −67.2013 + 24.9350i −0.161542 + 0.0599399i
\(417\) 306.947 + 306.947i 0.736084 + 0.736084i
\(418\) −264.421 + 428.221i −0.632586 + 1.02445i
\(419\) 114.028 0.272144 0.136072 0.990699i \(-0.456552\pi\)
0.136072 + 0.990699i \(0.456552\pi\)
\(420\) 723.277 + 343.936i 1.72209 + 0.818896i
\(421\) 39.7800 0.0944893 0.0472447 0.998883i \(-0.484956\pi\)
0.0472447 + 0.998883i \(0.484956\pi\)
\(422\) 529.535 319.076i 1.25482 0.756105i
\(423\) 104.898 104.898i 0.247986 0.247986i
\(424\) 251.468 281.394i 0.593085 0.663665i
\(425\) −25.0045 21.0934i −0.0588342 0.0496314i
\(426\) −990.251 245.586i −2.32453 0.576493i
\(427\) 172.004 + 172.004i 0.402819 + 0.402819i
\(428\) 64.8454 + 210.223i 0.151508 + 0.491174i
\(429\) −88.2285 + 45.4090i −0.205661 + 0.105848i
\(430\) −665.889 135.521i −1.54858 0.315166i
\(431\) 365.459 0.847933 0.423966 0.905678i \(-0.360637\pi\)
0.423966 + 0.905678i \(0.360637\pi\)
\(432\) −21.3409 + 112.791i −0.0494003 + 0.261091i
\(433\) −199.441 199.441i −0.460602 0.460602i 0.438251 0.898853i \(-0.355598\pi\)
−0.898853 + 0.438251i \(0.855598\pi\)
\(434\) 690.057 + 171.137i 1.58999 + 0.394324i
\(435\) 568.639 618.928i 1.30722 1.42282i
\(436\) −190.851 + 361.108i −0.437731 + 0.828230i
\(437\) 440.297 + 440.297i 1.00755 + 1.00755i
\(438\) 415.170 + 689.011i 0.947877 + 1.57308i
\(439\) 522.498i 1.19020i 0.803652 + 0.595100i \(0.202888\pi\)
−0.803652 + 0.595100i \(0.797112\pi\)
\(440\) −369.546 + 238.822i −0.839876 + 0.542778i
\(441\) −360.001 −0.816328
\(442\) −5.02101 + 3.02546i −0.0113597 + 0.00684492i
\(443\) −389.894 + 389.894i −0.880122 + 0.880122i −0.993547 0.113424i \(-0.963818\pi\)
0.113424 + 0.993547i \(0.463818\pi\)
\(444\) 15.4234 + 8.15147i 0.0347374 + 0.0183592i
\(445\) −22.6625 535.167i −0.0509269 1.20262i
\(446\) −41.8783 + 168.862i −0.0938976 + 0.378614i
\(447\) −82.9609 + 82.9609i −0.185595 + 0.185595i
\(448\) 396.775 497.544i 0.885658 1.11059i
\(449\) 740.798i 1.64988i −0.565218 0.824942i \(-0.691208\pi\)
0.565218 0.824942i \(-0.308792\pi\)
\(450\) 211.744 + 292.286i 0.470542 + 0.649524i
\(451\) −272.283 + 140.137i −0.603731 + 0.310725i
\(452\) 349.315 107.750i 0.772821 0.238385i
\(453\) −816.994 + 816.994i −1.80352 + 1.80352i
\(454\) −14.0799 + 56.7731i −0.0310131 + 0.125051i
\(455\) 4.71165 + 111.264i 0.0103553 + 0.244536i
\(456\) 491.114 549.559i 1.07700 1.20517i
\(457\) −600.921 600.921i −1.31493 1.31493i −0.917737 0.397188i \(-0.869986\pi\)
−0.397188 0.917737i \(-0.630014\pi\)
\(458\) −81.0171 134.455i −0.176893 0.293570i
\(459\) 9.38807i 0.0204533i
\(460\) 182.325 + 512.941i 0.396359 + 1.11509i
\(461\) 845.625i 1.83433i 0.398510 + 0.917164i \(0.369527\pi\)
−0.398510 + 0.917164i \(0.630473\pi\)
\(462\) 462.861 749.587i 1.00186 1.62248i
\(463\) 210.135 210.135i 0.453856 0.453856i −0.442776 0.896632i \(-0.646006\pi\)
0.896632 + 0.442776i \(0.146006\pi\)
\(464\) −376.213 551.800i −0.810803 1.18922i
\(465\) 530.106 + 487.033i 1.14001 + 1.04738i
\(466\) 48.0010 193.549i 0.103006 0.415342i
\(467\) 107.813 + 107.813i 0.230863 + 0.230863i 0.813053 0.582190i \(-0.197804\pi\)
−0.582190 + 0.813053i \(0.697804\pi\)
\(468\) 61.8027 19.0637i 0.132057 0.0407344i
\(469\) −325.584 −0.694209
\(470\) 201.383 + 40.9854i 0.428475 + 0.0872030i
\(471\) 433.682i 0.920770i
\(472\) −33.2390 591.856i −0.0704217 1.25393i
\(473\) −228.086 + 711.845i −0.482212 + 1.50496i
\(474\) 48.4266 + 12.0100i 0.102166 + 0.0253375i
\(475\) 48.3501 + 569.863i 0.101790 + 1.19971i
\(476\) 24.3190 46.0140i 0.0510904 0.0966680i
\(477\) −240.783 + 240.783i −0.504785 + 0.504785i
\(478\) 19.1260 + 31.7413i 0.0400126 + 0.0664043i
\(479\) 480.160i 1.00242i 0.865325 + 0.501210i \(0.167112\pi\)
−0.865325 + 0.501210i \(0.832888\pi\)
\(480\) 594.085 249.513i 1.23768 0.519818i
\(481\) 2.42573i 0.00504310i
\(482\) 316.138 + 524.658i 0.655888 + 1.08850i
\(483\) −770.727 770.727i −1.59571 1.59571i
\(484\) 216.794 + 432.731i 0.447921 + 0.894073i
\(485\) −261.596 + 284.731i −0.539372 + 0.587073i
\(486\) 150.889 608.415i 0.310472 1.25188i
\(487\) −638.632 638.632i −1.31136 1.31136i −0.920414 0.390946i \(-0.872148\pi\)
−0.390946 0.920414i \(-0.627852\pi\)
\(488\) 195.399 10.9737i 0.400408 0.0224872i
\(489\) 309.093i 0.632092i
\(490\) −275.235 415.893i −0.561704 0.848762i
\(491\) −580.338 −1.18195 −0.590976 0.806690i \(-0.701257\pi\)
−0.590976 + 0.806690i \(0.701257\pi\)
\(492\) 428.531 132.185i 0.870999 0.268669i
\(493\) −38.6212 38.6212i −0.0783391 0.0783391i
\(494\) 99.4704 + 24.6690i 0.201357 + 0.0499373i
\(495\) 345.004 196.456i 0.696977 0.396881i
\(496\) 472.611 322.223i 0.952845 0.649642i
\(497\) 890.621 + 890.621i 1.79199 + 1.79199i
\(498\) −550.551 + 331.740i −1.10552 + 0.666144i
\(499\) −430.230 −0.862184 −0.431092 0.902308i \(-0.641872\pi\)
−0.431092 + 0.902308i \(0.641872\pi\)
\(500\) −175.779 + 468.083i −0.351557 + 0.936166i
\(501\) 759.520i 1.51601i
\(502\) 171.417 + 284.481i 0.341468 + 0.566695i
\(503\) −154.450 154.450i −0.307059 0.307059i 0.536709 0.843767i \(-0.319667\pi\)
−0.843767 + 0.536709i \(0.819667\pi\)
\(504\) −382.624 + 428.158i −0.759175 + 0.849520i
\(505\) 32.6868 + 771.888i 0.0647263 + 1.52849i
\(506\) 582.746 137.811i 1.15167 0.272354i
\(507\) −466.969 466.969i −0.921044 0.921044i
\(508\) −12.4757 40.4451i −0.0245585 0.0796164i
\(509\) 376.470i 0.739626i 0.929106 + 0.369813i \(0.120578\pi\)
−0.929106 + 0.369813i \(0.879422\pi\)
\(510\) 43.9455 29.0828i 0.0861676 0.0570251i
\(511\) 993.089i 1.94342i
\(512\) −85.7660 504.765i −0.167512 0.985870i
\(513\) 116.055 116.055i 0.226229 0.226229i
\(514\) 229.461 925.233i 0.446422 1.80006i
\(515\) −510.890 + 556.072i −0.992019 + 1.07975i
\(516\) 511.500 967.808i 0.991279 1.87560i
\(517\) 68.9796 215.281i 0.133423 0.416405i
\(518\) −11.1151 18.4464i −0.0214576 0.0356108i
\(519\) 713.747i 1.37523i
\(520\) 69.2742 + 56.8231i 0.133220 + 0.109275i
\(521\) −418.288 −0.802856 −0.401428 0.915891i \(-0.631486\pi\)
−0.401428 + 0.915891i \(0.631486\pi\)
\(522\) 311.009 + 516.146i 0.595802 + 0.988786i
\(523\) 133.914 + 133.914i 0.256050 + 0.256050i 0.823446 0.567395i \(-0.192049\pi\)
−0.567395 + 0.823446i \(0.692049\pi\)
\(524\) −48.1000 + 91.0100i −0.0917939 + 0.173683i
\(525\) −84.6353 997.526i −0.161210 1.90005i
\(526\) 803.940 + 199.380i 1.52840 + 0.379049i
\(527\) 33.0787 33.0787i 0.0627679 0.0627679i
\(528\) −201.540 679.534i −0.381704 1.28700i
\(529\) 211.878i 0.400526i
\(530\) −462.254 94.0778i −0.872177 0.177505i
\(531\) 534.880i 1.00731i
\(532\) −869.457 + 268.193i −1.63432 + 0.504122i
\(533\) 44.0937 + 44.0937i 0.0827273 + 0.0827273i
\(534\) 837.495 + 207.702i 1.56834 + 0.388955i
\(535\) 186.050 202.504i 0.347758 0.378513i
\(536\) −174.548 + 195.320i −0.325650 + 0.364404i
\(537\) −433.140 + 433.140i −0.806592 + 0.806592i
\(538\) 257.249 + 426.927i 0.478158 + 0.793545i
\(539\) −487.779 + 251.047i −0.904971 + 0.465765i
\(540\) 135.203 48.0580i 0.250376 0.0889963i
\(541\) 235.939i 0.436116i 0.975936 + 0.218058i \(0.0699721\pi\)
−0.975936 + 0.218058i \(0.930028\pi\)
\(542\) 584.269 352.057i 1.07799 0.649552i
\(543\) −219.030 + 219.030i −0.403370 + 0.403370i
\(544\) −14.5665 39.2576i −0.0267767 0.0721648i
\(545\) 510.093 21.6007i 0.935950 0.0396342i
\(546\) −174.120 43.1823i −0.318901 0.0790885i
\(547\) 439.184 439.184i 0.802897 0.802897i −0.180651 0.983547i \(-0.557820\pi\)
0.983547 + 0.180651i \(0.0578203\pi\)
\(548\) 123.352 + 399.894i 0.225094 + 0.729734i
\(549\) −176.589 −0.321655
\(550\) 490.727 + 248.370i 0.892230 + 0.451581i
\(551\) 954.870i 1.73298i
\(552\) −875.558 + 49.1719i −1.58616 + 0.0890795i
\(553\) −43.5543 43.5543i −0.0787601 0.0787601i
\(554\) −316.351 78.4562i −0.571031 0.141618i
\(555\) −0.922591 21.7867i −0.00166233 0.0392553i
\(556\) −381.191 201.465i −0.685595 0.362346i
\(557\) 129.675 + 129.675i 0.232809 + 0.232809i 0.813864 0.581055i \(-0.197360\pi\)
−0.581055 + 0.813864i \(0.697360\pi\)
\(558\) −442.074 + 266.376i −0.792248 + 0.477377i
\(559\) 152.213 0.272295
\(560\) −787.165 114.685i −1.40565 0.204795i
\(561\) −26.5270 51.5413i −0.0472852 0.0918740i
\(562\) 109.906 + 182.399i 0.195563 + 0.324553i
\(563\) 122.317 + 122.317i 0.217259 + 0.217259i 0.807342 0.590084i \(-0.200905\pi\)
−0.590084 + 0.807342i \(0.700905\pi\)
\(564\) −154.692 + 292.692i −0.274276 + 0.518957i
\(565\) −336.490 309.149i −0.595557 0.547167i
\(566\) −662.410 164.280i −1.17034 0.290248i
\(567\) −659.935 + 659.935i −1.16391 + 1.16391i
\(568\) 1011.76 56.8211i 1.78127 0.100037i
\(569\) −664.396 −1.16766 −0.583828 0.811877i \(-0.698446\pi\)
−0.583828 + 0.811877i \(0.698446\pi\)
\(570\) −902.776 183.733i −1.58382 0.322338i
\(571\) −112.058 −0.196249 −0.0981244 0.995174i \(-0.531284\pi\)
−0.0981244 + 0.995174i \(0.531284\pi\)
\(572\) 70.4448 68.9284i 0.123155 0.120504i
\(573\) 13.3988 + 13.3988i 0.0233835 + 0.0233835i
\(574\) −537.353 133.265i −0.936154 0.232170i
\(575\) 438.769 520.126i 0.763076 0.904567i
\(576\) 51.7275 + 459.078i 0.0898046 + 0.797011i
\(577\) −596.807 + 596.807i −1.03433 + 1.03433i −0.0349381 + 0.999389i \(0.511123\pi\)
−0.999389 + 0.0349381i \(0.988877\pi\)
\(578\) 296.542 + 492.138i 0.513049 + 0.851450i
\(579\) 676.009i 1.16755i
\(580\) −358.503 + 753.910i −0.618108 + 1.29984i
\(581\) 793.523 1.36579
\(582\) −321.463 533.496i −0.552342 0.916659i
\(583\) −158.336 + 494.156i −0.271588 + 0.847609i
\(584\) −595.762 532.403i −1.02014 0.911649i
\(585\) −59.5336 54.6963i −0.101767 0.0934980i
\(586\) −115.936 + 467.477i −0.197843 + 0.797743i
\(587\) 175.036 + 175.036i 0.298188 + 0.298188i 0.840304 0.542116i \(-0.182377\pi\)
−0.542116 + 0.840304i \(0.682377\pi\)
\(588\) 767.690 236.802i 1.30559 0.402724i
\(589\) −817.837 −1.38852
\(590\) −617.924 + 408.938i −1.04733 + 0.693114i
\(591\) 1200.98 2.03211
\(592\) −17.0250 3.22126i −0.0287585 0.00544132i
\(593\) −20.0943 + 20.0943i −0.0338858 + 0.0338858i −0.723847 0.689961i \(-0.757628\pi\)
0.689961 + 0.723847i \(0.257628\pi\)
\(594\) −36.3248 153.603i −0.0611529 0.258590i
\(595\) −64.9982 + 2.75245i −0.109241 + 0.00462596i
\(596\) 54.4514 103.027i 0.0913614 0.172865i
\(597\) 244.811 244.811i 0.410069 0.410069i
\(598\) −62.9333 104.443i −0.105240 0.174654i
\(599\) 816.363 1.36288 0.681438 0.731875i \(-0.261355\pi\)
0.681438 + 0.731875i \(0.261355\pi\)
\(600\) −643.797 484.009i −1.07300 0.806681i
\(601\) 322.762i 0.537041i −0.963274 0.268521i \(-0.913465\pi\)
0.963274 0.268521i \(-0.0865348\pi\)
\(602\) −1157.50 + 697.463i −1.92276 + 1.15858i
\(603\) 167.131 167.131i 0.277167 0.277167i
\(604\) 536.234 1014.61i 0.887804 1.67981i
\(605\) 330.460 506.775i 0.546215 0.837645i
\(606\) −1207.95 299.575i −1.99331 0.494348i
\(607\) 177.668 177.668i 0.292698 0.292698i −0.545447 0.838145i \(-0.683640\pi\)
0.838145 + 0.545447i \(0.183640\pi\)
\(608\) −305.232 + 665.374i −0.502026 + 1.09437i
\(609\) 1671.47i 2.74461i
\(610\) −135.009 204.005i −0.221327 0.334435i
\(611\) −46.0334 −0.0753411
\(612\) 11.1366 + 36.1039i 0.0181971 + 0.0589933i
\(613\) −235.040 + 235.040i −0.383425 + 0.383425i −0.872335 0.488909i \(-0.837395\pi\)
0.488909 + 0.872335i \(0.337395\pi\)
\(614\) 106.970 431.324i 0.174218 0.702482i
\(615\) −412.798 379.257i −0.671216 0.616678i
\(616\) −219.855 + 846.952i −0.356908 + 1.37492i
\(617\) 191.061 191.061i 0.309661 0.309661i −0.535117 0.844778i \(-0.679733\pi\)
0.844778 + 0.535117i \(0.179733\pi\)
\(618\) −627.809 1041.90i −1.01587 1.68593i
\(619\) −638.728 −1.03187 −0.515936 0.856627i \(-0.672556\pi\)
−0.515936 + 0.856627i \(0.672556\pi\)
\(620\) −645.717 307.054i −1.04148 0.495249i
\(621\) −195.284 −0.314467
\(622\) 308.054 + 511.242i 0.495263 + 0.821933i
\(623\) −753.234 753.234i −1.20904 1.20904i
\(624\) −119.253 + 81.3054i −0.191110 + 0.130297i
\(625\) 616.066 105.298i 0.985705 0.168478i
\(626\) −197.401 48.9562i −0.315337 0.0782048i
\(627\) −309.227 + 965.081i −0.493185 + 1.53920i
\(628\) −126.967 411.614i −0.202176 0.655436i
\(629\) −1.41706 −0.00225288
\(630\) 703.348 + 143.145i 1.11643 + 0.227215i
\(631\) 615.225i 0.975000i 0.873123 + 0.487500i \(0.162091\pi\)
−0.873123 + 0.487500i \(0.837909\pi\)
\(632\) −49.4784 + 2.77874i −0.0782887 + 0.00439674i
\(633\) 880.269 880.269i 1.39063 1.39063i
\(634\) −94.3599 + 380.478i −0.148833 + 0.600123i
\(635\) −35.7946 + 38.9602i −0.0563694 + 0.0613546i
\(636\) 355.079 671.844i 0.558300 1.05636i
\(637\) 78.9913 + 78.9913i 0.124005 + 0.124005i
\(638\) 781.334 + 482.464i 1.22466 + 0.756213i
\(639\) −914.361 −1.43093
\(640\) −490.806 + 410.743i −0.766884 + 0.641785i
\(641\) −1006.58 −1.57033 −0.785163 0.619289i \(-0.787421\pi\)
−0.785163 + 0.619289i \(0.787421\pi\)
\(642\) 228.629 + 379.429i 0.356119 + 0.591011i
\(643\) 311.119 311.119i 0.483856 0.483856i −0.422505 0.906361i \(-0.638849\pi\)
0.906361 + 0.422505i \(0.138849\pi\)
\(644\) 957.149 + 505.866i 1.48626 + 0.785507i
\(645\) −1367.10 + 57.8920i −2.11954 + 0.0897551i
\(646\) −14.4111 + 58.1086i −0.0223083 + 0.0899513i
\(647\) 154.257 + 154.257i 0.238419 + 0.238419i 0.816195 0.577776i \(-0.196079\pi\)
−0.577776 + 0.816195i \(0.696079\pi\)
\(648\) 42.1035 + 749.697i 0.0649745 + 1.15694i
\(649\) 373.000 + 724.730i 0.574730 + 1.11669i
\(650\) 17.6725 110.594i 0.0271885 0.170145i
\(651\) 1431.60 2.19908
\(652\) −90.4914 293.364i −0.138790 0.449946i
\(653\) 179.979 + 179.979i 0.275619 + 0.275619i 0.831357 0.555738i \(-0.187564\pi\)
−0.555738 + 0.831357i \(0.687564\pi\)
\(654\) −197.970 + 798.256i −0.302707 + 1.22057i
\(655\) 128.558 5.44401i 0.196272 0.00831146i
\(656\) −368.026 + 250.917i −0.561015 + 0.382496i
\(657\) 509.780 + 509.780i 0.775921 + 0.775921i
\(658\) 350.060 210.932i 0.532006 0.320565i
\(659\) 981.949i 1.49006i −0.667032 0.745029i \(-0.732435\pi\)
0.667032 0.745029i \(-0.267565\pi\)
\(660\) −606.484 + 645.873i −0.918915 + 0.978596i
\(661\) −719.192 −1.08804 −0.544018 0.839074i \(-0.683098\pi\)
−0.544018 + 0.839074i \(0.683098\pi\)
\(662\) −230.514 382.557i −0.348208 0.577881i
\(663\) −8.34663 + 8.34663i −0.0125892 + 0.0125892i
\(664\) 425.414 476.041i 0.640684 0.716929i
\(665\) 837.534 + 769.482i 1.25945 + 1.15712i
\(666\) 15.1747 + 3.76338i 0.0227849 + 0.00565073i
\(667\) 803.369 803.369i 1.20445 1.20445i
\(668\) −222.360 720.871i −0.332875 1.07915i
\(669\) 350.322i 0.523651i
\(670\) 320.859 + 65.3010i 0.478893 + 0.0974642i
\(671\) −239.267 + 123.145i −0.356583 + 0.183524i
\(672\) 534.299 1164.72i 0.795087 1.73321i
\(673\) −121.985 + 121.985i −0.181256 + 0.181256i −0.791903 0.610647i \(-0.790909\pi\)
0.610647 + 0.791903i \(0.290909\pi\)
\(674\) 1079.08 + 267.616i 1.60101 + 0.397056i
\(675\) −137.097 115.652i −0.203107 0.171337i
\(676\) 579.919 + 306.495i 0.857868 + 0.453395i
\(677\) −376.043 376.043i −0.555456 0.555456i 0.372555 0.928010i \(-0.378482\pi\)
−0.928010 + 0.372555i \(0.878482\pi\)
\(678\) 630.476 379.899i 0.929906 0.560324i
\(679\) 768.941i 1.13246i
\(680\) −33.1949 + 40.4685i −0.0488160 + 0.0595126i
\(681\) 117.782i 0.172955i
\(682\) −413.226 + 669.205i −0.605903 + 0.981239i
\(683\) 836.119 836.119i 1.22419 1.22419i 0.258056 0.966130i \(-0.416918\pi\)
0.966130 0.258056i \(-0.0830818\pi\)
\(684\) 308.645 583.987i 0.451236 0.853783i
\(685\) 353.912 385.212i 0.516660 0.562353i
\(686\) −16.8316 4.17429i −0.0245358 0.00608497i
\(687\) −223.510 223.510i −0.325343 0.325343i
\(688\) −202.132 + 1068.31i −0.293797 + 1.55277i
\(689\) 105.665 0.153360
\(690\) 604.959 + 914.121i 0.876752 + 1.32481i
\(691\) 581.249i 0.841170i −0.907253 0.420585i \(-0.861825\pi\)
0.907253 0.420585i \(-0.138175\pi\)
\(692\) 208.959 + 677.427i 0.301965 + 0.978941i
\(693\) 240.917 751.889i 0.347644 1.08498i
\(694\) −215.219 + 867.806i −0.310114 + 1.25044i
\(695\) 22.8019 + 538.461i 0.0328085 + 0.774763i
\(696\) −1002.73 896.089i −1.44070 1.28748i
\(697\) −25.7586 + 25.7586i −0.0369564 + 0.0369564i
\(698\) 198.274 119.472i 0.284060 0.171163i
\(699\) 401.540i 0.574449i
\(700\) 372.369 + 921.988i 0.531955 + 1.31713i
\(701\) 235.942i 0.336579i −0.985738 0.168290i \(-0.946176\pi\)
0.985738 0.168290i \(-0.0538244\pi\)
\(702\) −27.5296 + 16.5882i −0.0392160 + 0.0236299i
\(703\) 17.5177 + 17.5177i 0.0249185 + 0.0249185i
\(704\) 390.227 + 585.951i 0.554300 + 0.832317i
\(705\) 413.449 17.5081i 0.586453 0.0248342i
\(706\) 446.981 + 110.853i 0.633117 + 0.157015i
\(707\) 1086.41 + 1086.41i 1.53665 + 1.53665i
\(708\) −351.834 1140.61i −0.496941 1.61104i
\(709\) 194.649i 0.274540i −0.990534 0.137270i \(-0.956167\pi\)
0.990534 0.137270i \(-0.0438328\pi\)
\(710\) −699.066 1056.32i −0.984601 1.48778i
\(711\) 44.7153 0.0628907
\(712\) −855.686 + 48.0559i −1.20181 + 0.0674942i
\(713\) 688.078 + 688.078i 0.965046 + 0.965046i
\(714\) 25.2262 101.717i 0.0353309 0.142461i
\(715\) −118.807 32.5943i −0.166164 0.0455865i
\(716\) 284.291 537.907i 0.397055 0.751267i
\(717\) 52.7649 + 52.7649i 0.0735912 + 0.0735912i
\(718\) −702.929 1166.57i −0.979010 1.62475i
\(719\) −763.366 −1.06171 −0.530853 0.847464i \(-0.678128\pi\)
−0.530853 + 0.847464i \(0.678128\pi\)
\(720\) 462.945 345.203i 0.642979 0.479448i
\(721\) 1501.72i 2.08283i
\(722\) 278.079 167.559i 0.385150 0.232076i
\(723\) 872.162 + 872.162i 1.20631 + 1.20631i
\(724\) 143.760 272.009i 0.198564 0.375702i
\(725\) 1039.77 88.2199i 1.43417 0.121683i
\(726\) 633.447 + 740.652i 0.872516 + 1.02018i
\(727\) 349.567 + 349.567i 0.480834 + 0.480834i 0.905398 0.424564i \(-0.139573\pi\)
−0.424564 + 0.905398i \(0.639573\pi\)
\(728\) 177.902 9.99108i 0.244371 0.0137240i
\(729\) 417.486i 0.572683i
\(730\) −199.180 + 978.675i −0.272849 + 1.34065i
\(731\) 88.9198i 0.121641i
\(732\) 376.570 116.157i 0.514439 0.158684i
\(733\) 840.241 840.241i 1.14630 1.14630i 0.159031 0.987274i \(-0.449163\pi\)
0.987274 0.159031i \(-0.0508371\pi\)
\(734\) 111.050 + 27.5408i 0.151294 + 0.0375215i
\(735\) −739.503 679.417i −1.00613 0.924377i
\(736\) 816.609 303.002i 1.10952 0.411687i
\(737\) 109.903 343.002i 0.149123 0.465404i
\(738\) 344.247 207.429i 0.466459 0.281069i
\(739\) 684.775i 0.926624i −0.886195 0.463312i \(-0.846661\pi\)
0.886195 0.463312i \(-0.153339\pi\)
\(740\) 7.25401 + 20.4080i 0.00980272 + 0.0275783i
\(741\) 206.362 0.278492
\(742\) −803.526 + 484.172i −1.08292 + 0.652523i
\(743\) 243.103 + 243.103i 0.327191 + 0.327191i 0.851518 0.524326i \(-0.175683\pi\)
−0.524326 + 0.851518i \(0.675683\pi\)
\(744\) 767.492 858.827i 1.03157 1.15434i
\(745\) −145.534 + 6.16286i −0.195348 + 0.00827229i
\(746\) 40.1406 161.855i 0.0538077 0.216964i
\(747\) −407.337 + 407.337i −0.545298 + 0.545298i
\(748\) 40.2666 + 41.1524i 0.0538323 + 0.0550166i
\(749\) 546.881i 0.730148i
\(750\) −116.663 + 1000.02i −0.155550 + 1.33336i
\(751\) 309.826i 0.412552i −0.978494 0.206276i \(-0.933866\pi\)
0.978494 0.206276i \(-0.0661344\pi\)
\(752\) 61.1303 323.086i 0.0812903 0.429636i
\(753\) 472.905 + 472.905i 0.628028 + 0.628028i
\(754\) 45.0112 181.494i 0.0596966 0.240709i
\(755\) −1433.21 + 60.6914i −1.89829 + 0.0803860i
\(756\) 133.338 252.289i 0.176373 0.333716i
\(757\) −863.112 + 863.112i −1.14017 + 1.14017i −0.151756 + 0.988418i \(0.548493\pi\)
−0.988418 + 0.151756i \(0.951507\pi\)
\(758\) 279.007 168.118i 0.368083 0.221792i
\(759\) 1072.12 551.795i 1.41255 0.727002i
\(760\) 910.627 89.9172i 1.19819 0.118312i
\(761\) 1464.71i 1.92472i −0.271775 0.962361i \(-0.587611\pi\)
0.271775 0.962361i \(-0.412389\pi\)
\(762\) −43.9863 72.9991i −0.0577248 0.0957993i
\(763\) 717.943 717.943i 0.940947 0.940947i
\(764\) −16.6396 8.79427i −0.0217796 0.0115108i
\(765\) 31.9525 34.7783i 0.0417679 0.0454618i
\(766\) −7.01380 + 28.2810i −0.00915639 + 0.0369204i
\(767\) 117.363 117.363i 0.153016 0.153016i
\(768\) −412.281 944.944i −0.536824 1.23040i
\(769\) −764.250 −0.993824 −0.496912 0.867801i \(-0.665533\pi\)
−0.496912 + 0.867801i \(0.665533\pi\)
\(770\) 1052.82 296.528i 1.36729 0.385102i
\(771\) 1919.50i 2.48962i
\(772\) −197.911 641.610i −0.256362 0.831101i