Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,3,Mod(43,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.43");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.i (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.99456581593\) |
Analytic rank: | \(0\) |
Dimension: | \(136\) |
Relative dimension: | \(68\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −1.99997 | + | 0.0112748i | 3.70405 | − | 3.70405i | 3.99975 | − | 0.0450984i | −3.59444 | + | 3.47563i | −7.36622 | + | 7.44975i | −1.62459 | + | 1.62459i | −7.99886 | + | 0.135292i | − | 18.4400i | 7.14958 | − | 6.99168i | |
43.2 | −1.99978 | − | 0.0293959i | 1.37211 | − | 1.37211i | 3.99827 | + | 0.117571i | −3.60976 | − | 3.45972i | −2.78426 | + | 2.70359i | −5.40554 | + | 5.40554i | −7.99222 | − | 0.352649i | 5.23463i | 7.11703 | + | 7.02480i | ||
43.3 | −1.97731 | − | 0.300385i | 3.24619 | − | 3.24619i | 3.81954 | + | 1.18791i | 1.98058 | − | 4.59100i | −7.39385 | + | 5.44363i | 7.61337 | − | 7.61337i | −7.19559 | − | 3.49620i | − | 12.0755i | −5.29530 | + | 8.48291i | |
43.4 | −1.97634 | − | 0.306706i | −0.409452 | + | 0.409452i | 3.81186 | + | 1.21231i | 4.83179 | + | 1.28601i | 0.934798 | − | 0.683636i | 5.71256 | − | 5.71256i | −7.16172 | − | 3.56507i | 8.66470i | −9.15485 | − | 4.02353i | ||
43.5 | −1.96707 | + | 0.361417i | −2.82785 | + | 2.82785i | 3.73876 | − | 1.42187i | 3.27930 | − | 3.77442i | 4.54056 | − | 6.58463i | −1.01424 | + | 1.01424i | −6.84052 | + | 4.14816i | − | 6.99351i | −5.08648 | + | 8.60974i | |
43.6 | −1.96076 | − | 0.394239i | −2.39705 | + | 2.39705i | 3.68915 | + | 1.54602i | 1.59525 | + | 4.73869i | 5.64505 | − | 3.75503i | −9.72511 | + | 9.72511i | −6.62404 | − | 4.48577i | − | 2.49170i | −1.25973 | − | 9.92034i | |
43.7 | −1.91212 | + | 0.586345i | −1.31103 | + | 1.31103i | 3.31240 | − | 2.24232i | −3.80088 | + | 3.24859i | 1.73813 | − | 3.27556i | 7.34311 | − | 7.34311i | −5.01893 | + | 6.22979i | 5.56240i | 5.36294 | − | 8.44031i | ||
43.8 | −1.87429 | − | 0.697868i | −0.715296 | + | 0.715296i | 3.02596 | + | 2.61602i | −4.99120 | + | 0.296598i | 1.83986 | − | 0.841493i | 2.22084 | − | 2.22084i | −3.84590 | − | 7.01492i | 7.97670i | 9.56196 | + | 2.92729i | ||
43.9 | −1.84841 | + | 0.763796i | 1.18814 | − | 1.18814i | 2.83323 | − | 2.82361i | 1.57917 | + | 4.74407i | −1.28867 | + | 3.10367i | −1.57737 | + | 1.57737i | −3.08030 | + | 7.38321i | 6.17665i | −6.54246 | − | 7.56282i | ||
43.10 | −1.80130 | − | 0.869100i | −3.80725 | + | 3.80725i | 2.48933 | + | 3.13101i | −3.43663 | − | 3.63175i | 10.1669 | − | 3.54910i | 2.92353 | − | 2.92353i | −1.76286 | − | 7.80335i | − | 19.9903i | 3.03403 | + | 9.52862i | |
43.11 | −1.73178 | + | 1.00047i | 1.22071 | − | 1.22071i | 1.99810 | − | 3.46520i | 4.48571 | − | 2.20872i | −0.892710 | + | 3.33529i | −3.81872 | + | 3.81872i | 0.00657265 | + | 8.00000i | 6.01972i | −5.55847 | + | 8.31284i | ||
43.12 | −1.71305 | + | 1.03221i | −2.84767 | + | 2.84767i | 1.86907 | − | 3.53646i | −4.99552 | + | 0.211543i | 1.93880 | − | 7.81761i | −7.03107 | + | 7.03107i | 0.448578 | + | 7.98741i | − | 7.21849i | 8.33922 | − | 5.51883i | |
43.13 | −1.67372 | − | 1.09483i | 0.0944542 | − | 0.0944542i | 1.60268 | + | 3.66489i | 1.01027 | − | 4.89687i | −0.261502 | + | 0.0546783i | −6.56836 | + | 6.56836i | 1.33000 | − | 7.88867i | 8.98216i | −7.05216 | + | 7.08992i | ||
43.14 | −1.64403 | + | 1.13893i | 1.80964 | − | 1.80964i | 1.40568 | − | 3.74487i | −2.37711 | − | 4.39879i | −0.914055 | + | 5.03615i | 4.00592 | − | 4.00592i | 1.95415 | + | 7.75766i | 2.45042i | 8.91796 | + | 4.52439i | ||
43.15 | −1.61925 | − | 1.17390i | 2.04929 | − | 2.04929i | 1.24394 | + | 3.80166i | −1.54252 | + | 4.75612i | −5.72396 | + | 0.912660i | 0.191923 | − | 0.191923i | 2.44850 | − | 7.61609i | 0.600827i | 8.08090 | − | 5.89059i | ||
43.16 | −1.49067 | + | 1.33338i | −3.87627 | + | 3.87627i | 0.444207 | − | 3.97526i | 3.64792 | + | 3.41945i | 0.609714 | − | 10.9468i | 5.44609 | − | 5.44609i | 4.63836 | + | 6.51810i | − | 21.0509i | −9.99728 | − | 0.233225i | |
43.17 | −1.48754 | − | 1.33687i | 2.95023 | − | 2.95023i | 0.425555 | + | 3.97730i | 4.93806 | + | 0.784567i | −8.33266 | + | 0.444512i | −2.85360 | + | 2.85360i | 4.68410 | − | 6.48530i | − | 8.40772i | −6.29670 | − | 7.76862i | |
43.18 | −1.33687 | − | 1.48754i | −2.95023 | + | 2.95023i | −0.425555 | + | 3.97730i | 4.93806 | + | 0.784567i | 8.33266 | + | 0.444512i | 2.85360 | − | 2.85360i | 6.48530 | − | 4.68410i | − | 8.40772i | −5.43447 | − | 8.39443i | |
43.19 | −1.33338 | + | 1.49067i | 3.87627 | − | 3.87627i | −0.444207 | − | 3.97526i | 3.64792 | + | 3.41945i | 0.609714 | + | 10.9468i | 5.44609 | − | 5.44609i | 6.51810 | + | 4.63836i | − | 21.0509i | −9.96134 | + | 0.878432i | |
43.20 | −1.17390 | − | 1.61925i | −2.04929 | + | 2.04929i | −1.24394 | + | 3.80166i | −1.54252 | + | 4.75612i | 5.72396 | + | 0.912660i | −0.191923 | + | 0.191923i | 7.61609 | − | 2.44850i | 0.600827i | 9.51209 | − | 3.08546i | ||
See next 80 embeddings (of 136 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
11.b | odd | 2 | 1 | inner |
20.e | even | 4 | 1 | inner |
44.c | even | 2 | 1 | inner |
55.e | even | 4 | 1 | inner |
220.i | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 220.3.i.a | ✓ | 136 |
4.b | odd | 2 | 1 | inner | 220.3.i.a | ✓ | 136 |
5.c | odd | 4 | 1 | inner | 220.3.i.a | ✓ | 136 |
11.b | odd | 2 | 1 | inner | 220.3.i.a | ✓ | 136 |
20.e | even | 4 | 1 | inner | 220.3.i.a | ✓ | 136 |
44.c | even | 2 | 1 | inner | 220.3.i.a | ✓ | 136 |
55.e | even | 4 | 1 | inner | 220.3.i.a | ✓ | 136 |
220.i | odd | 4 | 1 | inner | 220.3.i.a | ✓ | 136 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
220.3.i.a | ✓ | 136 | 1.a | even | 1 | 1 | trivial |
220.3.i.a | ✓ | 136 | 4.b | odd | 2 | 1 | inner |
220.3.i.a | ✓ | 136 | 5.c | odd | 4 | 1 | inner |
220.3.i.a | ✓ | 136 | 11.b | odd | 2 | 1 | inner |
220.3.i.a | ✓ | 136 | 20.e | even | 4 | 1 | inner |
220.3.i.a | ✓ | 136 | 44.c | even | 2 | 1 | inner |
220.3.i.a | ✓ | 136 | 55.e | even | 4 | 1 | inner |
220.3.i.a | ✓ | 136 | 220.i | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(220, [\chi])\).