Properties

Label 220.3.h.a.199.9
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.9
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.77475 - 0.922089i) q^{2} +5.34862 q^{3} +(2.29950 + 3.27296i) q^{4} +(3.88532 + 3.14711i) q^{5} +(-9.49248 - 4.93190i) q^{6} -2.03277 q^{7} +(-1.06309 - 7.92905i) q^{8} +19.6077 q^{9} +(-3.99357 - 9.16795i) q^{10} +3.31662i q^{11} +(12.2992 + 17.5058i) q^{12} -11.7832i q^{13} +(3.60766 + 1.87439i) q^{14} +(20.7811 + 16.8327i) q^{15} +(-5.42457 + 15.0524i) q^{16} -9.54644i q^{17} +(-34.7989 - 18.0801i) q^{18} +30.8261i q^{19} +(-1.36607 + 19.9533i) q^{20} -10.8725 q^{21} +(3.05822 - 5.88619i) q^{22} -30.3657 q^{23} +(-5.68605 - 42.4095i) q^{24} +(5.19142 + 24.4550i) q^{25} +(-10.8651 + 20.9123i) q^{26} +56.7367 q^{27} +(-4.67436 - 6.65318i) q^{28} +17.7331 q^{29} +(-21.3601 - 49.0359i) q^{30} -45.9125i q^{31} +(23.5069 - 21.7123i) q^{32} +17.7394i q^{33} +(-8.80267 + 16.9426i) q^{34} +(-7.89796 - 6.39734i) q^{35} +(45.0880 + 64.1754i) q^{36} -4.82884i q^{37} +(28.4244 - 54.7087i) q^{38} -63.0238i q^{39} +(20.8231 - 34.1525i) q^{40} +27.1140 q^{41} +(19.2960 + 10.0254i) q^{42} -30.4465 q^{43} +(-10.8552 + 7.62659i) q^{44} +(76.1823 + 61.7077i) q^{45} +(53.8917 + 27.9999i) q^{46} +53.3727 q^{47} +(-29.0140 + 80.5094i) q^{48} -44.8679 q^{49} +(13.3362 - 48.1886i) q^{50} -51.0603i q^{51} +(38.5659 - 27.0955i) q^{52} -29.7540i q^{53} +(-100.694 - 52.3163i) q^{54} +(-10.4378 + 12.8861i) q^{55} +(2.16101 + 16.1179i) q^{56} +164.877i q^{57} +(-31.4718 - 16.3515i) q^{58} -57.2759i q^{59} +(-7.30657 + 106.723i) q^{60} -84.0110 q^{61} +(-42.3354 + 81.4834i) q^{62} -39.8580 q^{63} +(-61.7397 + 16.8585i) q^{64} +(37.0830 - 45.7814i) q^{65} +(16.3573 - 31.4830i) q^{66} -99.3737 q^{67} +(31.2451 - 21.9521i) q^{68} -162.415 q^{69} +(8.11801 + 18.6363i) q^{70} -89.2609i q^{71} +(-20.8447 - 155.471i) q^{72} +25.3531i q^{73} +(-4.45262 + 8.57000i) q^{74} +(27.7669 + 130.801i) q^{75} +(-100.893 + 70.8846i) q^{76} -6.74193i q^{77} +(-58.1136 + 111.852i) q^{78} +72.2901i q^{79} +(-68.4477 + 41.4116i) q^{80} +126.994 q^{81} +(-48.1207 - 25.0015i) q^{82} +2.60402 q^{83} +(-25.0014 - 35.5853i) q^{84} +(30.0437 - 37.0910i) q^{85} +(54.0350 + 28.0744i) q^{86} +94.8474 q^{87} +(26.2977 - 3.52586i) q^{88} +130.436 q^{89} +(-78.3049 - 179.763i) q^{90} +23.9525i q^{91} +(-69.8261 - 99.3859i) q^{92} -245.569i q^{93} +(-94.7233 - 49.2144i) q^{94} +(-97.0130 + 119.769i) q^{95} +(125.730 - 116.131i) q^{96} +115.244i q^{97} +(79.6294 + 41.3722i) q^{98} +65.0315i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.77475 0.922089i −0.887377 0.461045i
\(3\) 5.34862 1.78287 0.891437 0.453145i \(-0.149698\pi\)
0.891437 + 0.453145i \(0.149698\pi\)
\(4\) 2.29950 + 3.27296i 0.574876 + 0.818241i
\(5\) 3.88532 + 3.14711i 0.777064 + 0.629422i
\(6\) −9.49248 4.93190i −1.58208 0.821984i
\(7\) −2.03277 −0.290396 −0.145198 0.989403i \(-0.546382\pi\)
−0.145198 + 0.989403i \(0.546382\pi\)
\(8\) −1.06309 7.92905i −0.132886 0.991131i
\(9\) 19.6077 2.17864
\(10\) −3.99357 9.16795i −0.399357 0.916795i
\(11\) 3.31662i 0.301511i
\(12\) 12.2992 + 17.5058i 1.02493 + 1.45882i
\(13\) 11.7832i 0.906399i −0.891409 0.453199i \(-0.850283\pi\)
0.891409 0.453199i \(-0.149717\pi\)
\(14\) 3.60766 + 1.87439i 0.257690 + 0.133885i
\(15\) 20.7811 + 16.8327i 1.38541 + 1.12218i
\(16\) −5.42457 + 15.0524i −0.339036 + 0.940773i
\(17\) 9.54644i 0.561555i −0.959773 0.280778i \(-0.909408\pi\)
0.959773 0.280778i \(-0.0905923\pi\)
\(18\) −34.7989 18.0801i −1.93327 1.00445i
\(19\) 30.8261i 1.62242i 0.584752 + 0.811212i \(0.301192\pi\)
−0.584752 + 0.811212i \(0.698808\pi\)
\(20\) −1.36607 + 19.9533i −0.0683033 + 0.997665i
\(21\) −10.8725 −0.517738
\(22\) 3.05822 5.88619i 0.139010 0.267554i
\(23\) −30.3657 −1.32025 −0.660125 0.751156i \(-0.729497\pi\)
−0.660125 + 0.751156i \(0.729497\pi\)
\(24\) −5.68605 42.4095i −0.236919 1.76706i
\(25\) 5.19142 + 24.4550i 0.207657 + 0.978202i
\(26\) −10.8651 + 20.9123i −0.417890 + 0.804317i
\(27\) 56.7367 2.10136
\(28\) −4.67436 6.65318i −0.166941 0.237613i
\(29\) 17.7331 0.611485 0.305742 0.952114i \(-0.401095\pi\)
0.305742 + 0.952114i \(0.401095\pi\)
\(30\) −21.3601 49.0359i −0.712003 1.63453i
\(31\) 45.9125i 1.48105i −0.672029 0.740525i \(-0.734577\pi\)
0.672029 0.740525i \(-0.265423\pi\)
\(32\) 23.5069 21.7123i 0.734591 0.678510i
\(33\) 17.7394i 0.537557i
\(34\) −8.80267 + 16.9426i −0.258902 + 0.498311i
\(35\) −7.89796 6.39734i −0.225656 0.182781i
\(36\) 45.0880 + 64.1754i 1.25245 + 1.78265i
\(37\) 4.82884i 0.130509i −0.997869 0.0652546i \(-0.979214\pi\)
0.997869 0.0652546i \(-0.0207859\pi\)
\(38\) 28.4244 54.7087i 0.748010 1.43970i
\(39\) 63.0238i 1.61599i
\(40\) 20.8231 34.1525i 0.520579 0.853814i
\(41\) 27.1140 0.661317 0.330659 0.943750i \(-0.392729\pi\)
0.330659 + 0.943750i \(0.392729\pi\)
\(42\) 19.2960 + 10.0254i 0.459429 + 0.238701i
\(43\) −30.4465 −0.708058 −0.354029 0.935234i \(-0.615189\pi\)
−0.354029 + 0.935234i \(0.615189\pi\)
\(44\) −10.8552 + 7.62659i −0.246709 + 0.173332i
\(45\) 76.1823 + 61.7077i 1.69294 + 1.37128i
\(46\) 53.8917 + 27.9999i 1.17156 + 0.608694i
\(47\) 53.3727 1.13559 0.567794 0.823170i \(-0.307797\pi\)
0.567794 + 0.823170i \(0.307797\pi\)
\(48\) −29.0140 + 80.5094i −0.604458 + 1.67728i
\(49\) −44.8679 −0.915670
\(50\) 13.3362 48.1886i 0.266725 0.963773i
\(51\) 51.0603i 1.00118i
\(52\) 38.5659 27.0955i 0.741653 0.521067i
\(53\) 29.7540i 0.561396i −0.959796 0.280698i \(-0.909434\pi\)
0.959796 0.280698i \(-0.0905659\pi\)
\(54\) −100.694 52.3163i −1.86470 0.968821i
\(55\) −10.4378 + 12.8861i −0.189778 + 0.234294i
\(56\) 2.16101 + 16.1179i 0.0385895 + 0.287820i
\(57\) 164.877i 2.89258i
\(58\) −31.4718 16.3515i −0.542618 0.281922i
\(59\) 57.2759i 0.970778i −0.874298 0.485389i \(-0.838678\pi\)
0.874298 0.485389i \(-0.161322\pi\)
\(60\) −7.30657 + 106.723i −0.121776 + 1.77871i
\(61\) −84.0110 −1.37723 −0.688614 0.725128i \(-0.741781\pi\)
−0.688614 + 0.725128i \(0.741781\pi\)
\(62\) −42.3354 + 81.4834i −0.682830 + 1.31425i
\(63\) −39.8580 −0.632667
\(64\) −61.7397 + 16.8585i −0.964683 + 0.263415i
\(65\) 37.0830 45.7814i 0.570507 0.704330i
\(66\) 16.3573 31.4830i 0.247838 0.477015i
\(67\) −99.3737 −1.48319 −0.741595 0.670848i \(-0.765930\pi\)
−0.741595 + 0.670848i \(0.765930\pi\)
\(68\) 31.2451 21.9521i 0.459487 0.322824i
\(69\) −162.415 −2.35384
\(70\) 8.11801 + 18.6363i 0.115972 + 0.266233i
\(71\) 89.2609i 1.25720i −0.777730 0.628598i \(-0.783629\pi\)
0.777730 0.628598i \(-0.216371\pi\)
\(72\) −20.8447 155.471i −0.289510 2.15932i
\(73\) 25.3531i 0.347303i 0.984807 + 0.173652i \(0.0555567\pi\)
−0.984807 + 0.173652i \(0.944443\pi\)
\(74\) −4.45262 + 8.57000i −0.0601705 + 0.115811i
\(75\) 27.7669 + 130.801i 0.370226 + 1.74401i
\(76\) −100.893 + 70.8846i −1.32753 + 0.932692i
\(77\) 6.74193i 0.0875576i
\(78\) −58.1136 + 111.852i −0.745046 + 1.43400i
\(79\) 72.2901i 0.915064i 0.889193 + 0.457532i \(0.151267\pi\)
−0.889193 + 0.457532i \(0.848733\pi\)
\(80\) −68.4477 + 41.4116i −0.855596 + 0.517645i
\(81\) 126.994 1.56782
\(82\) −48.1207 25.0015i −0.586838 0.304897i
\(83\) 2.60402 0.0313737 0.0156868 0.999877i \(-0.495007\pi\)
0.0156868 + 0.999877i \(0.495007\pi\)
\(84\) −25.0014 35.5853i −0.297635 0.423635i
\(85\) 30.0437 37.0910i 0.353455 0.436364i
\(86\) 54.0350 + 28.0744i 0.628314 + 0.326446i
\(87\) 94.8474 1.09020
\(88\) 26.2977 3.52586i 0.298837 0.0400666i
\(89\) 130.436 1.46557 0.732787 0.680458i \(-0.238219\pi\)
0.732787 + 0.680458i \(0.238219\pi\)
\(90\) −78.3049 179.763i −0.870054 1.99736i
\(91\) 23.9525i 0.263214i
\(92\) −69.8261 99.3859i −0.758979 1.08028i
\(93\) 245.569i 2.64052i
\(94\) −94.7233 49.2144i −1.00770 0.523557i
\(95\) −97.0130 + 119.769i −1.02119 + 1.26073i
\(96\) 125.730 116.131i 1.30968 1.20970i
\(97\) 115.244i 1.18809i 0.804433 + 0.594043i \(0.202469\pi\)
−0.804433 + 0.594043i \(0.797531\pi\)
\(98\) 79.6294 + 41.3722i 0.812545 + 0.422165i
\(99\) 65.0315i 0.656884i
\(100\) −68.1028 + 73.2258i −0.681028 + 0.732258i
\(101\) −174.697 −1.72967 −0.864836 0.502054i \(-0.832578\pi\)
−0.864836 + 0.502054i \(0.832578\pi\)
\(102\) −47.0821 + 90.6194i −0.461589 + 0.888425i
\(103\) 1.47775 0.0143471 0.00717354 0.999974i \(-0.497717\pi\)
0.00717354 + 0.999974i \(0.497717\pi\)
\(104\) −93.4295 + 12.5266i −0.898360 + 0.120448i
\(105\) −42.2432 34.2170i −0.402316 0.325876i
\(106\) −27.4358 + 52.8060i −0.258829 + 0.498170i
\(107\) 62.9939 0.588728 0.294364 0.955693i \(-0.404892\pi\)
0.294364 + 0.955693i \(0.404892\pi\)
\(108\) 130.466 + 185.697i 1.20802 + 1.71942i
\(109\) −30.8159 −0.282714 −0.141357 0.989959i \(-0.545147\pi\)
−0.141357 + 0.989959i \(0.545147\pi\)
\(110\) 30.4067 13.2452i 0.276424 0.120411i
\(111\) 25.8276i 0.232681i
\(112\) 11.0269 30.5980i 0.0984545 0.273196i
\(113\) 95.1112i 0.841692i 0.907132 + 0.420846i \(0.138267\pi\)
−0.907132 + 0.420846i \(0.861733\pi\)
\(114\) 152.031 292.616i 1.33361 2.56681i
\(115\) −117.981 95.5642i −1.02592 0.830993i
\(116\) 40.7772 + 58.0397i 0.351528 + 0.500342i
\(117\) 231.042i 1.97471i
\(118\) −52.8135 + 101.651i −0.447572 + 0.861446i
\(119\) 19.4057i 0.163073i
\(120\) 111.375 182.669i 0.928126 1.52224i
\(121\) −11.0000 −0.0909091
\(122\) 149.099 + 77.4656i 1.22212 + 0.634964i
\(123\) 145.023 1.17904
\(124\) 150.270 105.576i 1.21185 0.851419i
\(125\) −56.7924 + 111.354i −0.454339 + 0.890829i
\(126\) 70.7381 + 36.7526i 0.561414 + 0.291688i
\(127\) 34.8579 0.274472 0.137236 0.990538i \(-0.456178\pi\)
0.137236 + 0.990538i \(0.456178\pi\)
\(128\) 125.118 + 27.0097i 0.977483 + 0.211014i
\(129\) −162.847 −1.26238
\(130\) −108.028 + 47.0570i −0.830982 + 0.361977i
\(131\) 137.386i 1.04875i 0.851488 + 0.524374i \(0.175701\pi\)
−0.851488 + 0.524374i \(0.824299\pi\)
\(132\) −58.0603 + 40.7917i −0.439851 + 0.309028i
\(133\) 62.6623i 0.471145i
\(134\) 176.364 + 91.6314i 1.31615 + 0.683816i
\(135\) 220.440 + 178.557i 1.63289 + 1.32264i
\(136\) −75.6942 + 10.1487i −0.556575 + 0.0746228i
\(137\) 186.735i 1.36303i −0.731803 0.681516i \(-0.761321\pi\)
0.731803 0.681516i \(-0.238679\pi\)
\(138\) 288.246 + 149.761i 2.08874 + 1.08522i
\(139\) 132.000i 0.949639i −0.880083 0.474819i \(-0.842513\pi\)
0.880083 0.474819i \(-0.157487\pi\)
\(140\) 2.77690 40.5604i 0.0198350 0.289717i
\(141\) 285.470 2.02461
\(142\) −82.3065 + 158.416i −0.579623 + 1.11561i
\(143\) 39.0804 0.273290
\(144\) −106.364 + 295.143i −0.738636 + 2.04960i
\(145\) 68.8986 + 55.8079i 0.475163 + 0.384882i
\(146\) 23.3779 44.9956i 0.160122 0.308189i
\(147\) −239.981 −1.63252
\(148\) 15.8046 11.1039i 0.106788 0.0750265i
\(149\) 8.66913 0.0581821 0.0290910 0.999577i \(-0.490739\pi\)
0.0290910 + 0.999577i \(0.490739\pi\)
\(150\) 71.3305 257.743i 0.475537 1.71828i
\(151\) 243.786i 1.61448i −0.590224 0.807239i \(-0.700961\pi\)
0.590224 0.807239i \(-0.299039\pi\)
\(152\) 244.421 32.7708i 1.60804 0.215597i
\(153\) 187.184i 1.22342i
\(154\) −6.21666 + 11.9653i −0.0403679 + 0.0776966i
\(155\) 144.492 178.385i 0.932204 1.15087i
\(156\) 206.275 144.923i 1.32227 0.928996i
\(157\) 193.037i 1.22953i 0.788709 + 0.614767i \(0.210750\pi\)
−0.788709 + 0.614767i \(0.789250\pi\)
\(158\) 66.6579 128.297i 0.421886 0.812007i
\(159\) 159.143i 1.00090i
\(160\) 159.663 10.3805i 0.997893 0.0648780i
\(161\) 61.7265 0.383394
\(162\) −225.382 117.099i −1.39125 0.722836i
\(163\) −56.9654 −0.349481 −0.174740 0.984615i \(-0.555909\pi\)
−0.174740 + 0.984615i \(0.555909\pi\)
\(164\) 62.3487 + 88.7431i 0.380175 + 0.541117i
\(165\) −55.8277 + 68.9231i −0.338350 + 0.417716i
\(166\) −4.62149 2.40113i −0.0278403 0.0144647i
\(167\) −223.464 −1.33811 −0.669053 0.743214i \(-0.733300\pi\)
−0.669053 + 0.743214i \(0.733300\pi\)
\(168\) 11.5584 + 86.2087i 0.0688001 + 0.513147i
\(169\) 30.1565 0.178441
\(170\) −87.5213 + 38.1244i −0.514831 + 0.224261i
\(171\) 604.429i 3.53467i
\(172\) −70.0118 99.6502i −0.407045 0.579362i
\(173\) 106.144i 0.613547i −0.951782 0.306774i \(-0.900751\pi\)
0.951782 0.306774i \(-0.0992495\pi\)
\(174\) −168.331 87.4578i −0.967418 0.502631i
\(175\) −10.5530 49.7115i −0.0603026 0.284065i
\(176\) −49.9231 17.9913i −0.283654 0.102223i
\(177\) 306.347i 1.73077i
\(178\) −231.492 120.274i −1.30052 0.675695i
\(179\) 21.5882i 0.120604i −0.998180 0.0603022i \(-0.980794\pi\)
0.998180 0.0603022i \(-0.0192064\pi\)
\(180\) −26.7855 + 391.239i −0.148808 + 2.17355i
\(181\) −48.5900 −0.268453 −0.134226 0.990951i \(-0.542855\pi\)
−0.134226 + 0.990951i \(0.542855\pi\)
\(182\) 22.0863 42.5098i 0.121353 0.233570i
\(183\) −449.343 −2.45542
\(184\) 32.2814 + 240.771i 0.175443 + 1.30854i
\(185\) 15.1969 18.7616i 0.0821453 0.101414i
\(186\) −226.436 + 435.824i −1.21740 + 2.34314i
\(187\) 31.6619 0.169315
\(188\) 122.731 + 174.687i 0.652822 + 0.929185i
\(189\) −115.333 −0.610226
\(190\) 282.612 123.106i 1.48743 0.647927i
\(191\) 85.7501i 0.448954i 0.974479 + 0.224477i \(0.0720673\pi\)
−0.974479 + 0.224477i \(0.927933\pi\)
\(192\) −330.222 + 90.1700i −1.71991 + 0.469635i
\(193\) 299.543i 1.55204i 0.630711 + 0.776018i \(0.282763\pi\)
−0.630711 + 0.776018i \(0.717237\pi\)
\(194\) 106.266 204.530i 0.547761 1.05428i
\(195\) 198.343 244.868i 1.01714 1.25573i
\(196\) −103.174 146.851i −0.526397 0.749239i
\(197\) 36.1064i 0.183281i −0.995792 0.0916406i \(-0.970789\pi\)
0.995792 0.0916406i \(-0.0292111\pi\)
\(198\) 59.9648 115.415i 0.302853 0.582904i
\(199\) 58.2599i 0.292763i 0.989228 + 0.146382i \(0.0467628\pi\)
−0.989228 + 0.146382i \(0.953237\pi\)
\(200\) 188.386 67.1609i 0.941932 0.335804i
\(201\) −531.512 −2.64434
\(202\) 310.044 + 161.086i 1.53487 + 0.797456i
\(203\) −36.0472 −0.177572
\(204\) 167.118 117.413i 0.819208 0.575555i
\(205\) 105.347 + 85.3307i 0.513886 + 0.416247i
\(206\) −2.62264 1.36262i −0.0127313 0.00661464i
\(207\) −595.403 −2.87634
\(208\) 177.365 + 63.9188i 0.852716 + 0.307302i
\(209\) −102.238 −0.489179
\(210\) 43.4201 + 99.6787i 0.206763 + 0.474660i
\(211\) 13.7636i 0.0652303i −0.999468 0.0326151i \(-0.989616\pi\)
0.999468 0.0326151i \(-0.0103836\pi\)
\(212\) 97.3837 68.4194i 0.459357 0.322733i
\(213\) 477.423i 2.24142i
\(214\) −111.799 58.0860i −0.522423 0.271430i
\(215\) −118.294 95.8184i −0.550206 0.445667i
\(216\) −60.3161 449.868i −0.279241 2.08272i
\(217\) 93.3296i 0.430090i
\(218\) 54.6906 + 28.4150i 0.250874 + 0.130344i
\(219\) 135.604i 0.619198i
\(220\) −66.1776 4.53073i −0.300807 0.0205942i
\(221\) −112.487 −0.508993
\(222\) −23.8154 + 45.8377i −0.107276 + 0.206476i
\(223\) 22.2087 0.0995906 0.0497953 0.998759i \(-0.484143\pi\)
0.0497953 + 0.998759i \(0.484143\pi\)
\(224\) −47.7841 + 44.1361i −0.213322 + 0.197036i
\(225\) 101.792 + 479.508i 0.452409 + 2.13115i
\(226\) 87.7010 168.799i 0.388057 0.746898i
\(227\) 384.449 1.69361 0.846804 0.531905i \(-0.178524\pi\)
0.846804 + 0.531905i \(0.178524\pi\)
\(228\) −539.636 + 379.135i −2.36682 + 1.66287i
\(229\) −34.4507 −0.150440 −0.0752199 0.997167i \(-0.523966\pi\)
−0.0752199 + 0.997167i \(0.523966\pi\)
\(230\) 121.268 + 278.392i 0.527251 + 1.21040i
\(231\) 36.0600i 0.156104i
\(232\) −18.8518 140.606i −0.0812577 0.606062i
\(233\) 381.682i 1.63812i −0.573707 0.819060i \(-0.694495\pi\)
0.573707 0.819060i \(-0.305505\pi\)
\(234\) −213.041 + 410.042i −0.910431 + 1.75232i
\(235\) 207.370 + 167.970i 0.882425 + 0.714764i
\(236\) 187.462 131.706i 0.794330 0.558077i
\(237\) 386.652i 1.63144i
\(238\) 17.8938 34.4403i 0.0751840 0.144707i
\(239\) 99.0654i 0.414499i 0.978288 + 0.207250i \(0.0664513\pi\)
−0.978288 + 0.207250i \(0.933549\pi\)
\(240\) −366.101 + 221.495i −1.52542 + 0.922895i
\(241\) 377.488 1.56634 0.783170 0.621807i \(-0.213601\pi\)
0.783170 + 0.621807i \(0.213601\pi\)
\(242\) 19.5223 + 10.1430i 0.0806706 + 0.0419131i
\(243\) 168.610 0.693868
\(244\) −193.183 274.965i −0.791735 1.12690i
\(245\) −174.326 141.204i −0.711534 0.576343i
\(246\) −257.379 133.724i −1.04626 0.543592i
\(247\) 363.229 1.47056
\(248\) −364.043 + 48.8090i −1.46791 + 0.196811i
\(249\) 13.9279 0.0559353
\(250\) 203.470 145.258i 0.813882 0.581031i
\(251\) 133.640i 0.532429i 0.963914 + 0.266215i \(0.0857730\pi\)
−0.963914 + 0.266215i \(0.914227\pi\)
\(252\) −91.6536 130.454i −0.363705 0.517674i
\(253\) 100.712i 0.398070i
\(254\) −61.8642 32.1421i −0.243560 0.126544i
\(255\) 160.692 198.385i 0.630165 0.777982i
\(256\) −197.148 163.305i −0.770109 0.637912i
\(257\) 339.153i 1.31966i 0.751414 + 0.659831i \(0.229372\pi\)
−0.751414 + 0.659831i \(0.770628\pi\)
\(258\) 289.013 + 150.159i 1.12020 + 0.582012i
\(259\) 9.81591i 0.0378993i
\(260\) 235.113 + 16.0966i 0.904282 + 0.0619100i
\(261\) 347.705 1.33220
\(262\) 126.682 243.826i 0.483520 0.930635i
\(263\) 38.3128 0.145676 0.0728380 0.997344i \(-0.476794\pi\)
0.0728380 + 0.997344i \(0.476794\pi\)
\(264\) 140.656 18.8585i 0.532789 0.0714337i
\(265\) 93.6390 115.604i 0.353355 0.436241i
\(266\) −57.7802 + 111.210i −0.217219 + 0.418083i
\(267\) 697.653 2.61293
\(268\) −228.510 325.246i −0.852649 1.21361i
\(269\) 421.371 1.56644 0.783218 0.621747i \(-0.213577\pi\)
0.783218 + 0.621747i \(0.213577\pi\)
\(270\) −226.582 520.160i −0.839193 1.92652i
\(271\) 328.909i 1.21369i −0.794822 0.606843i \(-0.792436\pi\)
0.794822 0.606843i \(-0.207564\pi\)
\(272\) 143.697 + 51.7854i 0.528296 + 0.190387i
\(273\) 128.113i 0.469278i
\(274\) −172.187 + 331.409i −0.628419 + 1.20952i
\(275\) −81.1082 + 17.2180i −0.294939 + 0.0626109i
\(276\) −373.473 531.577i −1.35316 1.92601i
\(277\) 474.088i 1.71151i 0.517383 + 0.855754i \(0.326906\pi\)
−0.517383 + 0.855754i \(0.673094\pi\)
\(278\) −121.716 + 234.267i −0.437826 + 0.842688i
\(279\) 900.241i 3.22667i
\(280\) −42.3286 + 69.4242i −0.151174 + 0.247944i
\(281\) 307.011 1.09257 0.546284 0.837600i \(-0.316042\pi\)
0.546284 + 0.837600i \(0.316042\pi\)
\(282\) −506.639 263.229i −1.79659 0.933436i
\(283\) −140.232 −0.495519 −0.247759 0.968822i \(-0.579694\pi\)
−0.247759 + 0.968822i \(0.579694\pi\)
\(284\) 292.148 205.256i 1.02869 0.722731i
\(285\) −518.885 + 640.599i −1.82065 + 2.24772i
\(286\) −69.3581 36.0356i −0.242511 0.125999i
\(287\) −55.1165 −0.192044
\(288\) 460.917 425.729i 1.60041 1.47823i
\(289\) 197.866 0.684656
\(290\) −70.8182 162.576i −0.244201 0.560607i
\(291\) 616.398i 2.11821i
\(292\) −82.9799 + 58.2996i −0.284178 + 0.199656i
\(293\) 11.6922i 0.0399051i 0.999801 + 0.0199526i \(0.00635152\pi\)
−0.999801 + 0.0199526i \(0.993648\pi\)
\(294\) 425.907 + 221.284i 1.44866 + 0.752667i
\(295\) 180.253 222.535i 0.611029 0.754357i
\(296\) −38.2881 + 5.13348i −0.129352 + 0.0173428i
\(297\) 188.174i 0.633584i
\(298\) −15.3856 7.99371i −0.0516294 0.0268245i
\(299\) 357.805i 1.19667i
\(300\) −364.256 + 391.657i −1.21419 + 1.30552i
\(301\) 61.8907 0.205617
\(302\) −224.793 + 432.661i −0.744347 + 1.43265i
\(303\) −934.387 −3.08379
\(304\) −464.005 167.218i −1.52633 0.550060i
\(305\) −326.409 264.392i −1.07019 0.866858i
\(306\) −172.600 + 332.206i −0.564053 + 1.08564i
\(307\) 357.934 1.16591 0.582955 0.812505i \(-0.301896\pi\)
0.582955 + 0.812505i \(0.301896\pi\)
\(308\) 22.0661 15.5031i 0.0716432 0.0503347i
\(309\) 7.90392 0.0255790
\(310\) −420.924 + 183.355i −1.35782 + 0.591468i
\(311\) 237.747i 0.764459i 0.924067 + 0.382230i \(0.124844\pi\)
−0.924067 + 0.382230i \(0.875156\pi\)
\(312\) −499.719 + 66.9998i −1.60166 + 0.214743i
\(313\) 224.140i 0.716103i −0.933702 0.358052i \(-0.883441\pi\)
0.933702 0.358052i \(-0.116559\pi\)
\(314\) 177.997 342.593i 0.566870 1.09106i
\(315\) −154.861 125.437i −0.491622 0.398214i
\(316\) −236.603 + 166.231i −0.748743 + 0.526048i
\(317\) 54.9016i 0.173191i −0.996244 0.0865956i \(-0.972401\pi\)
0.996244 0.0865956i \(-0.0275988\pi\)
\(318\) −146.744 + 282.439i −0.461459 + 0.888174i
\(319\) 58.8139i 0.184370i
\(320\) −292.934 128.801i −0.915419 0.402502i
\(321\) 336.930 1.04963
\(322\) −109.549 56.9174i −0.340215 0.176762i
\(323\) 294.279 0.911081
\(324\) 292.022 + 415.645i 0.901303 + 1.28286i
\(325\) 288.158 61.1714i 0.886641 0.188220i
\(326\) 101.100 + 52.5272i 0.310121 + 0.161126i
\(327\) −164.822 −0.504044
\(328\) −28.8246 214.988i −0.0878797 0.655452i
\(329\) −108.494 −0.329770
\(330\) 162.634 70.8434i 0.492829 0.214677i
\(331\) 256.380i 0.774561i −0.921962 0.387280i \(-0.873415\pi\)
0.921962 0.387280i \(-0.126585\pi\)
\(332\) 5.98794 + 8.52285i 0.0180360 + 0.0256712i
\(333\) 94.6826i 0.284332i
\(334\) 396.593 + 206.054i 1.18740 + 0.616927i
\(335\) −386.099 312.740i −1.15253 0.933552i
\(336\) 58.9787 163.657i 0.175532 0.487075i
\(337\) 216.614i 0.642771i −0.946948 0.321386i \(-0.895851\pi\)
0.946948 0.321386i \(-0.104149\pi\)
\(338\) −53.5204 27.8070i −0.158344 0.0822693i
\(339\) 508.714i 1.50063i
\(340\) 190.483 + 13.0411i 0.560244 + 0.0383561i
\(341\) 152.275 0.446553
\(342\) 557.338 1072.71i 1.62964 3.13659i
\(343\) 190.812 0.556302
\(344\) 32.3673 + 241.412i 0.0940909 + 0.701778i
\(345\) −631.033 511.137i −1.82908 1.48156i
\(346\) −97.8740 + 188.379i −0.282873 + 0.544448i
\(347\) −374.740 −1.07994 −0.539971 0.841684i \(-0.681565\pi\)
−0.539971 + 0.841684i \(0.681565\pi\)
\(348\) 218.102 + 310.432i 0.626730 + 0.892046i
\(349\) 220.920 0.633008 0.316504 0.948591i \(-0.397491\pi\)
0.316504 + 0.948591i \(0.397491\pi\)
\(350\) −27.1095 + 97.9564i −0.0774557 + 0.279875i
\(351\) 668.540i 1.90467i
\(352\) 72.0116 + 77.9636i 0.204578 + 0.221488i
\(353\) 30.0188i 0.0850392i −0.999096 0.0425196i \(-0.986462\pi\)
0.999096 0.0425196i \(-0.0135385\pi\)
\(354\) −282.479 + 543.691i −0.797964 + 1.53585i
\(355\) 280.914 346.807i 0.791306 0.976922i
\(356\) 299.938 + 426.912i 0.842523 + 1.19919i
\(357\) 103.794i 0.290739i
\(358\) −19.9062 + 38.3137i −0.0556040 + 0.107021i
\(359\) 305.430i 0.850779i 0.905010 + 0.425390i \(0.139863\pi\)
−0.905010 + 0.425390i \(0.860137\pi\)
\(360\) 408.295 669.654i 1.13415 1.86015i
\(361\) −589.246 −1.63226
\(362\) 86.2353 + 44.8043i 0.238219 + 0.123769i
\(363\) −58.8348 −0.162079
\(364\) −78.3956 + 55.0788i −0.215373 + 0.151315i
\(365\) −79.7891 + 98.5051i −0.218600 + 0.269877i
\(366\) 797.473 + 414.334i 2.17889 + 1.13206i
\(367\) 556.329 1.51588 0.757941 0.652323i \(-0.226205\pi\)
0.757941 + 0.652323i \(0.226205\pi\)
\(368\) 164.721 457.076i 0.447612 1.24206i
\(369\) 531.644 1.44077
\(370\) −44.2706 + 19.2843i −0.119650 + 0.0521198i
\(371\) 60.4830i 0.163027i
\(372\) 803.737 564.686i 2.16058 1.51797i
\(373\) 617.259i 1.65485i 0.561577 + 0.827425i \(0.310195\pi\)
−0.561577 + 0.827425i \(0.689805\pi\)
\(374\) −56.1922 29.1951i −0.150246 0.0780619i
\(375\) −303.761 + 595.588i −0.810029 + 1.58824i
\(376\) −56.7398 423.195i −0.150904 1.12552i
\(377\) 208.952i 0.554249i
\(378\) 204.687 + 106.347i 0.541500 + 0.281341i
\(379\) 81.9364i 0.216191i −0.994141 0.108096i \(-0.965525\pi\)
0.994141 0.108096i \(-0.0344753\pi\)
\(380\) −615.081 42.1104i −1.61864 0.110817i
\(381\) 186.442 0.489348
\(382\) 79.0693 152.185i 0.206988 0.398391i
\(383\) 244.150 0.637468 0.318734 0.947844i \(-0.396742\pi\)
0.318734 + 0.947844i \(0.396742\pi\)
\(384\) 669.208 + 144.465i 1.74273 + 0.376210i
\(385\) 21.2176 26.1946i 0.0551106 0.0680378i
\(386\) 276.205 531.615i 0.715558 1.37724i
\(387\) −596.987 −1.54260
\(388\) −377.191 + 265.005i −0.972140 + 0.683002i
\(389\) 30.6854 0.0788827 0.0394413 0.999222i \(-0.487442\pi\)
0.0394413 + 0.999222i \(0.487442\pi\)
\(390\) −577.799 + 251.690i −1.48154 + 0.645359i
\(391\) 289.885i 0.741393i
\(392\) 47.6984 + 355.759i 0.121680 + 0.907550i
\(393\) 734.825i 1.86978i
\(394\) −33.2933 + 64.0800i −0.0845009 + 0.162640i
\(395\) −227.505 + 280.870i −0.575961 + 0.711064i
\(396\) −212.846 + 149.540i −0.537489 + 0.377627i
\(397\) 546.758i 1.37723i 0.725129 + 0.688613i \(0.241780\pi\)
−0.725129 + 0.688613i \(0.758220\pi\)
\(398\) 53.7209 103.397i 0.134977 0.259792i
\(399\) 335.157i 0.839992i
\(400\) −396.268 54.5150i −0.990669 0.136288i
\(401\) −747.604 −1.86435 −0.932175 0.362009i \(-0.882091\pi\)
−0.932175 + 0.362009i \(0.882091\pi\)
\(402\) 943.303 + 490.102i 2.34653 + 1.21916i
\(403\) −540.996 −1.34242
\(404\) −401.716 571.777i −0.994347 1.41529i
\(405\) 493.411 + 399.663i 1.21830 + 0.986822i
\(406\) 63.9749 + 33.2388i 0.157574 + 0.0818688i
\(407\) 16.0154 0.0393500
\(408\) −404.859 + 54.2815i −0.992302 + 0.133043i
\(409\) 193.274 0.472553 0.236276 0.971686i \(-0.424073\pi\)
0.236276 + 0.971686i \(0.424073\pi\)
\(410\) −108.282 248.580i −0.264102 0.606293i
\(411\) 998.777i 2.43011i
\(412\) 3.39809 + 4.83662i 0.00824779 + 0.0117394i
\(413\) 116.429i 0.281910i
\(414\) 1056.69 + 549.015i 2.55240 + 1.32612i
\(415\) 10.1174 + 8.19512i 0.0243794 + 0.0197473i
\(416\) −255.840 276.986i −0.615001 0.665833i
\(417\) 706.017i 1.69309i
\(418\) 181.448 + 94.2730i 0.434087 + 0.225534i
\(419\) 377.567i 0.901113i 0.892748 + 0.450557i \(0.148774\pi\)
−0.892748 + 0.450557i \(0.851226\pi\)
\(420\) 14.8526 216.942i 0.0353632 0.516529i
\(421\) −157.158 −0.373296 −0.186648 0.982427i \(-0.559762\pi\)
−0.186648 + 0.982427i \(0.559762\pi\)
\(422\) −12.6913 + 24.4270i −0.0300741 + 0.0578839i
\(423\) 1046.52 2.47404
\(424\) −235.921 + 31.6311i −0.556417 + 0.0746016i
\(425\) 233.459 49.5595i 0.549314 0.116611i
\(426\) −440.226 + 847.308i −1.03340 + 1.98899i
\(427\) 170.775 0.399941
\(428\) 144.855 + 206.177i 0.338445 + 0.481721i
\(429\) 209.026 0.487241
\(430\) 121.590 + 279.132i 0.282768 + 0.649144i
\(431\) 537.566i 1.24725i −0.781722 0.623627i \(-0.785659\pi\)
0.781722 0.623627i \(-0.214341\pi\)
\(432\) −307.773 + 854.023i −0.712437 + 1.97690i
\(433\) 94.9800i 0.219353i 0.993967 + 0.109677i \(0.0349815\pi\)
−0.993967 + 0.109677i \(0.965018\pi\)
\(434\) 86.0582 165.637i 0.198291 0.381652i
\(435\) 368.513 + 298.495i 0.847155 + 0.686196i
\(436\) −70.8612 100.859i −0.162526 0.231329i
\(437\) 936.056i 2.14200i
\(438\) 125.039 240.664i 0.285478 0.549462i
\(439\) 317.809i 0.723939i 0.932190 + 0.361969i \(0.117896\pi\)
−0.932190 + 0.361969i \(0.882104\pi\)
\(440\) 113.271 + 69.0626i 0.257435 + 0.156960i
\(441\) −879.757 −1.99491
\(442\) 199.638 + 103.723i 0.451669 + 0.234668i
\(443\) 259.822 0.586505 0.293253 0.956035i \(-0.405262\pi\)
0.293253 + 0.956035i \(0.405262\pi\)
\(444\) 84.5328 59.3907i 0.190389 0.133763i
\(445\) 506.786 + 410.496i 1.13884 + 0.922464i
\(446\) −39.4150 20.4784i −0.0883744 0.0459157i
\(447\) 46.3679 0.103731
\(448\) 125.503 34.2695i 0.280140 0.0764945i
\(449\) −384.329 −0.855967 −0.427983 0.903787i \(-0.640776\pi\)
−0.427983 + 0.903787i \(0.640776\pi\)
\(450\) 261.494 944.870i 0.581097 2.09971i
\(451\) 89.9270i 0.199395i
\(452\) −311.295 + 218.708i −0.688707 + 0.483868i
\(453\) 1303.92i 2.87841i
\(454\) −682.303 354.496i −1.50287 0.780829i
\(455\) −75.3811 + 93.0631i −0.165673 + 0.204534i
\(456\) 1307.32 175.279i 2.86692 0.384383i
\(457\) 310.420i 0.679257i −0.940560 0.339628i \(-0.889699\pi\)
0.940560 0.339628i \(-0.110301\pi\)
\(458\) 61.1416 + 31.7666i 0.133497 + 0.0693595i
\(459\) 541.634i 1.18003i
\(460\) 41.4816 605.896i 0.0901774 1.31717i
\(461\) 683.902 1.48352 0.741760 0.670666i \(-0.233992\pi\)
0.741760 + 0.670666i \(0.233992\pi\)
\(462\) −33.2506 + 63.9977i −0.0719709 + 0.138523i
\(463\) −33.0667 −0.0714184 −0.0357092 0.999362i \(-0.511369\pi\)
−0.0357092 + 0.999362i \(0.511369\pi\)
\(464\) −96.1943 + 266.925i −0.207315 + 0.575269i
\(465\) 772.831 954.113i 1.66200 2.05186i
\(466\) −351.945 + 677.392i −0.755247 + 1.45363i
\(467\) −75.6470 −0.161985 −0.0809925 0.996715i \(-0.525809\pi\)
−0.0809925 + 0.996715i \(0.525809\pi\)
\(468\) 756.191 531.281i 1.61579 1.13522i
\(469\) 202.004 0.430712
\(470\) −213.148 489.318i −0.453505 1.04110i
\(471\) 1032.48i 2.19210i
\(472\) −454.143 + 60.8893i −0.962168 + 0.129003i
\(473\) 100.980i 0.213487i
\(474\) 356.528 686.213i 0.752169 1.44771i
\(475\) −753.853 + 160.031i −1.58706 + 0.336907i
\(476\) −63.5141 + 44.6235i −0.133433 + 0.0937468i
\(477\) 583.408i 1.22308i
\(478\) 91.3471 175.817i 0.191103 0.367817i
\(479\) 404.091i 0.843613i 0.906686 + 0.421807i \(0.138604\pi\)
−0.906686 + 0.421807i \(0.861396\pi\)
\(480\) 853.976 55.5213i 1.77912 0.115669i
\(481\) −56.8991 −0.118293
\(482\) −669.948 348.078i −1.38993 0.722153i
\(483\) 330.152 0.683544
\(484\) −25.2945 36.0026i −0.0522614 0.0743855i
\(485\) −362.686 + 447.761i −0.747807 + 0.923219i
\(486\) −299.241 155.474i −0.615723 0.319904i
\(487\) −627.374 −1.28824 −0.644121 0.764924i \(-0.722777\pi\)
−0.644121 + 0.764924i \(0.722777\pi\)
\(488\) 89.3110 + 666.127i 0.183014 + 1.36501i
\(489\) −304.686 −0.623080
\(490\) 179.183 + 411.346i 0.365680 + 0.839482i
\(491\) 38.9169i 0.0792605i −0.999214 0.0396303i \(-0.987382\pi\)
0.999214 0.0396303i \(-0.0126180\pi\)
\(492\) 333.480 + 474.653i 0.677804 + 0.964742i
\(493\) 169.288i 0.343382i
\(494\) −644.643 334.930i −1.30494 0.677996i
\(495\) −204.661 + 252.668i −0.413457 + 0.510441i
\(496\) 691.093 + 249.056i 1.39333 + 0.502129i
\(497\) 181.447i 0.365084i
\(498\) −24.7186 12.8428i −0.0496357 0.0257887i
\(499\) 938.302i 1.88037i 0.340671 + 0.940183i \(0.389346\pi\)
−0.340671 + 0.940183i \(0.610654\pi\)
\(500\) −495.050 + 70.1787i −0.990101 + 0.140357i
\(501\) −1195.22 −2.38567
\(502\) 123.228 237.178i 0.245474 0.472465i
\(503\) 389.029 0.773417 0.386708 0.922202i \(-0.373612\pi\)
0.386708 + 0.922202i \(0.373612\pi\)
\(504\) 42.3725 + 316.036i 0.0840725 + 0.627056i
\(505\) −678.753 549.790i −1.34407 1.08869i
\(506\) −92.8652 + 178.739i −0.183528 + 0.353238i
\(507\) 161.296 0.318138
\(508\) 80.1558 + 114.089i 0.157787 + 0.224584i
\(509\) 228.649 0.449212 0.224606 0.974450i \(-0.427891\pi\)
0.224606 + 0.974450i \(0.427891\pi\)
\(510\) −468.118 + 203.913i −0.917879 + 0.399829i
\(511\) 51.5371i 0.100855i
\(512\) 199.307 + 471.615i 0.389271 + 0.921123i
\(513\) 1748.97i 3.40930i
\(514\) 312.730 601.914i 0.608423 1.17104i
\(515\) 5.74153 + 4.65064i 0.0111486 + 0.00903036i
\(516\) −374.466 532.991i −0.725710 1.03293i
\(517\) 177.017i 0.342393i
\(518\) 9.05115 17.4208i 0.0174733 0.0336309i
\(519\) 567.722i 1.09388i
\(520\) −402.426 245.363i −0.773896 0.471852i
\(521\) 305.011 0.585433 0.292717 0.956199i \(-0.405441\pi\)
0.292717 + 0.956199i \(0.405441\pi\)
\(522\) −617.091 320.615i −1.18217 0.614205i
\(523\) 83.9819 0.160577 0.0802886 0.996772i \(-0.474416\pi\)
0.0802886 + 0.996772i \(0.474416\pi\)
\(524\) −449.659 + 315.919i −0.858128 + 0.602900i
\(525\) −56.4437 265.888i −0.107512 0.506453i
\(526\) −67.9958 35.3278i −0.129269 0.0671631i
\(527\) −438.301 −0.831691
\(528\) −267.020 96.2285i −0.505719 0.182251i
\(529\) 393.078 0.743058
\(530\) −272.783 + 118.825i −0.514685 + 0.224198i
\(531\) 1123.05i 2.11497i
\(532\) 205.091 144.092i 0.385510 0.270850i
\(533\) 319.489i 0.599417i
\(534\) −1238.16 643.298i −2.31866 1.20468i
\(535\) 244.751 + 198.249i 0.457479 + 0.370558i
\(536\) 105.643 + 787.939i 0.197095 + 1.47004i
\(537\) 115.467i 0.215022i
\(538\) −747.831 388.542i −1.39002 0.722197i
\(539\) 148.810i 0.276085i
\(540\) −77.5061 + 1132.08i −0.143530 + 2.09645i
\(541\) 288.261 0.532829 0.266415 0.963859i \(-0.414161\pi\)
0.266415 + 0.963859i \(0.414161\pi\)
\(542\) −303.283 + 583.732i −0.559563 + 1.07700i
\(543\) −259.889 −0.478618
\(544\) −207.275 224.407i −0.381021 0.412513i
\(545\) −119.730 96.9809i −0.219687 0.177947i
\(546\) 118.131 227.369i 0.216358 0.416426i
\(547\) 864.578 1.58058 0.790291 0.612732i \(-0.209929\pi\)
0.790291 + 0.612732i \(0.209929\pi\)
\(548\) 611.178 429.399i 1.11529 0.783574i
\(549\) −1647.26 −3.00048
\(550\) 159.824 + 44.2313i 0.290588 + 0.0804206i
\(551\) 546.641i 0.992088i
\(552\) 172.661 + 1287.79i 0.312792 + 2.33296i
\(553\) 146.949i 0.265731i
\(554\) 437.151 841.389i 0.789081 1.51875i
\(555\) 81.2823 100.349i 0.146455 0.180808i
\(556\) 432.030 303.534i 0.777033 0.545924i
\(557\) 773.354i 1.38843i 0.719769 + 0.694213i \(0.244248\pi\)
−0.719769 + 0.694213i \(0.755752\pi\)
\(558\) −830.102 + 1597.71i −1.48764 + 2.86327i
\(559\) 358.757i 0.641783i
\(560\) 139.138 84.1801i 0.248461 0.150322i
\(561\) 169.348 0.301868
\(562\) −544.870 283.092i −0.969519 0.503722i
\(563\) 99.7068 0.177099 0.0885496 0.996072i \(-0.471777\pi\)
0.0885496 + 0.996072i \(0.471777\pi\)
\(564\) 656.439 + 934.333i 1.16390 + 1.65662i
\(565\) −299.325 + 369.537i −0.529779 + 0.654048i
\(566\) 248.877 + 129.306i 0.439712 + 0.228456i
\(567\) −258.149 −0.455289
\(568\) −707.754 + 94.8921i −1.24605 + 0.167064i
\(569\) −792.233 −1.39233 −0.696163 0.717884i \(-0.745111\pi\)
−0.696163 + 0.717884i \(0.745111\pi\)
\(570\) 1511.58 658.448i 2.65190 1.15517i
\(571\) 576.323i 1.00932i −0.863317 0.504661i \(-0.831617\pi\)
0.863317 0.504661i \(-0.168383\pi\)
\(572\) 89.8655 + 127.909i 0.157108 + 0.223617i
\(573\) 458.645i 0.800427i
\(574\) 97.8182 + 50.8223i 0.170415 + 0.0885407i
\(575\) −157.641 742.595i −0.274159 1.29147i
\(576\) −1210.58 + 330.558i −2.10169 + 0.573885i
\(577\) 323.574i 0.560787i −0.959885 0.280393i \(-0.909535\pi\)
0.959885 0.280393i \(-0.0904649\pi\)
\(578\) −351.163 182.450i −0.607548 0.315657i
\(579\) 1602.14i 2.76708i
\(580\) −24.2245 + 353.833i −0.0417664 + 0.610057i
\(581\) −5.29336 −0.00911078
\(582\) 568.374 1093.96i 0.976588 1.87965i
\(583\) 98.6828 0.169267
\(584\) 201.026 26.9526i 0.344223 0.0461517i
\(585\) 727.113 897.670i 1.24293 1.53448i
\(586\) 10.7812 20.7508i 0.0183980 0.0354109i
\(587\) −719.163 −1.22515 −0.612575 0.790412i \(-0.709866\pi\)
−0.612575 + 0.790412i \(0.709866\pi\)
\(588\) −551.837 785.449i −0.938499 1.33580i
\(589\) 1415.30 2.40289
\(590\) −525.103 + 228.735i −0.890005 + 0.387687i
\(591\) 193.119i 0.326767i
\(592\) 72.6855 + 26.1944i 0.122780 + 0.0442473i
\(593\) 333.756i 0.562826i 0.959587 + 0.281413i \(0.0908030\pi\)
−0.959587 + 0.281413i \(0.909197\pi\)
\(594\) 173.514 333.963i 0.292111 0.562228i
\(595\) −61.0718 + 75.3973i −0.102642 + 0.126718i
\(596\) 19.9347 + 28.3737i 0.0334475 + 0.0476070i
\(597\) 311.610i 0.521960i
\(598\) 329.928 635.016i 0.551719 1.06190i
\(599\) 997.885i 1.66592i −0.553334 0.832959i \(-0.686645\pi\)
0.553334 0.832959i \(-0.313355\pi\)
\(600\) 1007.61 359.218i 1.67934 0.598697i
\(601\) −32.8441 −0.0546491 −0.0273245 0.999627i \(-0.508699\pi\)
−0.0273245 + 0.999627i \(0.508699\pi\)
\(602\) −109.841 57.0687i −0.182460 0.0947985i
\(603\) −1948.49 −3.23133
\(604\) 797.904 560.587i 1.32103 0.928125i
\(605\) −42.7385 34.6182i −0.0706422 0.0572202i
\(606\) 1658.31 + 861.589i 2.73648 + 1.42176i
\(607\) 211.332 0.348157 0.174079 0.984732i \(-0.444305\pi\)
0.174079 + 0.984732i \(0.444305\pi\)
\(608\) 669.305 + 724.626i 1.10083 + 1.19182i
\(609\) −192.803 −0.316589
\(610\) 335.504 + 770.209i 0.550006 + 1.26264i
\(611\) 628.900i 1.02930i
\(612\) 612.646 430.430i 1.00106 0.703317i
\(613\) 798.912i 1.30328i −0.758527 0.651641i \(-0.774081\pi\)
0.758527 0.651641i \(-0.225919\pi\)
\(614\) −635.245 330.047i −1.03460 0.537536i
\(615\) 563.459 + 456.402i 0.916193 + 0.742116i
\(616\) −53.4571 + 7.16726i −0.0867810 + 0.0116352i
\(617\) 336.733i 0.545758i −0.962048 0.272879i \(-0.912024\pi\)
0.962048 0.272879i \(-0.0879759\pi\)
\(618\) −14.0275 7.28812i −0.0226982 0.0117931i
\(619\) 282.352i 0.456143i 0.973644 + 0.228071i \(0.0732419\pi\)
−0.973644 + 0.228071i \(0.926758\pi\)
\(620\) 916.106 + 62.7195i 1.47759 + 0.101161i
\(621\) −1722.85 −2.77432
\(622\) 219.224 421.942i 0.352450 0.678363i
\(623\) −265.146 −0.425596
\(624\) 948.658 + 341.877i 1.52028 + 0.547880i
\(625\) −571.098 + 253.913i −0.913757 + 0.406260i
\(626\) −206.677 + 397.794i −0.330156 + 0.635454i
\(627\) −546.835 −0.872145
\(628\) −631.802 + 443.889i −1.00605 + 0.706829i
\(629\) −46.0982 −0.0732881
\(630\) 159.176 + 365.416i 0.252660 + 0.580026i
\(631\) 97.5847i 0.154651i −0.997006 0.0773254i \(-0.975362\pi\)
0.997006 0.0773254i \(-0.0246380\pi\)
\(632\) 573.192 76.8507i 0.906949 0.121599i
\(633\) 73.6162i 0.116297i
\(634\) −50.6242 + 97.4369i −0.0798489 + 0.153686i
\(635\) 135.434 + 109.702i 0.213282 + 0.172758i
\(636\) 520.868 365.949i 0.818976 0.575392i
\(637\) 528.686i 0.829963i
\(638\) 54.2317 104.380i 0.0850026 0.163605i
\(639\) 1750.20i 2.73897i
\(640\) 401.120 + 498.701i 0.626750 + 0.779220i
\(641\) 230.322 0.359316 0.179658 0.983729i \(-0.442501\pi\)
0.179658 + 0.983729i \(0.442501\pi\)
\(642\) −597.968 310.680i −0.931415 0.483925i
\(643\) 313.342 0.487312 0.243656 0.969862i \(-0.421653\pi\)
0.243656 + 0.969862i \(0.421653\pi\)
\(644\) 141.940 + 202.029i 0.220404 + 0.313709i
\(645\) −632.711 512.496i −0.980948 0.794568i
\(646\) −522.273 271.352i −0.808472 0.420049i
\(647\) 156.535 0.241939 0.120970 0.992656i \(-0.461400\pi\)
0.120970 + 0.992656i \(0.461400\pi\)
\(648\) −135.005 1006.94i −0.208342 1.55392i
\(649\) 189.963 0.292701
\(650\) −567.816 157.143i −0.873563 0.241759i
\(651\) 499.184i 0.766796i
\(652\) −130.992 186.446i −0.200908 0.285959i
\(653\) 297.130i 0.455023i 0.973775 + 0.227511i \(0.0730589\pi\)
−0.973775 + 0.227511i \(0.926941\pi\)
\(654\) 292.519 + 151.981i 0.447277 + 0.232387i
\(655\) −432.369 + 533.788i −0.660105 + 0.814944i
\(656\) −147.082 + 408.130i −0.224210 + 0.622150i
\(657\) 497.118i 0.756648i
\(658\) 192.551 + 100.041i 0.292630 + 0.152039i
\(659\) 485.210i 0.736281i 0.929770 + 0.368141i \(0.120006\pi\)
−0.929770 + 0.368141i \(0.879994\pi\)
\(660\) −353.959 24.2331i −0.536301 0.0367169i
\(661\) −555.193 −0.839928 −0.419964 0.907541i \(-0.637957\pi\)
−0.419964 + 0.907541i \(0.637957\pi\)
\(662\) −236.405 + 455.011i −0.357107 + 0.687327i
\(663\) −601.653 −0.907470
\(664\) −2.76830 20.6474i −0.00416912 0.0310954i
\(665\) 197.205 243.463i 0.296549 0.366110i
\(666\) −87.3058 + 168.038i −0.131090 + 0.252310i
\(667\) −538.477 −0.807312
\(668\) −513.856 731.389i −0.769245 1.09489i
\(669\) 118.786 0.177557
\(670\) 396.856 + 911.053i 0.592322 + 1.35978i
\(671\) 278.633i 0.415250i
\(672\) −255.579 + 236.067i −0.380326 + 0.351291i
\(673\) 389.279i 0.578423i 0.957265 + 0.289211i \(0.0933931\pi\)
−0.957265 + 0.289211i \(0.906607\pi\)
\(674\) −199.737 + 384.436i −0.296346 + 0.570380i
\(675\) 294.544 + 1387.50i 0.436362 + 2.05555i
\(676\) 69.3450 + 98.7012i 0.102581 + 0.146008i
\(677\) 110.415i 0.163095i −0.996669 0.0815475i \(-0.974014\pi\)
0.996669 0.0815475i \(-0.0259862\pi\)
\(678\) 469.079 902.841i 0.691857 1.33162i
\(679\) 234.265i 0.345015i
\(680\) −326.035 198.787i −0.479463 0.292334i
\(681\) 2056.27 3.01949
\(682\) −270.250 140.411i −0.396261 0.205881i
\(683\) 725.394 1.06207 0.531035 0.847350i \(-0.321803\pi\)
0.531035 + 0.847350i \(0.321803\pi\)
\(684\) −1978.27 + 1389.89i −2.89221 + 2.03200i
\(685\) 587.677 725.527i 0.857922 1.05916i
\(686\) −338.644 175.945i −0.493650 0.256480i
\(687\) −184.264 −0.268215
\(688\) 165.159 458.292i 0.240057 0.666122i
\(689\) −350.597 −0.508849
\(690\) 648.615 + 1489.01i 0.940022 + 2.15799i
\(691\) 1160.43i 1.67935i −0.543093 0.839673i \(-0.682747\pi\)
0.543093 0.839673i \(-0.317253\pi\)
\(692\) 347.404 244.078i 0.502030 0.352714i
\(693\) 132.194i 0.190756i
\(694\) 665.071 + 345.543i 0.958315 + 0.497901i
\(695\) 415.418 512.861i 0.597723 0.737930i
\(696\) −100.831 752.050i −0.144872 1.08053i
\(697\) 258.842i 0.371366i
\(698\) −392.078 203.708i −0.561717 0.291845i
\(699\) 2041.47i 2.92056i
\(700\) 138.437 148.851i 0.197767 0.212644i
\(701\) −338.309 −0.482610 −0.241305 0.970449i \(-0.577575\pi\)
−0.241305 + 0.970449i \(0.577575\pi\)
\(702\) −616.453 + 1186.49i −0.878138 + 1.69016i
\(703\) 148.854 0.211741
\(704\) −55.9135 204.767i −0.0794225 0.290863i
\(705\) 1109.14 + 898.405i 1.57325 + 1.27433i
\(706\) −27.6800 + 53.2760i −0.0392068 + 0.0754618i
\(707\) 355.118 0.502289
\(708\) 1002.66 704.446i 1.41619 0.994980i
\(709\) −320.852 −0.452542 −0.226271 0.974064i \(-0.572654\pi\)
−0.226271 + 0.974064i \(0.572654\pi\)
\(710\) −818.340 + 356.470i −1.15259 + 0.502070i
\(711\) 1417.44i 1.99359i
\(712\) −138.665 1034.23i −0.194754 1.45258i
\(713\) 1394.17i 1.95535i
\(714\) 95.7071 184.208i 0.134044 0.257995i
\(715\) 151.840 + 122.990i 0.212363 + 0.172014i
\(716\) 70.6573 49.6421i 0.0986834 0.0693325i
\(717\) 529.863i 0.739000i
\(718\) 281.634 542.063i 0.392247 0.754962i
\(719\) 202.700i 0.281919i 0.990015 + 0.140959i \(0.0450187\pi\)
−0.990015 + 0.140959i \(0.954981\pi\)
\(720\) −1342.10 + 811.987i −1.86403 + 1.12776i
\(721\) −3.00392 −0.00416633
\(722\) 1045.77 + 543.338i 1.44843 + 0.752545i
\(723\) 2019.04 2.79259
\(724\) −111.733 159.033i −0.154327 0.219659i
\(725\) 92.0597 + 433.663i 0.126979 + 0.598156i
\(726\) 104.417 + 54.2510i 0.143826 + 0.0747258i
\(727\) 231.020 0.317772 0.158886 0.987297i \(-0.449210\pi\)
0.158886 + 0.987297i \(0.449210\pi\)
\(728\) 189.921 25.4636i 0.260880 0.0349775i
\(729\) −241.112 −0.330743
\(730\) 232.437 101.250i 0.318406 0.138698i
\(731\) 290.655i 0.397613i
\(732\) −1033.26 1470.68i −1.41156 2.00913i
\(733\) 1059.05i 1.44482i −0.691466 0.722409i \(-0.743035\pi\)
0.691466 0.722409i \(-0.256965\pi\)
\(734\) −987.347 512.985i −1.34516 0.698890i
\(735\) −932.403 755.246i −1.26858 1.02755i
\(736\) −713.805 + 659.310i −0.969843 + 0.895802i
\(737\) 329.585i 0.447198i
\(738\) −943.538 490.223i −1.27851 0.664259i
\(739\) 1024.26i 1.38601i 0.720935 + 0.693003i \(0.243713\pi\)
−0.720935 + 0.693003i \(0.756287\pi\)
\(740\) 96.3512 + 6.59651i 0.130204 + 0.00891420i
\(741\) 1942.78 2.62183
\(742\) 55.7707 107.342i 0.0751627 0.144666i
\(743\) −476.832 −0.641766 −0.320883 0.947119i \(-0.603980\pi\)
−0.320883 + 0.947119i \(0.603980\pi\)
\(744\) −1947.13 + 261.061i −2.61711 + 0.350888i
\(745\) 33.6823 + 27.2827i 0.0452112 + 0.0366211i
\(746\) 569.168 1095.48i 0.762959 1.46848i
\(747\) 51.0588 0.0683519
\(748\) 72.8067 + 103.628i 0.0973352 + 0.138541i
\(749\) −128.052 −0.170964
\(750\) 1088.29 776.928i 1.45105 1.03590i
\(751\) 381.504i 0.507995i 0.967205 + 0.253998i \(0.0817455\pi\)
−0.967205 + 0.253998i \(0.918254\pi\)
\(752\) −289.524 + 803.385i −0.385005 + 1.06833i
\(753\) 714.788i 0.949254i
\(754\) −192.672 + 370.838i −0.255534 + 0.491828i
\(755\) 767.222 947.188i 1.01619 1.25455i
\(756\) −265.208 377.480i −0.350804 0.499312i
\(757\) 149.082i 0.196938i −0.995140 0.0984689i \(-0.968606\pi\)
0.995140 0.0984689i \(-0.0313945\pi\)
\(758\) −75.5527 + 145.417i −0.0996738 + 0.191843i
\(759\) 538.669i 0.709709i
\(760\) 1052.79 + 641.896i 1.38525 + 0.844600i
\(761\) −32.8053 −0.0431082 −0.0215541 0.999768i \(-0.506861\pi\)
−0.0215541 + 0.999768i \(0.506861\pi\)
\(762\) −330.888 171.916i −0.434236 0.225611i
\(763\) 62.6416 0.0820990
\(764\) −280.657 + 197.183i −0.367352 + 0.258092i
\(765\) 589.088 727.270i 0.770050 0.950679i
\(766\) −433.306 225.128i −0.565674 0.293901i
\(767\) −674.893 −0.879912
\(768\) −1054.47 873.459i −1.37301 1.13732i
\(769\) 463.563 0.602812 0.301406 0.953496i \(-0.402544\pi\)
0.301406 + 0.953496i \(0.402544\pi\)
\(770\) −61.8097 + 26.9244i −0.0802724 + 0.0349667i
\(771\) 1814.00i 2.35279i
\(772\) −980.393 + 688.800i −1.26994 + 0.892228i
\(773\) 775.141i 1.00277i 0.865224 + 0.501385i \(0.167176\pi\)
−0.865224 + 0.501385i \(0.832824\pi\)
\(774\) 1059.50 + 550.475i 1.36887 + 0.711208i
\(775\) 1122.79 238.351i 1.44876