Properties

Label 220.3.i.a.43.10
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.10
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.80130 - 0.869100i) q^{2} +(-3.80725 + 3.80725i) q^{3} +(2.48933 + 3.13101i) q^{4} +(-3.43663 - 3.63175i) q^{5} +(10.1669 - 3.54910i) q^{6} +(2.92353 - 2.92353i) q^{7} +(-1.76286 - 7.80335i) q^{8} -19.9903i q^{9} +(3.03403 + 9.52862i) q^{10} +(10.9851 - 0.571624i) q^{11} +(-21.3981 - 2.44304i) q^{12} +(-3.91361 + 3.91361i) q^{13} +(-7.80698 + 2.72530i) q^{14} +(26.9111 + 0.742867i) q^{15} +(-3.60647 + 15.5882i) q^{16} +(-4.10909 - 4.10909i) q^{17} +(-17.3736 + 36.0085i) q^{18} +17.7640i q^{19} +(2.81614 - 19.8007i) q^{20} +22.2612i q^{21} +(-20.2843 - 8.51752i) q^{22} +(-18.1664 + 18.1664i) q^{23} +(36.4210 + 22.9977i) q^{24} +(-1.37917 + 24.9619i) q^{25} +(10.4509 - 3.64825i) q^{26} +(41.8430 + 41.8430i) q^{27} +(16.4312 + 1.87597i) q^{28} +49.6715 q^{29} +(-47.8292 - 24.7265i) q^{30} -4.97106i q^{31} +(20.0441 - 24.9447i) q^{32} +(-39.6469 + 43.9995i) q^{33} +(3.83047 + 10.9729i) q^{34} +(-20.6646 - 0.570436i) q^{35} +(62.5900 - 49.7626i) q^{36} +(-6.50891 + 6.50891i) q^{37} +(15.4387 - 31.9982i) q^{38} -29.8002i q^{39} +(-22.2815 + 33.2195i) q^{40} -68.4285i q^{41} +(19.3472 - 40.0991i) q^{42} +(37.6572 + 37.6572i) q^{43} +(29.1354 + 32.9716i) q^{44} +(-72.5999 + 68.6994i) q^{45} +(48.5116 - 16.9347i) q^{46} +(7.03047 + 7.03047i) q^{47} +(-45.6176 - 73.0791i) q^{48} +31.9059i q^{49} +(24.1787 - 43.7652i) q^{50} +31.2886 q^{51} +(-21.9958 - 2.51129i) q^{52} +(57.9551 + 57.9551i) q^{53} +(-39.0058 - 111.737i) q^{54} +(-39.8278 - 37.9308i) q^{55} +(-27.9671 - 17.6596i) q^{56} +(-67.6320 - 67.6320i) q^{57} +(-89.4730 - 43.1695i) q^{58} -16.5336 q^{59} +(64.6647 + 86.1082i) q^{60} +48.8872i q^{61} +(-4.32034 + 8.95434i) q^{62} +(-58.4424 - 58.4424i) q^{63} +(-57.7847 + 27.5124i) q^{64} +(27.6628 + 0.763619i) q^{65} +(109.656 - 44.7990i) q^{66} +(38.8253 + 38.8253i) q^{67} +(2.63672 - 23.0945i) q^{68} -138.328i q^{69} +(36.7273 + 18.9871i) q^{70} +97.0441i q^{71} +(-155.992 + 35.2401i) q^{72} +(70.5802 - 70.5802i) q^{73} +(17.3814 - 6.06758i) q^{74} +(-89.7855 - 100.287i) q^{75} +(-55.6193 + 44.2205i) q^{76} +(30.4442 - 33.7865i) q^{77} +(-25.8993 + 53.6789i) q^{78} +113.946i q^{79} +(69.0067 - 40.4732i) q^{80} -138.701 q^{81} +(-59.4713 + 123.260i) q^{82} +(-22.1248 - 22.1248i) q^{83} +(-69.7002 + 55.4156i) q^{84} +(-0.801761 + 29.0446i) q^{85} +(-35.1039 - 100.560i) q^{86} +(-189.112 + 189.112i) q^{87} +(-23.8258 - 84.7132i) q^{88} -91.3505i q^{89} +(190.480 - 60.6513i) q^{90} +22.8831i q^{91} +(-102.102 - 11.6571i) q^{92} +(18.9261 + 18.9261i) q^{93} +(-6.55377 - 18.7741i) q^{94} +(64.5144 - 61.0483i) q^{95} +(18.6578 + 171.283i) q^{96} +(80.1551 - 80.1551i) q^{97} +(27.7294 - 57.4720i) q^{98} +(-11.4269 - 219.597i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80130 0.869100i −0.900648 0.434550i
\(3\) −3.80725 + 3.80725i −1.26908 + 1.26908i −0.322522 + 0.946562i \(0.604531\pi\)
−0.946562 + 0.322522i \(0.895469\pi\)
\(4\) 2.48933 + 3.13101i 0.622333 + 0.782753i
\(5\) −3.43663 3.63175i −0.687326 0.726349i
\(6\) 10.1669 3.54910i 1.69448 0.591517i
\(7\) 2.92353 2.92353i 0.417647 0.417647i −0.466745 0.884392i \(-0.654573\pi\)
0.884392 + 0.466745i \(0.154573\pi\)
\(8\) −1.76286 7.80335i −0.220357 0.975419i
\(9\) 19.9903i 2.22115i
\(10\) 3.03403 + 9.52862i 0.303403 + 0.952862i
\(11\) 10.9851 0.571624i 0.998649 0.0519658i
\(12\) −21.3981 2.44304i −1.78317 0.203587i
\(13\) −3.91361 + 3.91361i −0.301047 + 0.301047i −0.841423 0.540377i \(-0.818282\pi\)
0.540377 + 0.841423i \(0.318282\pi\)
\(14\) −7.80698 + 2.72530i −0.557642 + 0.194664i
\(15\) 26.9111 + 0.742867i 1.79407 + 0.0495245i
\(16\) −3.60647 + 15.5882i −0.225404 + 0.974265i
\(17\) −4.10909 4.10909i −0.241711 0.241711i 0.575847 0.817558i \(-0.304672\pi\)
−0.817558 + 0.575847i \(0.804672\pi\)
\(18\) −17.3736 + 36.0085i −0.965200 + 2.00047i
\(19\) 17.7640i 0.934948i 0.884007 + 0.467474i \(0.154836\pi\)
−0.884007 + 0.467474i \(0.845164\pi\)
\(20\) 2.81614 19.8007i 0.140807 0.990037i
\(21\) 22.2612i 1.06006i
\(22\) −20.2843 8.51752i −0.922013 0.387160i
\(23\) −18.1664 + 18.1664i −0.789845 + 0.789845i −0.981469 0.191623i \(-0.938625\pi\)
0.191623 + 0.981469i \(0.438625\pi\)
\(24\) 36.4210 + 22.9977i 1.51754 + 0.958237i
\(25\) −1.37917 + 24.9619i −0.0551670 + 0.998477i
\(26\) 10.4509 3.64825i 0.401957 0.140317i
\(27\) 41.8430 + 41.8430i 1.54974 + 1.54974i
\(28\) 16.4312 + 1.87597i 0.586830 + 0.0669991i
\(29\) 49.6715 1.71281 0.856404 0.516306i \(-0.172693\pi\)
0.856404 + 0.516306i \(0.172693\pi\)
\(30\) −47.8292 24.7265i −1.59431 0.824218i
\(31\) 4.97106i 0.160357i −0.996781 0.0801783i \(-0.974451\pi\)
0.996781 0.0801783i \(-0.0255490\pi\)
\(32\) 20.0441 24.9447i 0.626377 0.779520i
\(33\) −39.6469 + 43.9995i −1.20142 + 1.33332i
\(34\) 3.83047 + 10.9729i 0.112661 + 0.322732i
\(35\) −20.6646 0.570436i −0.590417 0.0162982i
\(36\) 62.5900 49.7626i 1.73861 1.38229i
\(37\) −6.50891 + 6.50891i −0.175917 + 0.175917i −0.789573 0.613657i \(-0.789698\pi\)
0.613657 + 0.789573i \(0.289698\pi\)
\(38\) 15.4387 31.9982i 0.406281 0.842058i
\(39\) 29.8002i 0.764107i
\(40\) −22.2815 + 33.2195i −0.557038 + 0.830487i
\(41\) 68.4285i 1.66899i −0.551016 0.834494i \(-0.685760\pi\)
0.551016 0.834494i \(-0.314240\pi\)
\(42\) 19.3472 40.0991i 0.460649 0.954740i
\(43\) 37.6572 + 37.6572i 0.875749 + 0.875749i 0.993091 0.117343i \(-0.0374376\pi\)
−0.117343 + 0.993091i \(0.537438\pi\)
\(44\) 29.1354 + 32.9716i 0.662168 + 0.749355i
\(45\) −72.5999 + 68.6994i −1.61333 + 1.52665i
\(46\) 48.5116 16.9347i 1.05460 0.368145i
\(47\) 7.03047 + 7.03047i 0.149584 + 0.149584i 0.777932 0.628348i \(-0.216269\pi\)
−0.628348 + 0.777932i \(0.716269\pi\)
\(48\) −45.6176 73.0791i −0.950368 1.52248i
\(49\) 31.9059i 0.651142i
\(50\) 24.1787 43.7652i 0.483574 0.875303i
\(51\) 31.2886 0.613503
\(52\) −21.9958 2.51129i −0.422996 0.0482940i
\(53\) 57.9551 + 57.9551i 1.09349 + 1.09349i 0.995153 + 0.0983387i \(0.0313529\pi\)
0.0983387 + 0.995153i \(0.468647\pi\)
\(54\) −39.0058 111.737i −0.722330 2.06921i
\(55\) −39.8278 37.9308i −0.724142 0.689651i
\(56\) −27.9671 17.6596i −0.499413 0.315350i
\(57\) −67.6320 67.6320i −1.18653 1.18653i
\(58\) −89.4730 43.1695i −1.54264 0.744301i
\(59\) −16.5336 −0.280230 −0.140115 0.990135i \(-0.544747\pi\)
−0.140115 + 0.990135i \(0.544747\pi\)
\(60\) 64.6647 + 86.1082i 1.07774 + 1.43514i
\(61\) 48.8872i 0.801429i 0.916203 + 0.400715i \(0.131238\pi\)
−0.916203 + 0.400715i \(0.868762\pi\)
\(62\) −4.32034 + 8.95434i −0.0696830 + 0.144425i
\(63\) −58.4424 58.4424i −0.927657 0.927657i
\(64\) −57.7847 + 27.5124i −0.902885 + 0.429881i
\(65\) 27.6628 + 0.763619i 0.425582 + 0.0117480i
\(66\) 109.656 44.7990i 1.66145 0.678773i
\(67\) 38.8253 + 38.8253i 0.579483 + 0.579483i 0.934761 0.355278i \(-0.115614\pi\)
−0.355278 + 0.934761i \(0.615614\pi\)
\(68\) 2.63672 23.0945i 0.0387753 0.339624i
\(69\) 138.328i 2.00476i
\(70\) 36.7273 + 18.9871i 0.524676 + 0.271245i
\(71\) 97.0441i 1.36682i 0.730036 + 0.683409i \(0.239503\pi\)
−0.730036 + 0.683409i \(0.760497\pi\)
\(72\) −155.992 + 35.2401i −2.16655 + 0.489446i
\(73\) 70.5802 70.5802i 0.966852 0.966852i −0.0326160 0.999468i \(-0.510384\pi\)
0.999468 + 0.0326160i \(0.0103838\pi\)
\(74\) 17.3814 6.06758i 0.234883 0.0819943i
\(75\) −89.7855 100.287i −1.19714 1.33716i
\(76\) −55.6193 + 44.2205i −0.731833 + 0.581848i
\(77\) 30.4442 33.7865i 0.395380 0.438786i
\(78\) −25.8993 + 53.6789i −0.332043 + 0.688191i
\(79\) 113.946i 1.44235i 0.692753 + 0.721175i \(0.256398\pi\)
−0.692753 + 0.721175i \(0.743602\pi\)
\(80\) 69.0067 40.4732i 0.862583 0.505915i
\(81\) −138.701 −1.71235
\(82\) −59.4713 + 123.260i −0.725259 + 1.50317i
\(83\) −22.1248 22.1248i −0.266564 0.266564i 0.561150 0.827714i \(-0.310359\pi\)
−0.827714 + 0.561150i \(0.810359\pi\)
\(84\) −69.7002 + 55.4156i −0.829764 + 0.659709i
\(85\) −0.801761 + 29.0446i −0.00943248 + 0.341701i
\(86\) −35.1039 100.560i −0.408185 1.16930i
\(87\) −189.112 + 189.112i −2.17370 + 2.17370i
\(88\) −23.8258 84.7132i −0.270748 0.962650i
\(89\) 91.3505i 1.02641i −0.858266 0.513205i \(-0.828458\pi\)
0.858266 0.513205i \(-0.171542\pi\)
\(90\) 190.480 60.6513i 2.11645 0.673903i
\(91\) 22.8831i 0.251463i
\(92\) −102.102 11.6571i −1.10980 0.126707i
\(93\) 18.9261 + 18.9261i 0.203506 + 0.203506i
\(94\) −6.55377 18.7741i −0.0697210 0.199725i
\(95\) 64.5144 61.0483i 0.679099 0.642613i
\(96\) 18.6578 + 171.283i 0.194352 + 1.78420i
\(97\) 80.1551 80.1551i 0.826341 0.826341i −0.160667 0.987009i \(-0.551365\pi\)
0.987009 + 0.160667i \(0.0513646\pi\)
\(98\) 27.7294 57.4720i 0.282954 0.586449i
\(99\) −11.4269 219.597i −0.115424 2.21815i
\(100\) −81.5893 + 57.8203i −0.815893 + 0.578203i
\(101\) 110.833i 1.09736i 0.836032 + 0.548680i \(0.184870\pi\)
−0.836032 + 0.548680i \(0.815130\pi\)
\(102\) −56.3601 27.1930i −0.552550 0.266598i
\(103\) 84.5855 84.5855i 0.821219 0.821219i −0.165064 0.986283i \(-0.552783\pi\)
0.986283 + 0.165064i \(0.0527831\pi\)
\(104\) 37.4384 + 23.6401i 0.359985 + 0.227309i
\(105\) 80.8472 76.5036i 0.769973 0.728606i
\(106\) −54.0254 154.763i −0.509674 1.46003i
\(107\) 87.9803 87.9803i 0.822245 0.822245i −0.164184 0.986430i \(-0.552499\pi\)
0.986430 + 0.164184i \(0.0524992\pi\)
\(108\) −26.8499 + 235.172i −0.248610 + 2.17752i
\(109\) −16.1479 −0.148146 −0.0740728 0.997253i \(-0.523600\pi\)
−0.0740728 + 0.997253i \(0.523600\pi\)
\(110\) 38.7760 + 102.939i 0.352509 + 0.935808i
\(111\) 49.5622i 0.446506i
\(112\) 35.0291 + 56.1163i 0.312760 + 0.501039i
\(113\) 33.0174 + 33.0174i 0.292189 + 0.292189i 0.837944 0.545756i \(-0.183757\pi\)
−0.545756 + 0.837944i \(0.683757\pi\)
\(114\) 63.0463 + 180.604i 0.553038 + 1.58425i
\(115\) 128.407 + 3.54462i 1.11658 + 0.0308228i
\(116\) 123.649 + 155.522i 1.06594 + 1.34071i
\(117\) 78.2343 + 78.2343i 0.668669 + 0.668669i
\(118\) 29.7818 + 14.3693i 0.252388 + 0.121774i
\(119\) −24.0261 −0.201900
\(120\) −41.6436 211.306i −0.347030 1.76089i
\(121\) 120.346 12.5587i 0.994599 0.103791i
\(122\) 42.4879 88.0603i 0.348261 0.721805i
\(123\) 260.525 + 260.525i 2.11809 + 2.11809i
\(124\) 15.5644 12.3746i 0.125520 0.0997952i
\(125\) 95.3951 80.7761i 0.763161 0.646208i
\(126\) 54.4797 + 156.064i 0.432379 + 1.23860i
\(127\) −7.88299 + 7.88299i −0.0620708 + 0.0620708i −0.737461 0.675390i \(-0.763975\pi\)
0.675390 + 0.737461i \(0.263975\pi\)
\(128\) 127.998 + 0.662689i 0.999987 + 0.00517726i
\(129\) −286.741 −2.22280
\(130\) −49.1653 25.4173i −0.378195 0.195518i
\(131\) −65.8739 −0.502855 −0.251427 0.967876i \(-0.580900\pi\)
−0.251427 + 0.967876i \(0.580900\pi\)
\(132\) −236.457 14.6055i −1.79134 0.110648i
\(133\) 51.9336 + 51.9336i 0.390478 + 0.390478i
\(134\) −36.1928 103.679i −0.270096 0.773724i
\(135\) 8.16436 295.762i 0.0604768 2.19083i
\(136\) −24.8209 + 39.3084i −0.182507 + 0.289032i
\(137\) −45.3705 + 45.3705i −0.331172 + 0.331172i −0.853031 0.521860i \(-0.825238\pi\)
0.521860 + 0.853031i \(0.325238\pi\)
\(138\) −120.221 + 249.170i −0.871169 + 1.80558i
\(139\) 131.910i 0.948992i −0.880258 0.474496i \(-0.842630\pi\)
0.880258 0.474496i \(-0.157370\pi\)
\(140\) −49.6550 66.1211i −0.354679 0.472294i
\(141\) −53.5335 −0.379670
\(142\) 84.3410 174.805i 0.593951 1.23102i
\(143\) −40.7544 + 45.2286i −0.284996 + 0.316284i
\(144\) 311.614 + 72.0945i 2.16399 + 0.500656i
\(145\) −170.702 180.394i −1.17726 1.24410i
\(146\) −188.477 + 65.7945i −1.29094 + 0.450648i
\(147\) −121.474 121.474i −0.826353 0.826353i
\(148\) −36.5823 4.17665i −0.247178 0.0282206i
\(149\) 146.686 0.984471 0.492235 0.870462i \(-0.336180\pi\)
0.492235 + 0.870462i \(0.336180\pi\)
\(150\) 74.5706 + 258.679i 0.497137 + 1.72453i
\(151\) 15.4518 0.102330 0.0511650 0.998690i \(-0.483707\pi\)
0.0511650 + 0.998690i \(0.483707\pi\)
\(152\) 138.619 31.3154i 0.911966 0.206022i
\(153\) −82.1420 + 82.1420i −0.536876 + 0.536876i
\(154\) −84.2029 + 34.4005i −0.546772 + 0.223380i
\(155\) −18.0536 + 17.0837i −0.116475 + 0.110217i
\(156\) 93.3047 74.1825i 0.598107 0.475529i
\(157\) −186.149 + 186.149i −1.18566 + 1.18566i −0.207408 + 0.978255i \(0.566503\pi\)
−0.978255 + 0.207408i \(0.933497\pi\)
\(158\) 99.0302 205.250i 0.626773 1.29905i
\(159\) −441.299 −2.77547
\(160\) −159.477 + 12.9306i −0.996729 + 0.0808159i
\(161\) 106.220i 0.659753i
\(162\) 249.841 + 120.545i 1.54223 + 0.744103i
\(163\) −19.7458 + 19.7458i −0.121140 + 0.121140i −0.765078 0.643938i \(-0.777300\pi\)
0.643938 + 0.765078i \(0.277300\pi\)
\(164\) 214.251 170.341i 1.30641 1.03867i
\(165\) 296.047 7.22251i 1.79422 0.0437728i
\(166\) 20.6246 + 59.0820i 0.124245 + 0.355916i
\(167\) −73.3723 + 73.3723i −0.439355 + 0.439355i −0.891795 0.452440i \(-0.850554\pi\)
0.452440 + 0.891795i \(0.350554\pi\)
\(168\) 173.712 39.2434i 1.03400 0.233592i
\(169\) 138.367i 0.818742i
\(170\) 26.6868 51.6210i 0.156981 0.303653i
\(171\) 355.108 2.07666
\(172\) −24.1639 + 211.646i −0.140488 + 1.23050i
\(173\) −156.233 + 156.233i −0.903083 + 0.903083i −0.995702 0.0926191i \(-0.970476\pi\)
0.0926191 + 0.995702i \(0.470476\pi\)
\(174\) 505.003 176.289i 2.90232 1.01316i
\(175\) 68.9449 + 77.0090i 0.393971 + 0.440052i
\(176\) −30.7069 + 173.301i −0.174471 + 0.984662i
\(177\) 62.9474 62.9474i 0.355635 0.355635i
\(178\) −79.3927 + 164.549i −0.446026 + 0.924434i
\(179\) −231.154 −1.29136 −0.645681 0.763607i \(-0.723426\pi\)
−0.645681 + 0.763607i \(0.723426\pi\)
\(180\) −395.823 56.2956i −2.19902 0.312753i
\(181\) 144.589 0.798837 0.399418 0.916769i \(-0.369212\pi\)
0.399418 + 0.916769i \(0.369212\pi\)
\(182\) 19.8877 41.2192i 0.109273 0.226479i
\(183\) −186.126 186.126i −1.01708 1.01708i
\(184\) 173.784 + 109.734i 0.944478 + 0.596382i
\(185\) 46.0074 + 1.27001i 0.248689 + 0.00686494i
\(186\) −17.6428 50.5401i −0.0948537 0.271721i
\(187\) −47.4877 42.7900i −0.253945 0.228824i
\(188\) −4.51132 + 39.5136i −0.0239964 + 0.210179i
\(189\) 244.658 1.29449
\(190\) −169.267 + 53.8965i −0.890876 + 0.283666i
\(191\) 46.9609i 0.245869i −0.992415 0.122934i \(-0.960770\pi\)
0.992415 0.122934i \(-0.0392305\pi\)
\(192\) 115.254 324.747i 0.600282 1.69139i
\(193\) 88.2540 88.2540i 0.457274 0.457274i −0.440485 0.897760i \(-0.645194\pi\)
0.897760 + 0.440485i \(0.145194\pi\)
\(194\) −214.046 + 74.7202i −1.10333 + 0.385156i
\(195\) −108.227 + 102.412i −0.555009 + 0.525190i
\(196\) −99.8979 + 79.4244i −0.509683 + 0.405227i
\(197\) 70.0227 + 70.0227i 0.355445 + 0.355445i 0.862131 0.506686i \(-0.169129\pi\)
−0.506686 + 0.862131i \(0.669129\pi\)
\(198\) −170.268 + 405.490i −0.859940 + 2.04793i
\(199\) 45.3723 0.228002 0.114001 0.993481i \(-0.463633\pi\)
0.114001 + 0.993481i \(0.463633\pi\)
\(200\) 197.218 33.2421i 0.986090 0.166211i
\(201\) −295.636 −1.47082
\(202\) 96.3253 199.644i 0.476858 0.988335i
\(203\) 145.216 145.216i 0.715350 0.715350i
\(204\) 77.8878 + 97.9651i 0.381803 + 0.480221i
\(205\) −248.515 + 235.163i −1.21227 + 1.14714i
\(206\) −225.877 + 78.8502i −1.09649 + 0.382768i
\(207\) 363.153 + 363.153i 1.75436 + 1.75436i
\(208\) −46.8920 75.1206i −0.225442 0.361157i
\(209\) 10.1543 + 195.140i 0.0485853 + 0.933684i
\(210\) −212.119 + 67.5413i −1.01009 + 0.321625i
\(211\) −351.272 −1.66479 −0.832397 0.554179i \(-0.813032\pi\)
−0.832397 + 0.554179i \(0.813032\pi\)
\(212\) −37.1887 + 325.727i −0.175418 + 1.53645i
\(213\) −369.471 369.471i −1.73461 1.73461i
\(214\) −234.942 + 82.0148i −1.09786 + 0.383247i
\(215\) 7.34764 266.175i 0.0341751 1.23802i
\(216\) 252.752 400.279i 1.17015 1.85314i
\(217\) −14.5330 14.5330i −0.0669725 0.0669725i
\(218\) 29.0871 + 14.0341i 0.133427 + 0.0643766i
\(219\) 537.433i 2.45403i
\(220\) 19.6171 219.124i 0.0891687 0.996017i
\(221\) 32.1627 0.145533
\(222\) −43.0745 + 89.2761i −0.194029 + 0.402145i
\(223\) 186.470 186.470i 0.836190 0.836190i −0.152165 0.988355i \(-0.548625\pi\)
0.988355 + 0.152165i \(0.0486245\pi\)
\(224\) −14.3270 131.526i −0.0639600 0.587169i
\(225\) 498.997 + 27.5702i 2.21777 + 0.122534i
\(226\) −30.7786 88.1694i −0.136189 0.390130i
\(227\) 223.442 223.442i 0.984328 0.984328i −0.0155515 0.999879i \(-0.504950\pi\)
0.999879 + 0.0155515i \(0.00495038\pi\)
\(228\) 43.3982 380.115i 0.190343 1.66717i
\(229\) 116.773i 0.509926i 0.966951 + 0.254963i \(0.0820632\pi\)
−0.966951 + 0.254963i \(0.917937\pi\)
\(230\) −228.219 117.984i −0.992255 0.512972i
\(231\) 12.7250 + 244.543i 0.0550868 + 1.05863i
\(232\) −87.5637 387.604i −0.377430 1.67071i
\(233\) 190.787 190.787i 0.818826 0.818826i −0.167112 0.985938i \(-0.553444\pi\)
0.985938 + 0.167112i \(0.0534441\pi\)
\(234\) −72.9297 208.917i −0.311665 0.892806i
\(235\) 1.37178 49.6940i 0.00583735 0.211464i
\(236\) −41.1575 51.7668i −0.174396 0.219351i
\(237\) −433.820 433.820i −1.83046 1.83046i
\(238\) 43.2781 + 20.8811i 0.181841 + 0.0877355i
\(239\) 155.155i 0.649184i −0.945854 0.324592i \(-0.894773\pi\)
0.945854 0.324592i \(-0.105227\pi\)
\(240\) −108.634 + 416.817i −0.452642 + 1.73674i
\(241\) 132.912i 0.551502i 0.961229 + 0.275751i \(0.0889265\pi\)
−0.961229 + 0.275751i \(0.911073\pi\)
\(242\) −227.694 81.9712i −0.940886 0.338724i
\(243\) 151.481 151.481i 0.623379 0.623379i
\(244\) −153.066 + 121.696i −0.627321 + 0.498756i
\(245\) 115.874 109.649i 0.472956 0.447546i
\(246\) −242.860 695.704i −0.987236 2.82807i
\(247\) −69.5213 69.5213i −0.281463 0.281463i
\(248\) −38.7909 + 8.76326i −0.156415 + 0.0353357i
\(249\) 168.469 0.676584
\(250\) −242.037 + 62.5936i −0.968149 + 0.250375i
\(251\) 257.392i 1.02547i 0.858548 + 0.512734i \(0.171367\pi\)
−0.858548 + 0.512734i \(0.828633\pi\)
\(252\) 37.5014 328.466i 0.148815 1.30344i
\(253\) −189.177 + 209.945i −0.747733 + 0.829823i
\(254\) 21.0507 7.34849i 0.0828768 0.0289311i
\(255\) −107.527 113.632i −0.421676 0.445617i
\(256\) −229.987 112.437i −0.898386 0.439207i
\(257\) −177.587 + 177.587i −0.690999 + 0.690999i −0.962452 0.271452i \(-0.912496\pi\)
0.271452 + 0.962452i \(0.412496\pi\)
\(258\) 516.505 + 249.207i 2.00196 + 0.965917i
\(259\) 38.0580i 0.146942i
\(260\) 66.4711 + 88.5136i 0.255658 + 0.340437i
\(261\) 992.949i 3.80440i
\(262\) 118.658 + 57.2510i 0.452895 + 0.218515i
\(263\) −172.722 172.722i −0.656738 0.656738i 0.297869 0.954607i \(-0.403724\pi\)
−0.954607 + 0.297869i \(0.903724\pi\)
\(264\) 413.235 + 231.814i 1.56529 + 0.878082i
\(265\) 11.3081 409.648i 0.0426722 1.54584i
\(266\) −48.4123 138.683i −0.182001 0.521366i
\(267\) 347.794 + 347.794i 1.30260 + 1.30260i
\(268\) −24.9135 + 218.212i −0.0929608 + 0.814223i
\(269\) 306.695i 1.14013i −0.821600 0.570064i \(-0.806918\pi\)
0.821600 0.570064i \(-0.193082\pi\)
\(270\) −271.753 + 525.659i −1.00649 + 1.94688i
\(271\) −131.909 −0.486751 −0.243375 0.969932i \(-0.578255\pi\)
−0.243375 + 0.969932i \(0.578255\pi\)
\(272\) 78.8727 49.2341i 0.289973 0.181008i
\(273\) −87.1217 87.1217i −0.319127 0.319127i
\(274\) 121.157 42.2942i 0.442180 0.154358i
\(275\) −0.881594 + 274.999i −0.00320580 + 0.999995i
\(276\) 433.108 344.345i 1.56923 1.24763i
\(277\) −128.214 128.214i −0.462866 0.462866i 0.436728 0.899594i \(-0.356137\pi\)
−0.899594 + 0.436728i \(0.856137\pi\)
\(278\) −114.643 + 237.609i −0.412385 + 0.854708i
\(279\) −99.3731 −0.356176
\(280\) 31.9774 + 162.259i 0.114205 + 0.579496i
\(281\) 0.0818856i 0.000291408i 1.00000 0.000145704i \(4.63790e-5\pi\)
−1.00000 0.000145704i \(0.999954\pi\)
\(282\) 96.4297 + 46.5260i 0.341949 + 0.164986i
\(283\) 228.264 + 228.264i 0.806585 + 0.806585i 0.984115 0.177530i \(-0.0568108\pi\)
−0.177530 + 0.984115i \(0.556811\pi\)
\(284\) −303.846 + 241.575i −1.06988 + 0.850616i
\(285\) −13.1963 + 478.049i −0.0463028 + 1.67736i
\(286\) 112.719 46.0505i 0.394122 0.161016i
\(287\) −200.053 200.053i −0.697049 0.697049i
\(288\) −498.652 400.687i −1.73143 1.39128i
\(289\) 255.231i 0.883152i
\(290\) 150.705 + 473.301i 0.519672 + 1.63207i
\(291\) 610.341i 2.09739i
\(292\) 396.685 + 45.2900i 1.35851 + 0.155103i
\(293\) 139.828 139.828i 0.477230 0.477230i −0.427015 0.904245i \(-0.640435\pi\)
0.904245 + 0.427015i \(0.140435\pi\)
\(294\) 113.237 + 324.383i 0.385161 + 1.10335i
\(295\) 56.8197 + 60.0457i 0.192609 + 0.203545i
\(296\) 62.2656 + 39.3171i 0.210357 + 0.132828i
\(297\) 483.569 + 435.733i 1.62818 + 1.46711i
\(298\) −264.225 127.485i −0.886661 0.427802i
\(299\) 142.193i 0.475561i
\(300\) 90.4947 530.767i 0.301649 1.76922i
\(301\) 220.184 0.731508
\(302\) −27.8333 13.4292i −0.0921634 0.0444675i
\(303\) −421.971 421.971i −1.39264 1.39264i
\(304\) −276.910 64.0653i −0.910887 0.210741i
\(305\) 177.546 168.007i 0.582118 0.550843i
\(306\) 219.352 76.5724i 0.716835 0.250237i
\(307\) 176.970 176.970i 0.576448 0.576448i −0.357475 0.933923i \(-0.616362\pi\)
0.933923 + 0.357475i \(0.116362\pi\)
\(308\) 181.572 + 11.2154i 0.589519 + 0.0364135i
\(309\) 644.077i 2.08439i
\(310\) 47.3673 15.0823i 0.152798 0.0486527i
\(311\) 304.716i 0.979796i 0.871780 + 0.489898i \(0.162966\pi\)
−0.871780 + 0.489898i \(0.837034\pi\)
\(312\) −232.541 + 52.5335i −0.745325 + 0.168376i
\(313\) 125.900 + 125.900i 0.402238 + 0.402238i 0.879021 0.476783i \(-0.158197\pi\)
−0.476783 + 0.879021i \(0.658197\pi\)
\(314\) 497.092 173.527i 1.58309 0.552635i
\(315\) −11.4032 + 413.093i −0.0362007 + 1.31140i
\(316\) −356.765 + 283.648i −1.12900 + 0.897622i
\(317\) −280.157 + 280.157i −0.883775 + 0.883775i −0.993916 0.110141i \(-0.964870\pi\)
0.110141 + 0.993916i \(0.464870\pi\)
\(318\) 794.910 + 383.533i 2.49972 + 1.20608i
\(319\) 545.648 28.3934i 1.71049 0.0890074i
\(320\) 298.502 + 115.309i 0.932820 + 0.360342i
\(321\) 669.926i 2.08700i
\(322\) 92.3161 191.334i 0.286696 0.594205i
\(323\) 72.9938 72.9938i 0.225987 0.225987i
\(324\) −345.272 434.273i −1.06565 1.34035i
\(325\) −92.2936 103.089i −0.283980 0.317196i
\(326\) 52.7291 18.4069i 0.161746 0.0564630i
\(327\) 61.4790 61.4790i 0.188009 0.188009i
\(328\) −533.972 + 120.630i −1.62796 + 0.367774i
\(329\) 41.1076 0.124947
\(330\) −539.545 244.284i −1.63498 0.740255i
\(331\) 330.681i 0.999036i −0.866304 0.499518i \(-0.833511\pi\)
0.866304 0.499518i \(-0.166489\pi\)
\(332\) 14.1971 124.349i 0.0427623 0.374545i
\(333\) 130.115 + 130.115i 0.390737 + 0.390737i
\(334\) 195.933 68.3973i 0.586626 0.204782i
\(335\) 7.57556 274.432i 0.0226136 0.819200i
\(336\) −347.014 80.2844i −1.03278 0.238942i
\(337\) 233.377 + 233.377i 0.692513 + 0.692513i 0.962784 0.270272i \(-0.0871135\pi\)
−0.270272 + 0.962784i \(0.587113\pi\)
\(338\) 120.255 249.240i 0.355784 0.737398i
\(339\) −251.411 −0.741625
\(340\) −92.9347 + 69.7912i −0.273337 + 0.205268i
\(341\) −2.84157 54.6077i −0.00833306 0.160140i
\(342\) −639.655 308.625i −1.87034 0.902412i
\(343\) 236.531 + 236.531i 0.689595 + 0.689595i
\(344\) 227.468 360.237i 0.661245 1.04720i
\(345\) −502.374 + 475.383i −1.45616 + 1.37792i
\(346\) 417.205 145.640i 1.20579 0.420925i
\(347\) −373.845 + 373.845i −1.07736 + 1.07736i −0.0806173 + 0.996745i \(0.525689\pi\)
−0.996745 + 0.0806173i \(0.974311\pi\)
\(348\) −1062.87 121.349i −3.05423 0.348705i
\(349\) 102.282 0.293072 0.146536 0.989205i \(-0.453188\pi\)
0.146536 + 0.989205i \(0.453188\pi\)
\(350\) −57.2616 198.636i −0.163605 0.567531i
\(351\) −327.514 −0.933088
\(352\) 205.928 285.478i 0.585022 0.811017i
\(353\) −279.773 279.773i −0.792557 0.792557i 0.189352 0.981909i \(-0.439361\pi\)
−0.981909 + 0.189352i \(0.939361\pi\)
\(354\) −168.095 + 58.6793i −0.474843 + 0.165761i
\(355\) 352.440 333.504i 0.992788 0.939449i
\(356\) 286.019 227.402i 0.803425 0.638768i
\(357\) 91.4733 91.4733i 0.256228 0.256228i
\(358\) 416.376 + 200.896i 1.16306 + 0.561161i
\(359\) 232.738i 0.648296i 0.946006 + 0.324148i \(0.105078\pi\)
−0.946006 + 0.324148i \(0.894922\pi\)
\(360\) 664.069 + 445.415i 1.84463 + 1.23726i
\(361\) 45.4401 0.125873
\(362\) −260.448 125.663i −0.719471 0.347135i
\(363\) −410.375 + 506.004i −1.13051 + 1.39395i
\(364\) −71.6473 + 56.9636i −0.196833 + 0.156493i
\(365\) −498.887 13.7715i −1.36681 0.0377302i
\(366\) 173.506 + 497.030i 0.474059 + 1.35800i
\(367\) 164.798 + 164.798i 0.449040 + 0.449040i 0.895035 0.445995i \(-0.147150\pi\)
−0.445995 + 0.895035i \(0.647150\pi\)
\(368\) −217.666 348.700i −0.591484 0.947553i
\(369\) −1367.91 −3.70707
\(370\) −81.7692 42.2727i −0.220998 0.114251i
\(371\) 338.867 0.913388
\(372\) −12.1445 + 106.371i −0.0326465 + 0.285943i
\(373\) 289.220 289.220i 0.775389 0.775389i −0.203654 0.979043i \(-0.565282\pi\)
0.979043 + 0.203654i \(0.0652818\pi\)
\(374\) 48.3506 + 118.349i 0.129280 + 0.316441i
\(375\) −55.6585 + 670.728i −0.148423 + 1.78861i
\(376\) 42.4675 67.2549i 0.112946 0.178870i
\(377\) −194.395 + 194.395i −0.515635 + 0.515635i
\(378\) −440.702 212.633i −1.16588 0.562520i
\(379\) −123.947 −0.327037 −0.163519 0.986540i \(-0.552284\pi\)
−0.163519 + 0.986540i \(0.552284\pi\)
\(380\) 351.740 + 50.0259i 0.925633 + 0.131647i
\(381\) 60.0251i 0.157546i
\(382\) −40.8138 + 84.5905i −0.106842 + 0.221441i
\(383\) −118.342 + 118.342i −0.308986 + 0.308986i −0.844516 0.535530i \(-0.820112\pi\)
0.535530 + 0.844516i \(0.320112\pi\)
\(384\) −489.845 + 484.799i −1.27564 + 1.26250i
\(385\) −227.330 + 5.54606i −0.590467 + 0.0144053i
\(386\) −235.673 + 82.2699i −0.610552 + 0.213135i
\(387\) 752.780 752.780i 1.94517 1.94517i
\(388\) 450.499 + 51.4340i 1.16108 + 0.132562i
\(389\) 260.376i 0.669346i −0.942334 0.334673i \(-0.891374\pi\)
0.942334 0.334673i \(-0.108626\pi\)
\(390\) 283.955 90.4147i 0.728089 0.231832i
\(391\) 149.295 0.381828
\(392\) 248.973 56.2456i 0.635136 0.143484i
\(393\) 250.799 250.799i 0.638165 0.638165i
\(394\) −65.2749 186.988i −0.165672 0.474590i
\(395\) 413.822 391.589i 1.04765 0.991364i
\(396\) 659.114 582.426i 1.66443 1.47077i
\(397\) −131.188 + 131.188i −0.330448 + 0.330448i −0.852757 0.522308i \(-0.825071\pi\)
0.522308 + 0.852757i \(0.325071\pi\)
\(398\) −81.7290 39.4331i −0.205349 0.0990781i
\(399\) −395.449 −0.991100
\(400\) −384.139 111.523i −0.960347 0.278808i
\(401\) −170.480 −0.425138 −0.212569 0.977146i \(-0.568183\pi\)
−0.212569 + 0.977146i \(0.568183\pi\)
\(402\) 532.527 + 256.937i 1.32469 + 0.639147i
\(403\) 19.4548 + 19.4548i 0.0482748 + 0.0482748i
\(404\) −347.021 + 275.901i −0.858962 + 0.682923i
\(405\) 476.662 + 503.725i 1.17694 + 1.24377i
\(406\) −387.784 + 135.370i −0.955133 + 0.333423i
\(407\) −67.7807 + 75.2220i −0.166537 + 0.184821i
\(408\) −55.1574 244.156i −0.135190 0.598423i
\(409\) 185.689 0.454008 0.227004 0.973894i \(-0.427107\pi\)
0.227004 + 0.973894i \(0.427107\pi\)
\(410\) 652.030 207.614i 1.59032 0.506376i
\(411\) 345.474i 0.840570i
\(412\) 475.400 + 54.2769i 1.15388 + 0.131740i
\(413\) −48.3364 + 48.3364i −0.117037 + 0.117037i
\(414\) −338.530 969.763i −0.817705 2.34242i
\(415\) −4.31697 + 156.386i −0.0104023 + 0.376835i
\(416\) 19.1790 + 176.068i 0.0461034 + 0.423241i
\(417\) 502.214 + 502.214i 1.20435 + 1.20435i
\(418\) 151.305 360.330i 0.361974 0.862033i
\(419\) −196.886 −0.469895 −0.234948 0.972008i \(-0.575492\pi\)
−0.234948 + 0.972008i \(0.575492\pi\)
\(420\) 440.789 + 62.6907i 1.04950 + 0.149264i
\(421\) −80.8015 −0.191928 −0.0959638 0.995385i \(-0.530593\pi\)
−0.0959638 + 0.995385i \(0.530593\pi\)
\(422\) 632.744 + 305.290i 1.49939 + 0.723436i
\(423\) 140.541 140.541i 0.332249 0.332249i
\(424\) 350.077 554.410i 0.825654 1.30757i
\(425\) 108.238 96.9035i 0.254677 0.228008i
\(426\) 344.420 + 986.635i 0.808497 + 2.31604i
\(427\) 142.923 + 142.923i 0.334715 + 0.334715i
\(428\) 494.479 + 56.4553i 1.15533 + 0.131905i
\(429\) −17.0345 327.359i −0.0397074 0.763075i
\(430\) −244.568 + 473.074i −0.568763 + 1.10017i
\(431\) −626.694 −1.45405 −0.727023 0.686613i \(-0.759097\pi\)
−0.727023 + 0.686613i \(0.759097\pi\)
\(432\) −803.164 + 501.353i −1.85918 + 1.16054i
\(433\) 222.678 + 222.678i 0.514267 + 0.514267i 0.915831 0.401564i \(-0.131533\pi\)
−0.401564 + 0.915831i \(0.631533\pi\)
\(434\) 13.5476 + 38.8089i 0.0312157 + 0.0894215i
\(435\) 1336.71 + 36.8993i 3.07290 + 0.0848260i
\(436\) −40.1974 50.5592i −0.0921958 0.115961i
\(437\) −322.709 322.709i −0.738464 0.738464i
\(438\) 467.083 968.076i 1.06640 2.21022i
\(439\) 51.1021i 0.116406i −0.998305 0.0582028i \(-0.981463\pi\)
0.998305 0.0582028i \(-0.0185370\pi\)
\(440\) −225.777 + 377.657i −0.513129 + 0.858312i
\(441\) 637.810 1.44628
\(442\) −57.9345 27.9526i −0.131074 0.0632412i
\(443\) −185.458 + 185.458i −0.418641 + 0.418641i −0.884735 0.466094i \(-0.845661\pi\)
0.466094 + 0.884735i \(0.345661\pi\)
\(444\) 155.180 123.377i 0.349504 0.277875i
\(445\) −331.762 + 313.938i −0.745532 + 0.705478i
\(446\) −497.950 + 173.827i −1.11648 + 0.389746i
\(447\) −558.471 + 558.471i −1.24938 + 1.24938i
\(448\) −88.5019 + 249.369i −0.197549 + 0.556626i
\(449\) 583.959i 1.30058i −0.759687 0.650289i \(-0.774648\pi\)
0.759687 0.650289i \(-0.225352\pi\)
\(450\) −874.880 483.341i −1.94418 1.07409i
\(451\) −39.1154 751.697i −0.0867303 1.66673i
\(452\) −21.1866 + 185.569i −0.0468730 + 0.410550i
\(453\) −58.8291 + 58.8291i −0.129865 + 0.129865i
\(454\) −596.679 + 208.292i −1.31427 + 0.458793i
\(455\) 83.1056 78.6407i 0.182650 0.172837i
\(456\) −408.531 + 646.982i −0.895902 + 1.41882i
\(457\) 202.421 + 202.421i 0.442935 + 0.442935i 0.892997 0.450062i \(-0.148598\pi\)
−0.450062 + 0.892997i \(0.648598\pi\)
\(458\) 101.487 210.343i 0.221588 0.459263i
\(459\) 343.873i 0.749178i
\(460\) 308.550 + 410.868i 0.670760 + 0.893192i
\(461\) 561.183i 1.21732i 0.793432 + 0.608659i \(0.208292\pi\)
−0.793432 + 0.608659i \(0.791708\pi\)
\(462\) 189.611 451.553i 0.410412 0.977388i
\(463\) 28.2562 28.2562i 0.0610284 0.0610284i −0.675934 0.736962i \(-0.736260\pi\)
0.736962 + 0.675934i \(0.236260\pi\)
\(464\) −179.138 + 774.291i −0.386074 + 1.66873i
\(465\) 3.69284 133.777i 0.00794158 0.287691i
\(466\) −509.475 + 177.850i −1.09329 + 0.381653i
\(467\) 455.997 + 455.997i 0.976440 + 0.976440i 0.999729 0.0232889i \(-0.00741375\pi\)
−0.0232889 + 0.999729i \(0.507414\pi\)
\(468\) −50.2015 + 439.704i −0.107268 + 0.939538i
\(469\) 227.014 0.484039
\(470\) −45.6600 + 88.3213i −0.0971490 + 0.187918i
\(471\) 1417.43i 3.00941i
\(472\) 29.1463 + 129.017i 0.0617507 + 0.273342i
\(473\) 435.195 + 392.144i 0.920075 + 0.829057i
\(474\) 404.405 + 1158.47i 0.853175 + 2.44403i
\(475\) −443.424 24.4997i −0.933524 0.0515782i
\(476\) −59.8088 75.2259i −0.125649 0.158038i
\(477\) 1158.54 1158.54i 2.42881 2.42881i
\(478\) −134.845 + 279.480i −0.282103 + 0.584686i
\(479\) 429.016i 0.895649i 0.894121 + 0.447825i \(0.147801\pi\)
−0.894121 + 0.447825i \(0.852199\pi\)
\(480\) 557.938 656.398i 1.16237 1.36750i
\(481\) 50.9467i 0.105918i
\(482\) 115.514 239.414i 0.239655 0.496709i
\(483\) −404.407 404.407i −0.837283 0.837283i
\(484\) 338.904 + 345.543i 0.700214 + 0.713933i
\(485\) −566.566 15.6398i −1.16818 0.0322470i
\(486\) −404.514 + 141.210i −0.832334 + 0.290556i
\(487\) −498.155 498.155i −1.02290 1.02290i −0.999731 0.0231733i \(-0.992623\pi\)
−0.0231733 0.999731i \(-0.507377\pi\)
\(488\) 381.484 86.1811i 0.781730 0.176601i
\(489\) 150.354i 0.307473i
\(490\) −304.020 + 96.8036i −0.620448 + 0.197558i
\(491\) 173.817 0.354005 0.177003 0.984210i \(-0.443360\pi\)
0.177003 + 0.984210i \(0.443360\pi\)
\(492\) −167.174 + 1464.24i −0.339784 + 2.97609i
\(493\) −204.104 204.104i −0.414005 0.414005i
\(494\) 64.8075 + 185.649i 0.131189 + 0.375809i
\(495\) −758.249 + 796.172i −1.53182 + 1.60843i
\(496\) 77.4900 + 17.9280i 0.156230 + 0.0361451i
\(497\) 283.711 + 283.711i 0.570848 + 0.570848i
\(498\) −303.463 146.417i −0.609364 0.294010i
\(499\) 967.876 1.93963 0.969816 0.243839i \(-0.0784068\pi\)
0.969816 + 0.243839i \(0.0784068\pi\)
\(500\) 490.381 + 97.6050i 0.980761 + 0.195210i
\(501\) 558.694i 1.11516i
\(502\) 223.700 463.640i 0.445617 0.923585i
\(503\) 506.826 + 506.826i 1.00761 + 1.00761i 0.999971 + 0.00763584i \(0.00243059\pi\)
0.00763584 + 0.999971i \(0.497569\pi\)
\(504\) −353.021 + 559.072i −0.700438 + 1.10927i
\(505\) 402.519 380.893i 0.797067 0.754244i
\(506\) 523.226 213.760i 1.03404 0.422451i
\(507\) −526.799 526.799i −1.03905 1.03905i
\(508\) −44.3051 5.05837i −0.0872148 0.00995742i
\(509\) 350.892i 0.689376i −0.938717 0.344688i \(-0.887985\pi\)
0.938717 0.344688i \(-0.112015\pi\)
\(510\) 94.9307 + 298.138i 0.186139 + 0.584584i
\(511\) 412.687i 0.807606i
\(512\) 316.555 + 402.414i 0.618272 + 0.785964i
\(513\) −743.299 + 743.299i −1.44893 + 1.44893i
\(514\) 474.227 165.546i 0.922621 0.322073i
\(515\) −597.882 16.5042i −1.16094 0.0320471i
\(516\) −713.793 897.789i −1.38332 1.73990i
\(517\) 81.2494 + 73.2119i 0.157156 + 0.141609i
\(518\) 33.0762 68.5537i 0.0638537 0.132343i
\(519\) 1189.64i 2.29218i
\(520\) −42.8069 217.209i −0.0823209 0.417710i
\(521\) −820.765 −1.57536 −0.787682 0.616082i \(-0.788719\pi\)
−0.787682 + 0.616082i \(0.788719\pi\)
\(522\) −862.972 + 1788.59i −1.65320 + 3.42643i
\(523\) −496.043 496.043i −0.948457 0.948457i 0.0502779 0.998735i \(-0.483989\pi\)
−0.998735 + 0.0502779i \(0.983989\pi\)
\(524\) −163.982 206.252i −0.312943 0.393611i
\(525\) −555.683 30.7021i −1.05844 0.0584802i
\(526\) 161.011 + 461.236i 0.306104 + 0.876875i
\(527\) −20.4265 + 20.4265i −0.0387599 + 0.0387599i
\(528\) −542.890 776.708i −1.02820 1.47104i
\(529\) 131.039i 0.247711i
\(530\) −376.394 + 728.069i −0.710178 + 1.37372i
\(531\) 330.511i 0.622432i
\(532\) −33.3248 + 291.885i −0.0626406 + 0.548655i
\(533\) 267.802 + 267.802i 0.502444 + 0.502444i
\(534\) −324.212 928.748i −0.607139 1.73923i
\(535\) −621.877 17.1666i −1.16239 0.0320871i
\(536\) 234.524 371.411i 0.437545 0.692932i
\(537\) 880.061 880.061i 1.63885 1.63885i
\(538\) −266.548 + 552.447i −0.495443 + 1.02685i
\(539\) 18.2382 + 350.491i 0.0338371 + 0.650262i
\(540\) 946.358 710.686i 1.75251 1.31609i
\(541\) 687.519i 1.27083i −0.772171 0.635415i \(-0.780829\pi\)
0.772171 0.635415i \(-0.219171\pi\)
\(542\) 237.608 + 114.643i 0.438391 + 0.211518i
\(543\) −550.489 + 550.489i −1.01379 + 1.01379i
\(544\) −184.862 + 20.1370i −0.339821 + 0.0370165i
\(545\) 55.4942 + 58.6450i 0.101824 + 0.107605i
\(546\) 81.2145 + 232.649i 0.148744 + 0.426098i
\(547\) 577.787 577.787i 1.05628 1.05628i 0.0579649 0.998319i \(-0.481539\pi\)
0.998319 0.0579649i \(-0.0184611\pi\)
\(548\) −254.998 29.1134i −0.465325 0.0531267i
\(549\) 977.271 1.78009
\(550\) 240.589 494.588i 0.437435 0.899250i
\(551\) 882.364i 1.60139i
\(552\) −1079.43 + 243.853i −1.95548 + 0.441763i
\(553\) 333.124 + 333.124i 0.602394 + 0.602394i
\(554\) 119.520 + 342.381i 0.215741 + 0.618017i
\(555\) −179.997 + 170.327i −0.324319 + 0.306895i
\(556\) 413.012 328.367i 0.742827 0.590589i
\(557\) −747.847 747.847i −1.34263 1.34263i −0.893429 0.449204i \(-0.851708\pi\)
−0.449204 0.893429i \(-0.648292\pi\)
\(558\) 179.000 + 86.3651i 0.320789 + 0.154776i
\(559\) −294.751 −0.527283
\(560\) 83.4184 320.068i 0.148961 0.571550i
\(561\) 343.710 17.8853i 0.612674 0.0318812i
\(562\) 0.0711668 0.147500i 0.000126631 0.000262456i
\(563\) −45.6689 45.6689i −0.0811170 0.0811170i 0.665384 0.746501i \(-0.268268\pi\)
−0.746501 + 0.665384i \(0.768268\pi\)
\(564\) −133.263 167.614i −0.236281 0.297188i
\(565\) 6.44231 233.379i 0.0114023 0.413060i
\(566\) −212.786 609.554i −0.375947 1.07695i
\(567\) −405.495 + 405.495i −0.715159 + 0.715159i
\(568\) 757.269 171.075i 1.33322 0.301188i
\(569\) 5.88226 0.0103379 0.00516894 0.999987i \(-0.498355\pi\)
0.00516894 + 0.999987i \(0.498355\pi\)
\(570\) 439.243 849.638i 0.770601 1.49059i
\(571\) 292.086 0.511534 0.255767 0.966738i \(-0.417672\pi\)
0.255767 + 0.966738i \(0.417672\pi\)
\(572\) −243.063 15.0135i −0.424934 0.0262474i
\(573\) 178.792 + 178.792i 0.312028 + 0.312028i
\(574\) 186.488 + 534.221i 0.324893 + 0.930698i
\(575\) −428.415 478.524i −0.745069 0.832216i
\(576\) 549.982 + 1155.13i 0.954830 + 2.00544i
\(577\) −312.399 + 312.399i −0.541419 + 0.541419i −0.923945 0.382526i \(-0.875054\pi\)
0.382526 + 0.923945i \(0.375054\pi\)
\(578\) −221.821 + 459.746i −0.383774 + 0.795409i
\(579\) 672.010i 1.16064i
\(580\) 139.882 983.532i 0.241175 1.69574i
\(581\) −129.365 −0.222659
\(582\) 530.448 1099.41i 0.911422 1.88901i
\(583\) 669.773 + 603.516i 1.14884 + 1.03519i
\(584\) −675.185 426.339i −1.15614 0.730033i
\(585\) 15.2650 552.990i 0.0260940 0.945281i
\(586\) −373.397 + 130.347i −0.637196 + 0.222436i
\(587\) −398.674 398.674i −0.679172 0.679172i 0.280641 0.959813i \(-0.409453\pi\)
−0.959813 + 0.280641i \(0.909453\pi\)
\(588\) 77.9475 682.725i 0.132564 1.16110i
\(589\) 88.3059 0.149925
\(590\) −50.1633 157.542i −0.0850226 0.267020i
\(591\) −533.188 −0.902180
\(592\) −77.9884 124.937i −0.131737 0.211042i
\(593\) 29.5328 29.5328i 0.0498024 0.0498024i −0.681767 0.731569i \(-0.738788\pi\)
0.731569 + 0.681767i \(0.238788\pi\)
\(594\) −492.356 1205.15i −0.828883 2.02888i
\(595\) 82.5687 + 87.2566i 0.138771 + 0.146650i
\(596\) 365.150 + 459.276i 0.612668 + 0.770597i
\(597\) −172.744 + 172.744i −0.289353 + 0.289353i
\(598\) −123.580 + 256.131i −0.206655 + 0.428313i
\(599\) 473.810 0.791002 0.395501 0.918465i \(-0.370571\pi\)
0.395501 + 0.918465i \(0.370571\pi\)
\(600\) −624.298 + 877.420i −1.04050 + 1.46237i
\(601\) 152.254i 0.253334i 0.991945 + 0.126667i \(0.0404280\pi\)
−0.991945 + 0.126667i \(0.959572\pi\)
\(602\) −396.616 191.362i −0.658831 0.317877i
\(603\) 776.132 776.132i 1.28712 1.28712i
\(604\) 38.4647 + 48.3799i 0.0636834 + 0.0800992i
\(605\) −459.196 393.908i −0.759002 0.651088i
\(606\) 393.359 + 1126.83i 0.649108 + 1.85945i
\(607\) 576.925 576.925i 0.950452 0.950452i −0.0483768 0.998829i \(-0.515405\pi\)
0.998829 + 0.0483768i \(0.0154048\pi\)
\(608\) 443.117 + 356.063i 0.728811 + 0.585630i
\(609\) 1105.75i 1.81568i
\(610\) −465.828 + 148.325i −0.763652 + 0.243156i
\(611\) −55.0290 −0.0900638
\(612\) −461.666 52.7090i −0.754356 0.0861258i
\(613\) −529.340 + 529.340i −0.863524 + 0.863524i −0.991746 0.128222i \(-0.959073\pi\)
0.128222 + 0.991746i \(0.459073\pi\)
\(614\) −472.579 + 164.970i −0.769672 + 0.268681i
\(615\) 50.8333 1841.49i 0.0826558 2.99429i
\(616\) −317.317 178.006i −0.515125 0.288971i
\(617\) −202.380 + 202.380i −0.328006 + 0.328006i −0.851828 0.523822i \(-0.824506\pi\)
0.523822 + 0.851828i \(0.324506\pi\)
\(618\) 559.767 1160.17i 0.905772 1.87730i
\(619\) 342.308 0.553002 0.276501 0.961014i \(-0.410825\pi\)
0.276501 + 0.961014i \(0.410825\pi\)
\(620\) −98.4306 13.9992i −0.158759 0.0225793i
\(621\) −1520.28 −2.44811
\(622\) 264.829 548.884i 0.425770 0.882451i
\(623\) −267.066 267.066i −0.428677 0.428677i
\(624\) 464.532 + 107.473i 0.744443 + 0.172233i
\(625\) −621.196 68.8537i −0.993913 0.110166i
\(626\) −117.364 336.204i −0.187482 0.537067i
\(627\) −781.607 704.287i −1.24658 1.12327i
\(628\) −1046.22 119.448i −1.66596 0.190204i
\(629\) 53.4914 0.0850419
\(630\) 379.559 734.191i 0.602475 1.16538i
\(631\) 104.920i 0.166276i 0.996538 + 0.0831381i \(0.0264942\pi\)
−0.996538 + 0.0831381i \(0.973506\pi\)
\(632\) 889.158 200.870i 1.40690 0.317832i
\(633\) 1337.38 1337.38i 2.11276 2.11276i
\(634\) 748.129 261.161i 1.18001 0.411925i
\(635\) 55.7200 + 1.53812i 0.0877480 + 0.00242224i
\(636\) −1098.54 1381.71i −1.72726 2.17250i
\(637\) −124.867 124.867i −0.196024 0.196024i
\(638\) −1007.55 423.078i −1.57923 0.663131i
\(639\) 1939.94 3.03591
\(640\) −437.476 467.135i −0.683556 0.729898i
\(641\) 1002.95 1.56466 0.782331 0.622863i \(-0.214031\pi\)
0.782331 + 0.622863i \(0.214031\pi\)
\(642\) 582.233 1206.73i 0.906905 1.87965i
\(643\) −195.498 + 195.498i −0.304040 + 0.304040i −0.842592 0.538552i \(-0.818972\pi\)
0.538552 + 0.842592i \(0.318972\pi\)
\(644\) −332.577 + 264.417i −0.516424 + 0.410586i
\(645\) 985.422 + 1041.37i 1.52779 + 1.61453i
\(646\) −194.922 + 68.0445i −0.301737 + 0.105332i
\(647\) −542.894 542.894i −0.839094 0.839094i 0.149646 0.988740i \(-0.452187\pi\)
−0.988740 + 0.149646i \(0.952187\pi\)
\(648\) 244.509 + 1082.33i 0.377329 + 1.67026i
\(649\) −181.623 + 9.45098i −0.279851 + 0.0145624i
\(650\) 76.6537 + 265.906i 0.117929 + 0.409086i
\(651\) 110.662 0.169987
\(652\) −110.978 12.6705i −0.170212 0.0194333i
\(653\) 799.365 + 799.365i 1.22414 + 1.22414i 0.966146 + 0.257997i \(0.0830624\pi\)
0.257997 + 0.966146i \(0.416938\pi\)
\(654\) −164.173 + 57.3104i −0.251029 + 0.0876306i
\(655\) 226.384 + 239.238i 0.345625 + 0.365248i
\(656\) 1066.68 + 246.785i 1.62604 + 0.376197i
\(657\) −1410.92 1410.92i −2.14752 2.14752i
\(658\) −74.0469 35.7266i −0.112533 0.0542957i
\(659\) 712.885i 1.08177i 0.841097 + 0.540884i \(0.181910\pi\)
−0.841097 + 0.540884i \(0.818090\pi\)
\(660\) 759.572 + 908.946i 1.15087 + 1.37719i
\(661\) 103.880 0.157156 0.0785780 0.996908i \(-0.474962\pi\)
0.0785780 + 0.996908i \(0.474962\pi\)
\(662\) −287.395 + 595.654i −0.434131 + 0.899779i
\(663\) −122.451 + 122.451i −0.184693 + 0.184693i
\(664\) −133.645 + 211.651i −0.201272 + 0.318751i
\(665\) 10.1332 367.086i 0.0152379 0.552009i
\(666\) −121.293 347.460i −0.182122 0.521711i
\(667\) −902.354 + 902.354i −1.35285 + 1.35285i
\(668\) −412.378 47.0816i −0.617332 0.0704815i
\(669\) 1419.88i 2.12239i
\(670\) −252.155 + 487.749i −0.376350 + 0.727984i
\(671\) 27.9451 + 537.032i 0.0416469 + 0.800346i
\(672\) 555.299 + 446.206i 0.826338 + 0.663996i
\(673\) −296.291 + 296.291i −0.440254 + 0.440254i −0.892097 0.451843i \(-0.850767\pi\)
0.451843 + 0.892097i \(0.350767\pi\)
\(674\) −217.553 623.208i −0.322779 0.924641i
\(675\) −1102.19 + 986.773i −1.63287 + 1.46189i
\(676\) −433.230 + 344.442i −0.640873 + 0.509530i
\(677\) 128.518 + 128.518i 0.189835 + 0.189835i 0.795625 0.605790i \(-0.207143\pi\)
−0.605790 + 0.795625i \(0.707143\pi\)
\(678\) 452.865 + 218.501i 0.667943 + 0.322273i
\(679\) 468.672i 0.690238i
\(680\) 228.058 44.9450i 0.335380 0.0660956i
\(681\) 1701.40i 2.49839i
\(682\) −42.3411 + 100.834i −0.0620837 + 0.147851i
\(683\) −435.104 + 435.104i −0.637048 + 0.637048i −0.949826 0.312778i \(-0.898740\pi\)
0.312778 + 0.949826i \(0.398740\pi\)
\(684\) 883.982 + 1111.85i 1.29237 + 1.62551i
\(685\) 320.696 + 8.85266i 0.468169 + 0.0129236i
\(686\) −220.493 631.631i −0.321419 0.920745i
\(687\) −444.584 444.584i −0.647138 0.647138i
\(688\) −722.819 + 451.200i −1.05061 + 0.655814i
\(689\) −453.627 −0.658384
\(690\) 1318.08 419.693i 1.91026 0.608251i
\(691\) 784.142i 1.13479i 0.823444 + 0.567397i \(0.192049\pi\)
−0.823444 + 0.567397i \(0.807951\pi\)
\(692\) −878.084 100.252i −1.26891 0.144873i
\(693\) −675.404 608.590i −0.974610 0.878197i
\(694\) 998.313 348.496i 1.43849 0.502156i
\(695\) −479.064 + 453.325i −0.689300 + 0.652267i
\(696\) 1809.08 + 1142.33i 2.59926 + 1.64128i
\(697\) −281.179 + 281.179i −0.403413 + 0.403413i
\(698\) −184.241 88.8935i −0.263955 0.127355i
\(699\) 1452.74i 2.07832i
\(700\) −69.4895 + 407.568i −0.0992707 + 0.582240i
\(701\) 286.604i 0.408850i 0.978882 + 0.204425i \(0.0655325\pi\)
−0.978882 + 0.204425i \(0.934468\pi\)
\(702\) 589.949 + 284.642i 0.840384 + 0.405474i
\(703\) −115.624 115.624i −0.164473 0.164473i
\(704\) −619.046 + 335.259i −0.879326 + 0.476220i
\(705\) 183.975 + 194.420i 0.260957 + 0.275773i
\(706\) 260.803 + 747.104i 0.369409 + 1.05822i
\(707\) 324.025 + 324.025i 0.458310 + 0.458310i
\(708\) 353.786 + 40.3922i 0.499698 + 0.0570511i
\(709\) 407.354i 0.574547i 0.957849 + 0.287274i \(0.0927489\pi\)
−0.957849 + 0.287274i \(0.907251\pi\)
\(710\) −924.697 + 294.435i −1.30239 + 0.414697i
\(711\) 2277.81 3.20367
\(712\) −712.840 + 161.038i −1.00118 + 0.226177i
\(713\) 90.3064 + 90.3064i 0.126657 + 0.126657i
\(714\) −244.270 + 85.2710i −0.342115 + 0.119427i
\(715\) 304.317 7.42427i 0.425618 0.0103836i
\(716\) −575.418 723.745i −0.803657 1.01082i
\(717\) 590.714 + 590.714i 0.823869 + 0.823869i
\(718\) 202.273 419.231i 0.281717 0.583887i
\(719\) −524.870 −0.730000 −0.365000 0.931008i \(-0.618931\pi\)
−0.365000 + 0.931008i \(0.618931\pi\)
\(720\) −809.073 1379.47i −1.12371 1.91593i
\(721\) 494.577i 0.685959i
\(722\) −81.8511 39.4920i −0.113367 0.0546981i
\(723\) −506.029 506.029i −0.699902 0.699902i
\(724\) 359.931 + 452.711i 0.497142 + 0.625292i
\(725\) −68.5056 + 1239.90i −0.0944905 + 1.71020i
\(726\) 1178.97 554.805i 1.62393 0.764194i
\(727\) 651.657 + 651.657i 0.896364 + 0.896364i 0.995112 0.0987480i \(-0.0314838\pi\)
−0.0987480 + 0.995112i \(0.531484\pi\)
\(728\) 178.565 40.3396i 0.245281 0.0554116i
\(729\) 94.8515i 0.130112i
\(730\) 886.675 + 458.390i 1.21462 + 0.627931i
\(731\) 309.473i 0.423356i
\(732\) 119.433 1046.09i 0.163160 1.42909i
\(733\) −819.547 + 819.547i −1.11807 + 1.11807i −0.126048 + 0.992024i \(0.540229\pi\)
−0.992024 + 0.126048i \(0.959771\pi\)
\(734\) −153.624 440.075i −0.209296 0.599557i
\(735\) −23.7019 + 858.623i −0.0322475 + 1.16820i
\(736\) 89.0264 + 817.285i 0.120960 + 1.11044i
\(737\) 448.695 + 404.308i 0.608813 + 0.548587i
\(738\) 2464.01 + 1188.85i 3.33877 + 1.61091i
\(739\) 771.314i 1.04373i −0.853029 0.521863i \(-0.825237\pi\)
0.853029 0.521863i \(-0.174763\pi\)
\(740\) 110.551 + 147.211i 0.149394 + 0.198934i
\(741\) 529.370 0.714400
\(742\) −610.399 294.509i −0.822640 0.396913i
\(743\) −246.863 246.863i −0.332252 0.332252i 0.521189 0.853441i \(-0.325489\pi\)
−0.853441 + 0.521189i \(0.825489\pi\)
\(744\) 114.323 181.051i 0.153660 0.243348i
\(745\) −504.106 532.727i −0.676652 0.715070i
\(746\) −772.332 + 269.610i −1.03530 + 0.361407i
\(747\) −442.282 + 442.282i −0.592078 + 0.592078i
\(748\) 15.7634 255.203i 0.0210741 0.341181i
\(749\) 514.426i 0.686817i
\(750\) 683.187 1159.81i 0.910916 1.54641i
\(751\) 254.579i 0.338987i −0.985531 0.169494i \(-0.945787\pi\)
0.985531 0.169494i \(-0.0542132\pi\)
\(752\) −134.948 + 84.2375i −0.179452 + 0.112018i
\(753\) −979.957 979.957i −1.30140 1.30140i
\(754\) 519.110 181.214i 0.688475 0.240336i
\(755\) −53.1022 56.1172i −0.0703341 0.0743274i
\(756\) 609.036 + 766.029i 0.805603 + 1.01327i
\(757\) 313.720 313.720i 0.414425 0.414425i −0.468852 0.883277i \(-0.655332\pi\)
0.883277 + 0.468852i \(0.155332\pi\)
\(758\) 223.265 + 107.722i 0.294545 + 0.142114i
\(759\) −79.0718 1519.56i −0.104179 2.00205i
\(760\) −590.111 395.809i −0.776462 0.520801i
\(761\) 935.728i 1.22960i −0.788682 0.614802i \(-0.789236\pi\)
0.788682 0.614802i \(-0.210764\pi\)
\(762\) −52.1678 + 108.123i −0.0684617 + 0.141894i
\(763\) −47.2088 + 47.2088i −0.0618726 + 0.0618726i
\(764\) 147.035 116.901i 0.192455 0.153012i
\(765\) 580.610 + 16.0275i 0.758968 + 0.0209509i
\(766\) 316.019 110.317i 0.412557 0.144018i
\(767\) 64.7059 64.7059i 0.0843623 0.0843623i
\(768\) 1303.69 447.542i 1.69752 0.582737i
\(769\) 441.916 0.574663 0.287331 0.957831i \(-0.407232\pi\)
0.287331 + 0.957831i \(0.407232\pi\)
\(770\) 414.308 + 187.582i 0.538062 + 0.243613i
\(771\) 1352.24i 1.75387i
\(772\) 496.017 + 56.6309i 0.642510 + 0.0733561i
\(773\)