Properties

Label 220.3.i.a
Level $220$
Weight $3$
Character orbit 220.i
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1 −1.99997 + 0.0112748i 3.70405 3.70405i 3.99975 0.0450984i −3.59444 + 3.47563i −7.36622 + 7.44975i −1.62459 + 1.62459i −7.99886 + 0.135292i 18.4400i 7.14958 6.99168i
43.2 −1.99978 0.0293959i 1.37211 1.37211i 3.99827 + 0.117571i −3.60976 3.45972i −2.78426 + 2.70359i −5.40554 + 5.40554i −7.99222 0.352649i 5.23463i 7.11703 + 7.02480i
43.3 −1.97731 0.300385i 3.24619 3.24619i 3.81954 + 1.18791i 1.98058 4.59100i −7.39385 + 5.44363i 7.61337 7.61337i −7.19559 3.49620i 12.0755i −5.29530 + 8.48291i
43.4 −1.97634 0.306706i −0.409452 + 0.409452i 3.81186 + 1.21231i 4.83179 + 1.28601i 0.934798 0.683636i 5.71256 5.71256i −7.16172 3.56507i 8.66470i −9.15485 4.02353i
43.5 −1.96707 + 0.361417i −2.82785 + 2.82785i 3.73876 1.42187i 3.27930 3.77442i 4.54056 6.58463i −1.01424 + 1.01424i −6.84052 + 4.14816i 6.99351i −5.08648 + 8.60974i
43.6 −1.96076 0.394239i −2.39705 + 2.39705i 3.68915 + 1.54602i 1.59525 + 4.73869i 5.64505 3.75503i −9.72511 + 9.72511i −6.62404 4.48577i 2.49170i −1.25973 9.92034i
43.7 −1.91212 + 0.586345i −1.31103 + 1.31103i 3.31240 2.24232i −3.80088 + 3.24859i 1.73813 3.27556i 7.34311 7.34311i −5.01893 + 6.22979i 5.56240i 5.36294 8.44031i
43.8 −1.87429 0.697868i −0.715296 + 0.715296i 3.02596 + 2.61602i −4.99120 + 0.296598i 1.83986 0.841493i 2.22084 2.22084i −3.84590 7.01492i 7.97670i 9.56196 + 2.92729i
43.9 −1.84841 + 0.763796i 1.18814 1.18814i 2.83323 2.82361i 1.57917 + 4.74407i −1.28867 + 3.10367i −1.57737 + 1.57737i −3.08030 + 7.38321i 6.17665i −6.54246 7.56282i
43.10 −1.80130 0.869100i −3.80725 + 3.80725i 2.48933 + 3.13101i −3.43663 3.63175i 10.1669 3.54910i 2.92353 2.92353i −1.76286 7.80335i 19.9903i 3.03403 + 9.52862i
43.11 −1.73178 + 1.00047i 1.22071 1.22071i 1.99810 3.46520i 4.48571 2.20872i −0.892710 + 3.33529i −3.81872 + 3.81872i 0.00657265 + 8.00000i 6.01972i −5.55847 + 8.31284i
43.12 −1.71305 + 1.03221i −2.84767 + 2.84767i 1.86907 3.53646i −4.99552 + 0.211543i 1.93880 7.81761i −7.03107 + 7.03107i 0.448578 + 7.98741i 7.21849i 8.33922 5.51883i
43.13 −1.67372 1.09483i 0.0944542 0.0944542i 1.60268 + 3.66489i 1.01027 4.89687i −0.261502 + 0.0546783i −6.56836 + 6.56836i 1.33000 7.88867i 8.98216i −7.05216 + 7.08992i
43.14 −1.64403 + 1.13893i 1.80964 1.80964i 1.40568 3.74487i −2.37711 4.39879i −0.914055 + 5.03615i 4.00592 4.00592i 1.95415 + 7.75766i 2.45042i 8.91796 + 4.52439i
43.15 −1.61925 1.17390i 2.04929 2.04929i 1.24394 + 3.80166i −1.54252 + 4.75612i −5.72396 + 0.912660i 0.191923 0.191923i 2.44850 7.61609i 0.600827i 8.08090 5.89059i
43.16 −1.49067 + 1.33338i −3.87627 + 3.87627i 0.444207 3.97526i 3.64792 + 3.41945i 0.609714 10.9468i 5.44609 5.44609i 4.63836 + 6.51810i 21.0509i −9.99728 0.233225i
43.17 −1.48754 1.33687i 2.95023 2.95023i 0.425555 + 3.97730i 4.93806 + 0.784567i −8.33266 + 0.444512i −2.85360 + 2.85360i 4.68410 6.48530i 8.40772i −6.29670 7.76862i
43.18 −1.33687 1.48754i −2.95023 + 2.95023i −0.425555 + 3.97730i 4.93806 + 0.784567i 8.33266 + 0.444512i 2.85360 2.85360i 6.48530 4.68410i 8.40772i −5.43447 8.39443i
43.19 −1.33338 + 1.49067i 3.87627 3.87627i −0.444207 3.97526i 3.64792 + 3.41945i 0.609714 + 10.9468i 5.44609 5.44609i 6.51810 + 4.63836i 21.0509i −9.96134 + 0.878432i
43.20 −1.17390 1.61925i −2.04929 + 2.04929i −1.24394 + 3.80166i −1.54252 + 4.75612i 5.72396 + 0.912660i −0.191923 + 0.191923i 7.61609 2.44850i 0.600827i 9.51209 3.08546i
See next 80 embeddings (of 136 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 43.68
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.c odd 4 1 inner
11.b odd 2 1 inner
20.e even 4 1 inner
44.c even 2 1 inner
55.e even 4 1 inner
220.i odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 220.3.i.a 136
4.b odd 2 1 inner 220.3.i.a 136
5.c odd 4 1 inner 220.3.i.a 136
11.b odd 2 1 inner 220.3.i.a 136
20.e even 4 1 inner 220.3.i.a 136
44.c even 2 1 inner 220.3.i.a 136
55.e even 4 1 inner 220.3.i.a 136
220.i odd 4 1 inner 220.3.i.a 136
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.3.i.a 136 1.a even 1 1 trivial
220.3.i.a 136 4.b odd 2 1 inner
220.3.i.a 136 5.c odd 4 1 inner
220.3.i.a 136 11.b odd 2 1 inner
220.3.i.a 136 20.e even 4 1 inner
220.3.i.a 136 44.c even 2 1 inner
220.3.i.a 136 55.e even 4 1 inner
220.3.i.a 136 220.i odd 4 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).