Properties

Label 220.3.h.a.199.7
Level $220$
Weight $3$
Character 220.199
Analytic conductor $5.995$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(199,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.199");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.7
Character \(\chi\) \(=\) 220.199
Dual form 220.3.h.a.199.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.80241 - 0.866788i) q^{2} -2.17924 q^{3} +(2.49736 + 3.12461i) q^{4} +(4.97895 + 0.458348i) q^{5} +(3.92787 + 1.88893i) q^{6} +1.79794 q^{7} +(-1.79289 - 7.79651i) q^{8} -4.25093 q^{9} +(-8.57681 - 5.14182i) q^{10} +3.31662i q^{11} +(-5.44233 - 6.80927i) q^{12} +8.71425i q^{13} +(-3.24062 - 1.55843i) q^{14} +(-10.8503 - 0.998848i) q^{15} +(-3.52640 + 15.6066i) q^{16} +14.4238i q^{17} +(7.66192 + 3.68466i) q^{18} -9.47058i q^{19} +(11.0021 + 16.7019i) q^{20} -3.91813 q^{21} +(2.87481 - 5.97792i) q^{22} +24.9253 q^{23} +(3.90712 + 16.9904i) q^{24} +(24.5798 + 4.56418i) q^{25} +(7.55340 - 15.7066i) q^{26} +28.8769 q^{27} +(4.49010 + 5.61786i) q^{28} +17.4712 q^{29} +(18.6909 + 11.2052i) q^{30} +52.1631i q^{31} +(19.8836 - 25.0727i) q^{32} -7.22771i q^{33} +(12.5024 - 25.9977i) q^{34} +(8.95184 + 0.824081i) q^{35} +(-10.6161 - 13.2825i) q^{36} +38.4324i q^{37} +(-8.20898 + 17.0699i) q^{38} -18.9904i q^{39} +(-5.35317 - 39.6402i) q^{40} +32.3568 q^{41} +(7.06208 + 3.39619i) q^{42} -29.7743 q^{43} +(-10.3632 + 8.28280i) q^{44} +(-21.1652 - 1.94840i) q^{45} +(-44.9255 - 21.6049i) q^{46} +50.4820 q^{47} +(7.68487 - 34.0104i) q^{48} -45.7674 q^{49} +(-40.3467 - 29.5320i) q^{50} -31.4330i q^{51} +(-27.2286 + 21.7626i) q^{52} +84.9022i q^{53} +(-52.0480 - 25.0301i) q^{54} +(-1.52017 + 16.5133i) q^{55} +(-3.22350 - 14.0176i) q^{56} +20.6386i q^{57} +(-31.4902 - 15.1438i) q^{58} -14.3540i q^{59} +(-23.9761 - 36.3975i) q^{60} +15.8302 q^{61} +(45.2143 - 94.0192i) q^{62} -7.64291 q^{63} +(-57.5711 + 27.9565i) q^{64} +(-3.99415 + 43.3878i) q^{65} +(-6.26489 + 13.0273i) q^{66} +25.5295 q^{67} +(-45.0689 + 36.0215i) q^{68} -54.3180 q^{69} +(-15.4206 - 9.24468i) q^{70} +43.8755i q^{71} +(7.62144 + 33.1424i) q^{72} -106.971i q^{73} +(33.3127 - 69.2708i) q^{74} +(-53.5653 - 9.94642i) q^{75} +(29.5919 - 23.6514i) q^{76} +5.96309i q^{77} +(-16.4606 + 34.2285i) q^{78} -109.043i q^{79} +(-24.7110 + 76.0879i) q^{80} -24.6712 q^{81} +(-58.3202 - 28.0465i) q^{82} -11.4695 q^{83} +(-9.78498 - 12.2426i) q^{84} +(-6.61113 + 71.8156i) q^{85} +(53.6654 + 25.8080i) q^{86} -38.0738 q^{87} +(25.8581 - 5.94633i) q^{88} -74.3785 q^{89} +(36.4594 + 21.8575i) q^{90} +15.6677i q^{91} +(62.2473 + 77.8818i) q^{92} -113.676i q^{93} +(-90.9892 - 43.7572i) q^{94} +(4.34082 - 47.1535i) q^{95} +(-43.3310 + 54.6394i) q^{96} +7.94927i q^{97} +(82.4916 + 39.6706i) q^{98} -14.0987i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 4 q^{4} + 4 q^{5} + 12 q^{6} + 180 q^{9} - 18 q^{10} - 56 q^{14} - 40 q^{16} + 84 q^{20} - 16 q^{21} + 104 q^{24} - 60 q^{25} + 28 q^{26} - 88 q^{29} - 166 q^{30} - 152 q^{34} - 248 q^{36} + 132 q^{40}+ \cdots + 216 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80241 0.866788i −0.901205 0.433394i
\(3\) −2.17924 −0.726412 −0.363206 0.931709i \(-0.618318\pi\)
−0.363206 + 0.931709i \(0.618318\pi\)
\(4\) 2.49736 + 3.12461i 0.624340 + 0.781153i
\(5\) 4.97895 + 0.458348i 0.995789 + 0.0916695i
\(6\) 3.92787 + 1.88893i 0.654646 + 0.314822i
\(7\) 1.79794 0.256848 0.128424 0.991719i \(-0.459008\pi\)
0.128424 + 0.991719i \(0.459008\pi\)
\(8\) −1.79289 7.79651i −0.224111 0.974564i
\(9\) −4.25093 −0.472326
\(10\) −8.57681 5.14182i −0.857681 0.514182i
\(11\) 3.31662i 0.301511i
\(12\) −5.44233 6.80927i −0.453528 0.567439i
\(13\) 8.71425i 0.670327i 0.942160 + 0.335163i \(0.108791\pi\)
−0.942160 + 0.335163i \(0.891209\pi\)
\(14\) −3.24062 1.55843i −0.231473 0.111316i
\(15\) −10.8503 0.998848i −0.723353 0.0665898i
\(16\) −3.52640 + 15.6066i −0.220400 + 0.975410i
\(17\) 14.4238i 0.848461i 0.905554 + 0.424231i \(0.139455\pi\)
−0.905554 + 0.424231i \(0.860545\pi\)
\(18\) 7.66192 + 3.68466i 0.425662 + 0.204703i
\(19\) 9.47058i 0.498452i −0.968445 0.249226i \(-0.919824\pi\)
0.968445 0.249226i \(-0.0801761\pi\)
\(20\) 11.0021 + 16.7019i 0.550103 + 0.835097i
\(21\) −3.91813 −0.186578
\(22\) 2.87481 5.97792i 0.130673 0.271723i
\(23\) 24.9253 1.08371 0.541853 0.840473i \(-0.317723\pi\)
0.541853 + 0.840473i \(0.317723\pi\)
\(24\) 3.90712 + 16.9904i 0.162797 + 0.707935i
\(25\) 24.5798 + 4.56418i 0.983193 + 0.182567i
\(26\) 7.55340 15.7066i 0.290515 0.604101i
\(27\) 28.8769 1.06951
\(28\) 4.49010 + 5.61786i 0.160361 + 0.200638i
\(29\) 17.4712 0.602454 0.301227 0.953552i \(-0.402604\pi\)
0.301227 + 0.953552i \(0.402604\pi\)
\(30\) 18.6909 + 11.2052i 0.623030 + 0.373508i
\(31\) 52.1631i 1.68268i 0.540506 + 0.841340i \(0.318233\pi\)
−0.540506 + 0.841340i \(0.681767\pi\)
\(32\) 19.8836 25.0727i 0.621362 0.783523i
\(33\) 7.22771i 0.219021i
\(34\) 12.5024 25.9977i 0.367718 0.764637i
\(35\) 8.95184 + 0.824081i 0.255767 + 0.0235452i
\(36\) −10.6161 13.2825i −0.294892 0.368959i
\(37\) 38.4324i 1.03871i 0.854558 + 0.519356i \(0.173828\pi\)
−0.854558 + 0.519356i \(0.826172\pi\)
\(38\) −8.20898 + 17.0699i −0.216026 + 0.449207i
\(39\) 18.9904i 0.486933i
\(40\) −5.35317 39.6402i −0.133829 0.991004i
\(41\) 32.3568 0.789191 0.394595 0.918855i \(-0.370885\pi\)
0.394595 + 0.918855i \(0.370885\pi\)
\(42\) 7.06208 + 3.39619i 0.168145 + 0.0808616i
\(43\) −29.7743 −0.692425 −0.346212 0.938156i \(-0.612532\pi\)
−0.346212 + 0.938156i \(0.612532\pi\)
\(44\) −10.3632 + 8.28280i −0.235527 + 0.188245i
\(45\) −21.1652 1.94840i −0.470337 0.0432979i
\(46\) −44.9255 21.6049i −0.976642 0.469672i
\(47\) 50.4820 1.07408 0.537042 0.843555i \(-0.319542\pi\)
0.537042 + 0.843555i \(0.319542\pi\)
\(48\) 7.68487 34.0104i 0.160101 0.708549i
\(49\) −45.7674 −0.934029
\(50\) −40.3467 29.5320i −0.806935 0.590640i
\(51\) 31.4330i 0.616332i
\(52\) −27.2286 + 21.7626i −0.523628 + 0.418511i
\(53\) 84.9022i 1.60193i 0.598712 + 0.800964i \(0.295679\pi\)
−0.598712 + 0.800964i \(0.704321\pi\)
\(54\) −52.0480 25.0301i −0.963852 0.463521i
\(55\) −1.52017 + 16.5133i −0.0276394 + 0.300242i
\(56\) −3.22350 14.0176i −0.0575625 0.250315i
\(57\) 20.6386i 0.362081i
\(58\) −31.4902 15.1438i −0.542935 0.261100i
\(59\) 14.3540i 0.243289i −0.992574 0.121644i \(-0.961183\pi\)
0.992574 0.121644i \(-0.0388168\pi\)
\(60\) −23.9761 36.3975i −0.399601 0.606624i
\(61\) 15.8302 0.259511 0.129756 0.991546i \(-0.458581\pi\)
0.129756 + 0.991546i \(0.458581\pi\)
\(62\) 45.2143 94.0192i 0.729263 1.51644i
\(63\) −7.64291 −0.121316
\(64\) −57.5711 + 27.9565i −0.899549 + 0.436820i
\(65\) −3.99415 + 43.3878i −0.0614485 + 0.667504i
\(66\) −6.26489 + 13.0273i −0.0949225 + 0.197383i
\(67\) 25.5295 0.381037 0.190519 0.981684i \(-0.438983\pi\)
0.190519 + 0.981684i \(0.438983\pi\)
\(68\) −45.0689 + 36.0215i −0.662778 + 0.529728i
\(69\) −54.3180 −0.787218
\(70\) −15.4206 9.24468i −0.220294 0.132067i
\(71\) 43.8755i 0.617965i 0.951068 + 0.308983i \(0.0999885\pi\)
−0.951068 + 0.308983i \(0.900012\pi\)
\(72\) 7.62144 + 33.1424i 0.105853 + 0.460312i
\(73\) 106.971i 1.46535i −0.680577 0.732677i \(-0.738271\pi\)
0.680577 0.732677i \(-0.261729\pi\)
\(74\) 33.3127 69.2708i 0.450172 0.936092i
\(75\) −53.5653 9.94642i −0.714203 0.132619i
\(76\) 29.5919 23.6514i 0.389367 0.311203i
\(77\) 5.96309i 0.0774427i
\(78\) −16.4606 + 34.2285i −0.211034 + 0.438826i
\(79\) 109.043i 1.38030i −0.723668 0.690148i \(-0.757545\pi\)
0.723668 0.690148i \(-0.242455\pi\)
\(80\) −24.7110 + 76.0879i −0.308888 + 0.951099i
\(81\) −24.6712 −0.304583
\(82\) −58.3202 28.0465i −0.711222 0.342030i
\(83\) −11.4695 −0.138186 −0.0690931 0.997610i \(-0.522011\pi\)
−0.0690931 + 0.997610i \(0.522011\pi\)
\(84\) −9.78498 12.2426i −0.116488 0.145746i
\(85\) −6.61113 + 71.8156i −0.0777780 + 0.844889i
\(86\) 53.6654 + 25.8080i 0.624016 + 0.300093i
\(87\) −38.0738 −0.437630
\(88\) 25.8581 5.94633i 0.293842 0.0675719i
\(89\) −74.3785 −0.835713 −0.417857 0.908513i \(-0.637219\pi\)
−0.417857 + 0.908513i \(0.637219\pi\)
\(90\) 36.4594 + 21.8575i 0.405105 + 0.242861i
\(91\) 15.6677i 0.172172i
\(92\) 62.2473 + 77.8818i 0.676601 + 0.846541i
\(93\) 113.676i 1.22232i
\(94\) −90.9892 43.7572i −0.967970 0.465502i
\(95\) 4.34082 47.1535i 0.0456928 0.496353i
\(96\) −43.3310 + 54.6394i −0.451365 + 0.569161i
\(97\) 7.94927i 0.0819512i 0.999160 + 0.0409756i \(0.0130466\pi\)
−0.999160 + 0.0409756i \(0.986953\pi\)
\(98\) 82.4916 + 39.6706i 0.841751 + 0.404802i
\(99\) 14.0987i 0.142412i
\(100\) 47.1234 + 88.2008i 0.471234 + 0.882008i
\(101\) 163.883 1.62261 0.811304 0.584624i \(-0.198758\pi\)
0.811304 + 0.584624i \(0.198758\pi\)
\(102\) −27.2457 + 56.6550i −0.267115 + 0.555442i
\(103\) −84.4384 −0.819790 −0.409895 0.912133i \(-0.634435\pi\)
−0.409895 + 0.912133i \(0.634435\pi\)
\(104\) 67.9407 15.6236i 0.653276 0.150227i
\(105\) −19.5082 1.79587i −0.185792 0.0171035i
\(106\) 73.5922 153.029i 0.694266 1.44367i
\(107\) 8.09195 0.0756257 0.0378129 0.999285i \(-0.487961\pi\)
0.0378129 + 0.999285i \(0.487961\pi\)
\(108\) 72.1160 + 90.2291i 0.667740 + 0.835455i
\(109\) −158.187 −1.45125 −0.725627 0.688088i \(-0.758450\pi\)
−0.725627 + 0.688088i \(0.758450\pi\)
\(110\) 17.0535 28.4461i 0.155032 0.258601i
\(111\) 83.7532i 0.754533i
\(112\) −6.34026 + 28.0596i −0.0566094 + 0.250532i
\(113\) 207.544i 1.83667i −0.395800 0.918337i \(-0.629533\pi\)
0.395800 0.918337i \(-0.370467\pi\)
\(114\) 17.8893 37.1992i 0.156924 0.326309i
\(115\) 124.102 + 11.4244i 1.07914 + 0.0993429i
\(116\) 43.6318 + 54.5907i 0.376136 + 0.470609i
\(117\) 37.0437i 0.316612i
\(118\) −12.4419 + 25.8719i −0.105440 + 0.219253i
\(119\) 25.9332i 0.217926i
\(120\) 11.6658 + 86.3853i 0.0972152 + 0.719877i
\(121\) −11.0000 −0.0909091
\(122\) −28.5325 13.7214i −0.233873 0.112471i
\(123\) −70.5131 −0.573278
\(124\) −162.989 + 130.270i −1.31443 + 1.05056i
\(125\) 120.290 + 33.9909i 0.962318 + 0.271927i
\(126\) 13.7757 + 6.62478i 0.109331 + 0.0525776i
\(127\) −124.489 −0.980231 −0.490115 0.871658i \(-0.663045\pi\)
−0.490115 + 0.871658i \(0.663045\pi\)
\(128\) 127.999 0.487121i 0.999993 0.00380564i
\(129\) 64.8851 0.502985
\(130\) 44.8071 74.7404i 0.344670 0.574926i
\(131\) 205.998i 1.57250i 0.617908 + 0.786250i \(0.287980\pi\)
−0.617908 + 0.786250i \(0.712020\pi\)
\(132\) 22.5838 18.0502i 0.171089 0.136744i
\(133\) 17.0275i 0.128026i
\(134\) −46.0146 22.1286i −0.343392 0.165139i
\(135\) 143.777 + 13.2357i 1.06501 + 0.0980419i
\(136\) 112.456 25.8603i 0.826880 0.190149i
\(137\) 110.604i 0.807332i −0.914906 0.403666i \(-0.867736\pi\)
0.914906 0.403666i \(-0.132264\pi\)
\(138\) 97.9033 + 47.0822i 0.709444 + 0.341175i
\(139\) 6.21526i 0.0447141i −0.999750 0.0223571i \(-0.992883\pi\)
0.999750 0.0223571i \(-0.00711707\pi\)
\(140\) 19.7810 + 30.0291i 0.141293 + 0.214493i
\(141\) −110.012 −0.780228
\(142\) 38.0308 79.0816i 0.267822 0.556913i
\(143\) −28.9019 −0.202111
\(144\) 14.9905 66.3424i 0.104101 0.460711i
\(145\) 86.9881 + 8.00787i 0.599918 + 0.0552267i
\(146\) −92.7210 + 192.805i −0.635075 + 1.32058i
\(147\) 99.7380 0.678490
\(148\) −120.086 + 95.9794i −0.811393 + 0.648509i
\(149\) 65.8113 0.441686 0.220843 0.975309i \(-0.429119\pi\)
0.220843 + 0.975309i \(0.429119\pi\)
\(150\) 87.9251 + 64.3572i 0.586167 + 0.429048i
\(151\) 15.8068i 0.104681i 0.998629 + 0.0523403i \(0.0166681\pi\)
−0.998629 + 0.0523403i \(0.983332\pi\)
\(152\) −73.8375 + 16.9797i −0.485773 + 0.111708i
\(153\) 61.3148i 0.400750i
\(154\) 5.16873 10.7479i 0.0335632 0.0697917i
\(155\) −23.9088 + 259.717i −0.154251 + 1.67560i
\(156\) 59.3376 47.4258i 0.380369 0.304012i
\(157\) 122.691i 0.781470i 0.920503 + 0.390735i \(0.127779\pi\)
−0.920503 + 0.390735i \(0.872221\pi\)
\(158\) −94.5175 + 196.541i −0.598212 + 1.24393i
\(159\) 185.022i 1.16366i
\(160\) 110.491 115.722i 0.690571 0.723264i
\(161\) 44.8141 0.278348
\(162\) 44.4676 + 21.3847i 0.274491 + 0.132004i
\(163\) −160.115 −0.982300 −0.491150 0.871075i \(-0.663423\pi\)
−0.491150 + 0.871075i \(0.663423\pi\)
\(164\) 80.8066 + 101.103i 0.492723 + 0.616479i
\(165\) 3.31280 35.9864i 0.0200776 0.218099i
\(166\) 20.6727 + 9.94159i 0.124534 + 0.0598891i
\(167\) −29.9094 −0.179098 −0.0895492 0.995982i \(-0.528543\pi\)
−0.0895492 + 0.995982i \(0.528543\pi\)
\(168\) 7.02476 + 30.5477i 0.0418141 + 0.181832i
\(169\) 93.0619 0.550662
\(170\) 74.1648 123.711i 0.436264 0.727709i
\(171\) 40.2588i 0.235431i
\(172\) −74.3570 93.0330i −0.432308 0.540890i
\(173\) 287.616i 1.66252i −0.555883 0.831261i \(-0.687620\pi\)
0.555883 0.831261i \(-0.312380\pi\)
\(174\) 68.6246 + 33.0019i 0.394394 + 0.189666i
\(175\) 44.1930 + 8.20611i 0.252532 + 0.0468921i
\(176\) −51.7611 11.6958i −0.294097 0.0664532i
\(177\) 31.2809i 0.176728i
\(178\) 134.060 + 64.4704i 0.753149 + 0.362193i
\(179\) 269.519i 1.50569i 0.658197 + 0.752846i \(0.271319\pi\)
−0.658197 + 0.752846i \(0.728681\pi\)
\(180\) −46.7690 70.9988i −0.259828 0.394438i
\(181\) 51.6236 0.285213 0.142607 0.989779i \(-0.454452\pi\)
0.142607 + 0.989779i \(0.454452\pi\)
\(182\) 13.5805 28.2396i 0.0746184 0.155162i
\(183\) −34.4977 −0.188512
\(184\) −44.6881 194.330i −0.242870 1.05614i
\(185\) −17.6154 + 191.353i −0.0952183 + 1.03434i
\(186\) −98.5327 + 204.890i −0.529746 + 1.10156i
\(187\) −47.8385 −0.255821
\(188\) 126.072 + 157.737i 0.670593 + 0.839024i
\(189\) 51.9189 0.274703
\(190\) −48.6960 + 81.2274i −0.256295 + 0.427512i
\(191\) 204.409i 1.07020i −0.844787 0.535102i \(-0.820273\pi\)
0.844787 0.535102i \(-0.179727\pi\)
\(192\) 125.461 60.9238i 0.653443 0.317312i
\(193\) 24.3244i 0.126033i −0.998012 0.0630167i \(-0.979928\pi\)
0.998012 0.0630167i \(-0.0200721\pi\)
\(194\) 6.89033 14.3278i 0.0355172 0.0738548i
\(195\) 8.70420 94.5522i 0.0446369 0.484883i
\(196\) −114.298 143.005i −0.583151 0.729620i
\(197\) 138.476i 0.702926i −0.936202 0.351463i \(-0.885684\pi\)
0.936202 0.351463i \(-0.114316\pi\)
\(198\) −12.2206 + 25.4117i −0.0617203 + 0.128342i
\(199\) 69.4973i 0.349233i 0.984637 + 0.174616i \(0.0558685\pi\)
−0.984637 + 0.174616i \(0.944131\pi\)
\(200\) −8.48419 199.820i −0.0424209 0.999100i
\(201\) −55.6348 −0.276790
\(202\) −295.385 142.052i −1.46230 0.703229i
\(203\) 31.4121 0.154739
\(204\) 98.2158 78.4993i 0.481450 0.384801i
\(205\) 161.103 + 14.8307i 0.785868 + 0.0723447i
\(206\) 152.193 + 73.1901i 0.738799 + 0.355292i
\(207\) −105.956 −0.511863
\(208\) −135.999 30.7300i −0.653843 0.147740i
\(209\) 31.4104 0.150289
\(210\) 33.6051 + 20.1463i 0.160024 + 0.0959349i
\(211\) 101.454i 0.480826i −0.970671 0.240413i \(-0.922717\pi\)
0.970671 0.240413i \(-0.0772829\pi\)
\(212\) −265.286 + 212.031i −1.25135 + 1.00015i
\(213\) 95.6151i 0.448897i
\(214\) −14.5850 7.01401i −0.0681543 0.0327757i
\(215\) −148.244 13.6470i −0.689509 0.0634742i
\(216\) −51.7730 225.139i −0.239690 1.04231i
\(217\) 93.7860i 0.432194i
\(218\) 285.117 + 137.114i 1.30788 + 0.628965i
\(219\) 233.115i 1.06445i
\(220\) −55.3941 + 36.4897i −0.251791 + 0.165862i
\(221\) −125.693 −0.568746
\(222\) −72.5962 + 150.957i −0.327010 + 0.679989i
\(223\) 173.448 0.777792 0.388896 0.921282i \(-0.372857\pi\)
0.388896 + 0.921282i \(0.372857\pi\)
\(224\) 35.7495 45.0793i 0.159596 0.201247i
\(225\) −104.487 19.4020i −0.464388 0.0862311i
\(226\) −179.897 + 374.079i −0.796003 + 1.65522i
\(227\) −259.525 −1.14328 −0.571640 0.820504i \(-0.693693\pi\)
−0.571640 + 0.820504i \(0.693693\pi\)
\(228\) −64.4877 + 51.5420i −0.282841 + 0.226062i
\(229\) −200.406 −0.875134 −0.437567 0.899186i \(-0.644160\pi\)
−0.437567 + 0.899186i \(0.644160\pi\)
\(230\) −213.779 128.161i −0.929475 0.557223i
\(231\) 12.9950i 0.0562553i
\(232\) −31.3238 136.214i −0.135017 0.587130i
\(233\) 117.790i 0.505535i −0.967527 0.252768i \(-0.918659\pi\)
0.967527 0.252768i \(-0.0813408\pi\)
\(234\) −32.1090 + 66.7678i −0.137218 + 0.285333i
\(235\) 251.347 + 23.1383i 1.06956 + 0.0984608i
\(236\) 44.8508 35.8472i 0.190046 0.151895i
\(237\) 237.631i 1.00266i
\(238\) 22.4786 46.7422i 0.0944477 0.196396i
\(239\) 435.473i 1.82206i −0.412337 0.911032i \(-0.635287\pi\)
0.412337 0.911032i \(-0.364713\pi\)
\(240\) 53.8511 165.813i 0.224380 0.690889i
\(241\) −267.721 −1.11088 −0.555438 0.831558i \(-0.687450\pi\)
−0.555438 + 0.831558i \(0.687450\pi\)
\(242\) 19.8265 + 9.53466i 0.0819277 + 0.0393994i
\(243\) −206.128 −0.848262
\(244\) 39.5337 + 49.4632i 0.162023 + 0.202718i
\(245\) −227.874 20.9774i −0.930096 0.0856220i
\(246\) 127.094 + 61.1199i 0.516640 + 0.248455i
\(247\) 82.5290 0.334125
\(248\) 406.690 93.5225i 1.63988 0.377107i
\(249\) 24.9947 0.100380
\(250\) −187.348 165.531i −0.749394 0.662125i
\(251\) 106.398i 0.423896i 0.977281 + 0.211948i \(0.0679807\pi\)
−0.977281 + 0.211948i \(0.932019\pi\)
\(252\) −19.0871 23.8811i −0.0757424 0.0947664i
\(253\) 82.6677i 0.326750i
\(254\) 224.381 + 107.906i 0.883389 + 0.424826i
\(255\) 14.4072 156.503i 0.0564989 0.613737i
\(256\) −231.129 110.070i −0.902847 0.429961i
\(257\) 238.012i 0.926115i −0.886328 0.463058i \(-0.846752\pi\)
0.886328 0.463058i \(-0.153248\pi\)
\(258\) −116.950 56.2416i −0.453293 0.217991i
\(259\) 69.0990i 0.266792i
\(260\) −145.545 + 95.8746i −0.559788 + 0.368749i
\(261\) −74.2688 −0.284555
\(262\) 178.556 371.292i 0.681512 1.41714i
\(263\) 150.167 0.570977 0.285489 0.958382i \(-0.407844\pi\)
0.285489 + 0.958382i \(0.407844\pi\)
\(264\) −56.3509 + 12.9585i −0.213450 + 0.0490851i
\(265\) −38.9147 + 422.724i −0.146848 + 1.59518i
\(266\) −14.7592 + 30.6906i −0.0554859 + 0.115378i
\(267\) 162.088 0.607072
\(268\) 63.7563 + 79.7697i 0.237897 + 0.297648i
\(269\) 21.3598 0.0794045 0.0397023 0.999212i \(-0.487359\pi\)
0.0397023 + 0.999212i \(0.487359\pi\)
\(270\) −247.672 148.480i −0.917303 0.549925i
\(271\) 519.985i 1.91876i −0.282110 0.959382i \(-0.591034\pi\)
0.282110 0.959382i \(-0.408966\pi\)
\(272\) −225.106 50.8643i −0.827597 0.187001i
\(273\) 34.1436i 0.125068i
\(274\) −95.8706 + 199.355i −0.349893 + 0.727571i
\(275\) −15.1377 + 81.5221i −0.0550461 + 0.296444i
\(276\) −135.652 169.723i −0.491491 0.614937i
\(277\) 378.030i 1.36473i 0.731012 + 0.682365i \(0.239049\pi\)
−0.731012 + 0.682365i \(0.760951\pi\)
\(278\) −5.38731 + 11.2024i −0.0193788 + 0.0402966i
\(279\) 221.742i 0.794773i
\(280\) −9.62467 71.2706i −0.0343738 0.254538i
\(281\) 155.598 0.553728 0.276864 0.960909i \(-0.410705\pi\)
0.276864 + 0.960909i \(0.410705\pi\)
\(282\) 198.287 + 95.3571i 0.703145 + 0.338146i
\(283\) 478.481 1.69074 0.845372 0.534178i \(-0.179379\pi\)
0.845372 + 0.534178i \(0.179379\pi\)
\(284\) −137.094 + 109.573i −0.482725 + 0.385820i
\(285\) −9.45966 + 102.759i −0.0331918 + 0.360557i
\(286\) 52.0930 + 25.0518i 0.182143 + 0.0875937i
\(287\) 58.1756 0.202702
\(288\) −84.5238 + 106.583i −0.293485 + 0.370078i
\(289\) 80.9528 0.280113
\(290\) −149.847 89.8337i −0.516714 0.309771i
\(291\) 17.3233i 0.0595304i
\(292\) 334.242 267.144i 1.14467 0.914878i
\(293\) 285.131i 0.973144i 0.873640 + 0.486572i \(0.161753\pi\)
−0.873640 + 0.486572i \(0.838247\pi\)
\(294\) −179.769 86.4517i −0.611458 0.294053i
\(295\) 6.57914 71.4680i 0.0223022 0.242265i
\(296\) 299.638 68.9048i 1.01229 0.232787i
\(297\) 95.7739i 0.322471i
\(298\) −118.619 57.0444i −0.398050 0.191424i
\(299\) 217.205i 0.726438i
\(300\) −102.693 192.210i −0.342310 0.640701i
\(301\) −53.5323 −0.177848
\(302\) 13.7011 28.4903i 0.0453680 0.0943387i
\(303\) −357.141 −1.17868
\(304\) 147.803 + 33.3971i 0.486194 + 0.109859i
\(305\) 78.8177 + 7.25573i 0.258419 + 0.0237893i
\(306\) −53.1469 + 110.514i −0.173683 + 0.361158i
\(307\) 473.639 1.54280 0.771399 0.636352i \(-0.219558\pi\)
0.771399 + 0.636352i \(0.219558\pi\)
\(308\) −18.6323 + 14.8920i −0.0604946 + 0.0483505i
\(309\) 184.011 0.595505
\(310\) 268.213 447.393i 0.865204 1.44320i
\(311\) 119.245i 0.383424i −0.981451 0.191712i \(-0.938596\pi\)
0.981451 0.191712i \(-0.0614039\pi\)
\(312\) −148.059 + 34.0476i −0.474547 + 0.109127i
\(313\) 358.817i 1.14638i 0.819423 + 0.573190i \(0.194294\pi\)
−0.819423 + 0.573190i \(0.805706\pi\)
\(314\) 106.347 221.139i 0.338684 0.704264i
\(315\) −38.0537 3.50311i −0.120805 0.0111210i
\(316\) 340.718 272.321i 1.07822 0.861774i
\(317\) 27.4250i 0.0865143i −0.999064 0.0432572i \(-0.986227\pi\)
0.999064 0.0432572i \(-0.0137735\pi\)
\(318\) −160.375 + 333.485i −0.504323 + 1.04870i
\(319\) 57.9453i 0.181647i
\(320\) −299.457 + 112.806i −0.935804 + 0.352520i
\(321\) −17.6343 −0.0549354
\(322\) −80.7733 38.8443i −0.250849 0.120634i
\(323\) 136.602 0.422917
\(324\) −61.6128 77.0879i −0.190163 0.237926i
\(325\) −39.7734 + 214.195i −0.122380 + 0.659061i
\(326\) 288.593 + 138.786i 0.885253 + 0.425723i
\(327\) 344.726 1.05421
\(328\) −58.0121 252.270i −0.176866 0.769117i
\(329\) 90.7635 0.275877
\(330\) −37.1636 + 61.9907i −0.112617 + 0.187851i
\(331\) 205.495i 0.620829i −0.950601 0.310415i \(-0.899532\pi\)
0.950601 0.310415i \(-0.100468\pi\)
\(332\) −28.6434 35.8376i −0.0862752 0.107945i
\(333\) 163.373i 0.490611i
\(334\) 53.9091 + 25.9251i 0.161404 + 0.0776202i
\(335\) 127.110 + 11.7014i 0.379433 + 0.0349295i
\(336\) 13.8169 61.1485i 0.0411218 0.181990i
\(337\) 498.276i 1.47857i 0.673395 + 0.739283i \(0.264835\pi\)
−0.673395 + 0.739283i \(0.735165\pi\)
\(338\) −167.736 80.6649i −0.496259 0.238654i
\(339\) 452.288i 1.33418i
\(340\) −240.906 + 158.692i −0.708547 + 0.466741i
\(341\) −173.005 −0.507347
\(342\) 34.8958 72.5628i 0.102035 0.212172i
\(343\) −170.386 −0.496752
\(344\) 53.3818 + 232.135i 0.155180 + 0.674812i
\(345\) −270.447 24.8965i −0.783903 0.0721639i
\(346\) −249.302 + 518.402i −0.720526 + 1.49827i
\(347\) −608.078 −1.75239 −0.876193 0.481960i \(-0.839925\pi\)
−0.876193 + 0.481960i \(0.839925\pi\)
\(348\) −95.0840 118.966i −0.273230 0.341856i
\(349\) 398.361 1.14144 0.570718 0.821146i \(-0.306665\pi\)
0.570718 + 0.821146i \(0.306665\pi\)
\(350\) −72.5410 53.0967i −0.207260 0.151705i
\(351\) 251.640i 0.716924i
\(352\) 83.1569 + 65.9464i 0.236241 + 0.187348i
\(353\) 141.680i 0.401361i −0.979657 0.200680i \(-0.935685\pi\)
0.979657 0.200680i \(-0.0643153\pi\)
\(354\) 27.1139 56.3809i 0.0765928 0.159268i
\(355\) −20.1102 + 218.454i −0.0566486 + 0.615363i
\(356\) −185.750 232.404i −0.521769 0.652820i
\(357\) 56.5145i 0.158304i
\(358\) 233.616 485.783i 0.652557 1.35694i
\(359\) 240.104i 0.668814i 0.942429 + 0.334407i \(0.108536\pi\)
−0.942429 + 0.334407i \(0.891464\pi\)
\(360\) 22.7560 + 168.508i 0.0632110 + 0.468077i
\(361\) 271.308 0.751546
\(362\) −93.0468 44.7467i −0.257035 0.123610i
\(363\) 23.9716 0.0660374
\(364\) −48.9554 + 39.1278i −0.134493 + 0.107494i
\(365\) 49.0298 532.602i 0.134328 1.45918i
\(366\) 62.1790 + 29.9022i 0.169888 + 0.0817000i
\(367\) 582.476 1.58713 0.793565 0.608486i \(-0.208223\pi\)
0.793565 + 0.608486i \(0.208223\pi\)
\(368\) −87.8965 + 388.997i −0.238849 + 1.05706i
\(369\) −137.547 −0.372755
\(370\) 197.612 329.627i 0.534087 0.890884i
\(371\) 152.649i 0.411453i
\(372\) 355.192 283.889i 0.954818 0.763142i
\(373\) 38.1646i 0.102318i 0.998691 + 0.0511589i \(0.0162915\pi\)
−0.998691 + 0.0511589i \(0.983708\pi\)
\(374\) 86.2245 + 41.4658i 0.230547 + 0.110871i
\(375\) −262.140 74.0742i −0.699039 0.197531i
\(376\) −90.5084 393.583i −0.240714 1.04676i
\(377\) 152.248i 0.403841i
\(378\) −93.5791 45.0027i −0.247564 0.119055i
\(379\) 437.278i 1.15377i 0.816826 + 0.576885i \(0.195732\pi\)
−0.816826 + 0.576885i \(0.804268\pi\)
\(380\) 158.177 104.196i 0.416255 0.274200i
\(381\) 271.292 0.712051
\(382\) −177.179 + 368.429i −0.463820 + 0.964473i
\(383\) −731.506 −1.90994 −0.954969 0.296705i \(-0.904112\pi\)
−0.954969 + 0.296705i \(0.904112\pi\)
\(384\) −278.940 + 1.06155i −0.726407 + 0.00276446i
\(385\) −2.73317 + 29.6899i −0.00709913 + 0.0771166i
\(386\) −21.0841 + 43.8426i −0.0546221 + 0.113582i
\(387\) 126.568 0.327050
\(388\) −24.8384 + 19.8522i −0.0640165 + 0.0511654i
\(389\) 550.201 1.41440 0.707200 0.707014i \(-0.249958\pi\)
0.707200 + 0.707014i \(0.249958\pi\)
\(390\) −97.6452 + 162.877i −0.250372 + 0.417633i
\(391\) 359.518i 0.919483i
\(392\) 82.0558 + 356.826i 0.209326 + 0.910271i
\(393\) 448.917i 1.14228i
\(394\) −120.030 + 249.591i −0.304644 + 0.633480i
\(395\) 49.9798 542.922i 0.126531 1.37448i
\(396\) 44.0531 35.2096i 0.111245 0.0889132i
\(397\) 663.628i 1.67161i −0.549028 0.835804i \(-0.685002\pi\)
0.549028 0.835804i \(-0.314998\pi\)
\(398\) 60.2394 125.263i 0.151355 0.314730i
\(399\) 37.1070i 0.0929999i
\(400\) −157.910 + 367.511i −0.394774 + 0.918778i
\(401\) 263.823 0.657912 0.328956 0.944345i \(-0.393303\pi\)
0.328956 + 0.944345i \(0.393303\pi\)
\(402\) 100.277 + 48.2235i 0.249444 + 0.119959i
\(403\) −454.562 −1.12795
\(404\) 409.276 + 512.072i 1.01306 + 1.26751i
\(405\) −122.837 11.3080i −0.303300 0.0279209i
\(406\) −56.6175 27.2276i −0.139452 0.0670631i
\(407\) −127.466 −0.313184
\(408\) −245.067 + 56.3557i −0.600655 + 0.138127i
\(409\) −354.788 −0.867452 −0.433726 0.901045i \(-0.642801\pi\)
−0.433726 + 0.901045i \(0.642801\pi\)
\(410\) −277.518 166.373i −0.676874 0.405788i
\(411\) 241.033i 0.586456i
\(412\) −210.873 263.837i −0.511827 0.640381i
\(413\) 25.8077i 0.0624884i
\(414\) 190.975 + 91.8410i 0.461293 + 0.221838i
\(415\) −57.1058 5.25700i −0.137604 0.0126675i
\(416\) 218.490 + 173.271i 0.525217 + 0.416516i
\(417\) 13.5445i 0.0324809i
\(418\) −56.6143 27.2261i −0.135441 0.0651342i
\(419\) 77.3470i 0.184599i −0.995731 0.0922995i \(-0.970578\pi\)
0.995731 0.0922995i \(-0.0294217\pi\)
\(420\) −43.1075 65.4404i −0.102637 0.155810i
\(421\) −81.5945 −0.193811 −0.0969056 0.995294i \(-0.530894\pi\)
−0.0969056 + 0.995294i \(0.530894\pi\)
\(422\) −87.9393 + 182.862i −0.208387 + 0.433323i
\(423\) −214.595 −0.507318
\(424\) 661.941 152.220i 1.56118 0.359009i
\(425\) −65.8330 + 354.536i −0.154901 + 0.834202i
\(426\) −82.8780 + 172.338i −0.194549 + 0.404548i
\(427\) 28.4617 0.0666551
\(428\) 20.2085 + 25.2842i 0.0472161 + 0.0590753i
\(429\) 62.9840 0.146816
\(430\) 255.368 + 153.094i 0.593879 + 0.356032i
\(431\) 125.049i 0.290136i −0.989422 0.145068i \(-0.953660\pi\)
0.989422 0.145068i \(-0.0463401\pi\)
\(432\) −101.832 + 450.669i −0.235721 + 1.04322i
\(433\) 53.8221i 0.124300i −0.998067 0.0621502i \(-0.980204\pi\)
0.998067 0.0621502i \(-0.0197958\pi\)
\(434\) 81.2926 169.041i 0.187310 0.389495i
\(435\) −189.568 17.4510i −0.435787 0.0401173i
\(436\) −395.049 494.272i −0.906076 1.13365i
\(437\) 236.057i 0.540175i
\(438\) 202.061 420.168i 0.461326 0.959287i
\(439\) 293.375i 0.668281i −0.942523 0.334140i \(-0.891554\pi\)
0.942523 0.334140i \(-0.108446\pi\)
\(440\) 131.472 17.7545i 0.298799 0.0403511i
\(441\) 194.554 0.441166
\(442\) 226.550 + 108.949i 0.512557 + 0.246491i
\(443\) 603.325 1.36191 0.680954 0.732326i \(-0.261565\pi\)
0.680954 + 0.732326i \(0.261565\pi\)
\(444\) 261.696 209.162i 0.589406 0.471085i
\(445\) −370.327 34.0912i −0.832195 0.0766095i
\(446\) −312.624 150.342i −0.700950 0.337090i
\(447\) −143.418 −0.320846
\(448\) −103.509 + 50.2641i −0.231048 + 0.112197i
\(449\) 383.553 0.854238 0.427119 0.904195i \(-0.359529\pi\)
0.427119 + 0.904195i \(0.359529\pi\)
\(450\) 171.511 + 125.539i 0.381136 + 0.278975i
\(451\) 107.315i 0.237950i
\(452\) 648.495 518.312i 1.43472 1.14671i
\(453\) 34.4467i 0.0760413i
\(454\) 467.770 + 224.953i 1.03033 + 0.495491i
\(455\) −7.18124 + 78.0085i −0.0157829 + 0.171447i
\(456\) 160.909 37.0027i 0.352871 0.0811463i
\(457\) 722.326i 1.58058i 0.612732 + 0.790291i \(0.290071\pi\)
−0.612732 + 0.790291i \(0.709929\pi\)
\(458\) 361.213 + 173.709i 0.788675 + 0.379278i
\(459\) 416.516i 0.907442i
\(460\) 274.229 + 416.300i 0.596150 + 0.905000i
\(461\) −245.149 −0.531776 −0.265888 0.964004i \(-0.585665\pi\)
−0.265888 + 0.964004i \(0.585665\pi\)
\(462\) −11.2639 + 23.4223i −0.0243807 + 0.0506975i
\(463\) 615.917 1.33027 0.665137 0.746721i \(-0.268373\pi\)
0.665137 + 0.746721i \(0.268373\pi\)
\(464\) −61.6104 + 272.665i −0.132781 + 0.587640i
\(465\) 52.1030 565.985i 0.112049 1.21717i
\(466\) −102.099 + 212.305i −0.219096 + 0.455591i
\(467\) 421.342 0.902231 0.451116 0.892465i \(-0.351026\pi\)
0.451116 + 0.892465i \(0.351026\pi\)
\(468\) 115.747 92.5113i 0.247323 0.197674i
\(469\) 45.9004 0.0978687
\(470\) −432.974 259.569i −0.921222 0.552275i
\(471\) 267.372i 0.567669i
\(472\) −111.911 + 25.7352i −0.237101 + 0.0545237i
\(473\) 98.7500i 0.208774i
\(474\) 205.976 428.309i 0.434548 0.903605i
\(475\) 43.2254 232.785i 0.0910009 0.490074i
\(476\) −81.0311 + 64.7644i −0.170233 + 0.136060i
\(477\) 360.913i 0.756632i
\(478\) −377.463 + 784.901i −0.789671 + 1.64205i
\(479\) 828.237i 1.72910i −0.502550 0.864548i \(-0.667605\pi\)
0.502550 0.864548i \(-0.332395\pi\)
\(480\) −240.787 + 252.186i −0.501639 + 0.525388i
\(481\) −334.909 −0.696277
\(482\) 482.543 + 232.058i 1.00113 + 0.481447i
\(483\) −97.6604 −0.202196
\(484\) −27.4709 34.3707i −0.0567581 0.0710139i
\(485\) −3.64353 + 39.5790i −0.00751243 + 0.0816062i
\(486\) 371.527 + 178.669i 0.764458 + 0.367632i
\(487\) 336.286 0.690525 0.345262 0.938506i \(-0.387790\pi\)
0.345262 + 0.938506i \(0.387790\pi\)
\(488\) −28.3817 123.420i −0.0581593 0.252910i
\(489\) 348.928 0.713554
\(490\) 392.538 + 235.328i 0.801099 + 0.480261i
\(491\) 320.294i 0.652330i 0.945313 + 0.326165i \(0.105756\pi\)
−0.945313 + 0.326165i \(0.894244\pi\)
\(492\) −176.097 220.326i −0.357920 0.447817i
\(493\) 252.002i 0.511159i
\(494\) −148.751 71.5351i −0.301115 0.144808i
\(495\) 6.46213 70.1969i 0.0130548 0.141812i
\(496\) −814.086 183.948i −1.64130 0.370863i
\(497\) 78.8855i 0.158723i
\(498\) −45.0506 21.6651i −0.0904631 0.0435041i
\(499\) 353.440i 0.708297i −0.935189 0.354149i \(-0.884771\pi\)
0.935189 0.354149i \(-0.115229\pi\)
\(500\) 194.198 + 460.746i 0.388396 + 0.921492i
\(501\) 65.1797 0.130099
\(502\) 92.2243 191.772i 0.183714 0.382017i
\(503\) 810.854 1.61204 0.806018 0.591891i \(-0.201619\pi\)
0.806018 + 0.591891i \(0.201619\pi\)
\(504\) 13.7029 + 59.5880i 0.0271882 + 0.118230i
\(505\) 815.967 + 75.1156i 1.61578 + 0.148744i
\(506\) 71.6554 149.001i 0.141611 0.294469i
\(507\) −202.804 −0.400008
\(508\) −310.894 388.981i −0.611997 0.765710i
\(509\) −874.747 −1.71856 −0.859280 0.511506i \(-0.829088\pi\)
−0.859280 + 0.511506i \(0.829088\pi\)
\(510\) −161.623 + 269.594i −0.316907 + 0.528617i
\(511\) 192.327i 0.376374i
\(512\) 321.182 + 398.731i 0.627308 + 0.778771i
\(513\) 273.481i 0.533101i
\(514\) −206.306 + 428.994i −0.401373 + 0.834619i
\(515\) −420.414 38.7021i −0.816338 0.0751498i
\(516\) 162.041 + 202.741i 0.314034 + 0.392909i
\(517\) 167.430i 0.323849i
\(518\) 59.8942 124.545i 0.115626 0.240434i
\(519\) 626.783i 1.20768i
\(520\) 345.434 46.6489i 0.664297 0.0897094i
\(521\) −787.126 −1.51080 −0.755399 0.655265i \(-0.772557\pi\)
−0.755399 + 0.655265i \(0.772557\pi\)
\(522\) 133.863 + 64.3753i 0.256442 + 0.123324i
\(523\) −888.359 −1.69858 −0.849292 0.527924i \(-0.822971\pi\)
−0.849292 + 0.527924i \(0.822971\pi\)
\(524\) −643.662 + 514.450i −1.22836 + 0.981774i
\(525\) −96.3070 17.8830i −0.183442 0.0340629i
\(526\) −270.662 130.163i −0.514567 0.247458i
\(527\) −752.392 −1.42769
\(528\) 112.800 + 25.4878i 0.213636 + 0.0482724i
\(529\) 92.2685 0.174421
\(530\) 436.552 728.190i 0.823683 1.37394i
\(531\) 61.0181i 0.114912i
\(532\) 53.2044 42.5238i 0.100008 0.0799320i
\(533\) 281.965i 0.529015i
\(534\) −292.149 140.496i −0.547096 0.263101i
\(535\) 40.2894 + 3.70893i 0.0753073 + 0.00693258i
\(536\) −45.7715 199.041i −0.0853945 0.371345i
\(537\) 587.345i 1.09375i
\(538\) −38.4991 18.5144i −0.0715597 0.0344134i
\(539\) 151.793i 0.281620i
\(540\) 317.705 + 482.300i 0.588343 + 0.893149i
\(541\) −302.191 −0.558579 −0.279289 0.960207i \(-0.590099\pi\)
−0.279289 + 0.960207i \(0.590099\pi\)
\(542\) −450.717 + 937.226i −0.831581 + 1.72920i
\(543\) −112.500 −0.207182
\(544\) 361.645 + 286.798i 0.664789 + 0.527202i
\(545\) −787.604 72.5045i −1.44514 0.133036i
\(546\) −29.5952 + 61.5407i −0.0542037 + 0.112712i
\(547\) −561.650 −1.02678 −0.513391 0.858155i \(-0.671611\pi\)
−0.513391 + 0.858155i \(0.671611\pi\)
\(548\) 345.596 276.219i 0.630650 0.504049i
\(549\) −67.2931 −0.122574
\(550\) 97.9466 133.815i 0.178085 0.243300i
\(551\) 165.462i 0.300294i
\(552\) 97.3860 + 423.491i 0.176424 + 0.767194i
\(553\) 196.053i 0.354527i
\(554\) 327.672 681.365i 0.591466 1.22990i
\(555\) 38.3881 417.003i 0.0691677 0.751356i
\(556\) 19.4203 15.5217i 0.0349286 0.0279168i
\(557\) 548.025i 0.983887i −0.870627 0.491943i \(-0.836287\pi\)
0.870627 0.491943i \(-0.163713\pi\)
\(558\) −192.203 + 399.669i −0.344450 + 0.716253i
\(559\) 259.460i 0.464151i
\(560\) −44.4289 + 136.801i −0.0793373 + 0.244288i
\(561\) 104.251 0.185831
\(562\) −280.450 134.870i −0.499022 0.239982i
\(563\) 363.695 0.645995 0.322998 0.946400i \(-0.395309\pi\)
0.322998 + 0.946400i \(0.395309\pi\)
\(564\) −274.740 343.745i −0.487127 0.609477i
\(565\) 95.1274 1033.35i 0.168367 1.82894i
\(566\) −862.418 414.741i −1.52371 0.732758i
\(567\) −44.3573 −0.0782315
\(568\) 342.076 78.6638i 0.602246 0.138493i
\(569\) −739.646 −1.29990 −0.649952 0.759975i \(-0.725211\pi\)
−0.649952 + 0.759975i \(0.725211\pi\)
\(570\) 106.120 177.014i 0.186176 0.310550i
\(571\) 375.140i 0.656988i −0.944506 0.328494i \(-0.893459\pi\)
0.944506 0.328494i \(-0.106541\pi\)
\(572\) −72.1784 90.3072i −0.126186 0.157880i
\(573\) 445.456i 0.777409i
\(574\) −104.856 50.4259i −0.182676 0.0878499i
\(575\) 612.659 + 113.763i 1.06549 + 0.197849i
\(576\) 244.731 118.841i 0.424880 0.206322i
\(577\) 690.750i 1.19714i −0.801070 0.598570i \(-0.795736\pi\)
0.801070 0.598570i \(-0.204264\pi\)
\(578\) −145.910 70.1689i −0.252439 0.121399i
\(579\) 53.0087i 0.0915521i
\(580\) 192.219 + 291.803i 0.331412 + 0.503108i
\(581\) −20.6214 −0.0354929
\(582\) −15.0157 + 31.2237i −0.0258001 + 0.0536490i
\(583\) −281.589 −0.483000
\(584\) −833.999 + 191.786i −1.42808 + 0.328401i
\(585\) 16.9789 184.438i 0.0290237 0.315279i
\(586\) 247.148 513.923i 0.421755 0.877002i
\(587\) −284.979 −0.485483 −0.242742 0.970091i \(-0.578047\pi\)
−0.242742 + 0.970091i \(0.578047\pi\)
\(588\) 249.081 + 311.643i 0.423608 + 0.530004i
\(589\) 494.015 0.838735
\(590\) −73.8059 + 123.112i −0.125095 + 0.208664i
\(591\) 301.773i 0.510614i
\(592\) −599.797 135.528i −1.01317 0.228933i
\(593\) 160.644i 0.270900i 0.990784 + 0.135450i \(0.0432480\pi\)
−0.990784 + 0.135450i \(0.956752\pi\)
\(594\) 83.0156 172.624i 0.139757 0.290612i
\(595\) −11.8864 + 129.120i −0.0199772 + 0.217008i
\(596\) 164.354 + 205.635i 0.275762 + 0.345025i
\(597\) 151.451i 0.253687i
\(598\) 188.270 391.492i 0.314834 0.654669i
\(599\) 482.821i 0.806046i −0.915190 0.403023i \(-0.867960\pi\)
0.915190 0.403023i \(-0.132040\pi\)
\(600\) 18.4890 + 435.455i 0.0308151 + 0.725758i
\(601\) −574.416 −0.955767 −0.477884 0.878423i \(-0.658596\pi\)
−0.477884 + 0.878423i \(0.658596\pi\)
\(602\) 96.4871 + 46.4011i 0.160278 + 0.0770783i
\(603\) −108.524 −0.179974
\(604\) −49.3901 + 39.4752i −0.0817716 + 0.0653563i
\(605\) −54.7684 5.04182i −0.0905263 0.00833359i
\(606\) 643.714 + 309.565i 1.06223 + 0.510834i
\(607\) −970.858 −1.59944 −0.799718 0.600376i \(-0.795018\pi\)
−0.799718 + 0.600376i \(0.795018\pi\)
\(608\) −237.453 188.309i −0.390548 0.309719i
\(609\) −68.4544 −0.112405
\(610\) −135.773 81.3960i −0.222578 0.133436i
\(611\) 439.912i 0.719987i
\(612\) 191.585 153.125i 0.313047 0.250204i
\(613\) 413.900i 0.675203i 0.941289 + 0.337602i \(0.109616\pi\)
−0.941289 + 0.337602i \(0.890384\pi\)
\(614\) −853.691 410.544i −1.39038 0.668639i
\(615\) −351.081 32.3195i −0.570864 0.0525521i
\(616\) 46.4913 10.6911i 0.0754728 0.0173557i
\(617\) 857.096i 1.38913i −0.719428 0.694567i \(-0.755596\pi\)
0.719428 0.694567i \(-0.244404\pi\)
\(618\) −331.663 159.499i −0.536672 0.258088i
\(619\) 667.962i 1.07910i −0.841954 0.539549i \(-0.818595\pi\)
0.841954 0.539549i \(-0.181405\pi\)
\(620\) −871.225 + 573.901i −1.40520 + 0.925647i
\(621\) 719.764 1.15904
\(622\) −103.360 + 214.928i −0.166173 + 0.345543i
\(623\) −133.728 −0.214652
\(624\) 296.375 + 66.9678i 0.474959 + 0.107320i
\(625\) 583.337 + 224.373i 0.933339 + 0.358998i
\(626\) 311.018 646.734i 0.496834 1.03312i
\(627\) −68.4506 −0.109172
\(628\) −383.361 + 306.403i −0.610448 + 0.487903i
\(629\) −554.342 −0.881307
\(630\) 65.5518 + 39.2985i 0.104050 + 0.0623785i
\(631\) 1208.11i 1.91460i 0.289093 + 0.957301i \(0.406646\pi\)
−0.289093 + 0.957301i \(0.593354\pi\)
\(632\) −850.158 + 195.502i −1.34519 + 0.309339i
\(633\) 221.093i 0.349278i
\(634\) −23.7717 + 49.4311i −0.0374948 + 0.0779671i
\(635\) −619.826 57.0594i −0.976104 0.0898573i
\(636\) 578.122 462.066i 0.908996 0.726519i
\(637\) 398.829i 0.626104i
\(638\) 50.2263 104.441i 0.0787246 0.163701i
\(639\) 186.512i 0.291881i
\(640\) 637.524 + 56.2427i 0.996131 + 0.0878792i
\(641\) 888.974 1.38685 0.693427 0.720527i \(-0.256100\pi\)
0.693427 + 0.720527i \(0.256100\pi\)
\(642\) 31.7842 + 15.2852i 0.0495081 + 0.0238087i
\(643\) 957.417 1.48899 0.744493 0.667631i \(-0.232691\pi\)
0.744493 + 0.667631i \(0.232691\pi\)
\(644\) 111.917 + 140.027i 0.173784 + 0.217433i
\(645\) 323.060 + 29.7399i 0.500868 + 0.0461084i
\(646\) −246.213 118.405i −0.381135 0.183290i
\(647\) −590.087 −0.912035 −0.456018 0.889971i \(-0.650725\pi\)
−0.456018 + 0.889971i \(0.650725\pi\)
\(648\) 44.2326 + 192.349i 0.0682602 + 0.296835i
\(649\) 47.6070 0.0733544
\(650\) 257.349 351.591i 0.395922 0.540910i
\(651\) 204.382i 0.313951i
\(652\) −399.864 500.297i −0.613289 0.767327i
\(653\) 1155.22i 1.76909i 0.466452 + 0.884546i \(0.345532\pi\)
−0.466452 + 0.884546i \(0.654468\pi\)
\(654\) −621.338 298.805i −0.950058 0.456888i
\(655\) −94.4185 + 1025.65i −0.144150 + 1.56588i
\(656\) −114.103 + 504.978i −0.173938 + 0.769784i
\(657\) 454.725i 0.692124i
\(658\) −163.593 78.6727i −0.248621 0.119563i
\(659\) 610.028i 0.925688i 0.886440 + 0.462844i \(0.153171\pi\)
−0.886440 + 0.462844i \(0.846829\pi\)
\(660\) 120.717 79.5196i 0.182904 0.120484i
\(661\) 808.423 1.22303 0.611515 0.791233i \(-0.290560\pi\)
0.611515 + 0.791233i \(0.290560\pi\)
\(662\) −178.120 + 370.385i −0.269064 + 0.559494i
\(663\) 273.914 0.413144
\(664\) 20.5634 + 89.4218i 0.0309690 + 0.134671i
\(665\) 7.80452 84.7791i 0.0117361 0.127487i
\(666\) −141.610 + 294.466i −0.212628 + 0.442141i
\(667\) 435.474 0.652884
\(668\) −74.6946 93.4554i −0.111818 0.139903i
\(669\) −377.983 −0.564997
\(670\) −218.962 131.268i −0.326808 0.195922i
\(671\) 52.5028i 0.0782456i
\(672\) −77.9065 + 98.2383i −0.115932 + 0.146188i
\(673\) 231.701i 0.344281i 0.985072 + 0.172140i \(0.0550682\pi\)
−0.985072 + 0.172140i \(0.944932\pi\)
\(674\) 431.900 898.098i 0.640801 1.33249i
\(675\) 709.790 + 131.799i 1.05154 + 0.195258i
\(676\) 232.409 + 290.782i 0.343800 + 0.430152i
\(677\) 121.608i 0.179628i 0.995959 + 0.0898141i \(0.0286273\pi\)
−0.995959 + 0.0898141i \(0.971373\pi\)
\(678\) 392.037 815.207i 0.578226 1.20237i
\(679\) 14.2923i 0.0210490i
\(680\) 571.764 77.2133i 0.840829 0.113549i
\(681\) 565.565 0.830493
\(682\) 311.827 + 149.959i 0.457224 + 0.219881i
\(683\) 589.049 0.862444 0.431222 0.902246i \(-0.358083\pi\)
0.431222 + 0.902246i \(0.358083\pi\)
\(684\) −125.793 + 100.541i −0.183908 + 0.146989i
\(685\) 50.6953 550.694i 0.0740077 0.803933i
\(686\) 307.105 + 147.688i 0.447675 + 0.215289i
\(687\) 436.731 0.635708
\(688\) 104.996 464.674i 0.152611 0.675398i
\(689\) −739.859 −1.07382
\(690\) 465.875 + 279.293i 0.675182 + 0.404773i
\(691\) 467.669i 0.676800i −0.941002 0.338400i \(-0.890114\pi\)
0.941002 0.338400i \(-0.109886\pi\)
\(692\) 898.689 718.281i 1.29868 1.03798i
\(693\) 25.3487i 0.0365782i
\(694\) 1096.01 + 527.075i 1.57926 + 0.759474i
\(695\) 2.84875 30.9455i 0.00409892 0.0445259i
\(696\) 68.2620 + 296.843i 0.0980776 + 0.426498i
\(697\) 466.710i 0.669598i
\(698\) −718.010 345.294i −1.02867 0.494691i
\(699\) 256.692i 0.367227i
\(700\) 84.7249 + 158.580i 0.121036 + 0.226542i
\(701\) 359.840 0.513323 0.256662 0.966501i \(-0.417377\pi\)
0.256662 + 0.966501i \(0.417377\pi\)
\(702\) 218.119 453.559i 0.310711 0.646096i
\(703\) 363.977 0.517748
\(704\) −92.7212 190.942i −0.131706 0.271224i
\(705\) −547.745 50.4238i −0.776943 0.0715231i
\(706\) −122.807 + 255.366i −0.173947 + 0.361708i
\(707\) 294.652 0.416764
\(708\) −97.7405 + 78.1195i −0.138052 + 0.110338i
\(709\) −682.443 −0.962543 −0.481272 0.876572i \(-0.659825\pi\)
−0.481272 + 0.876572i \(0.659825\pi\)
\(710\) 225.600 376.312i 0.317747 0.530017i
\(711\) 463.536i 0.651950i
\(712\) 133.352 + 579.893i 0.187292 + 0.814456i
\(713\) 1300.18i 1.82353i
\(714\) −48.9861 + 101.862i −0.0686080 + 0.142664i
\(715\) −143.901 13.2471i −0.201260 0.0185274i
\(716\) −842.142 + 673.085i −1.17618 + 0.940063i
\(717\) 948.999i 1.32357i
\(718\) 208.119 432.766i 0.289860 0.602738i
\(719\) 1204.90i 1.67580i −0.545821 0.837902i \(-0.683782\pi\)
0.545821 0.837902i \(-0.316218\pi\)
\(720\) 105.045 323.444i 0.145896 0.449228i
\(721\) −151.815 −0.210562
\(722\) −489.008 235.167i −0.677297 0.325715i
\(723\) 583.428 0.806954
\(724\) 128.923 + 161.304i 0.178070 + 0.222795i
\(725\) 429.439 + 79.7416i 0.592329 + 0.109988i
\(726\) −43.2066 20.7783i −0.0595133 0.0286202i
\(727\) 72.6740 0.0999642 0.0499821 0.998750i \(-0.484084\pi\)
0.0499821 + 0.998750i \(0.484084\pi\)
\(728\) 122.153 28.0904i 0.167793 0.0385856i
\(729\) 671.242 0.920771
\(730\) −550.025 + 917.468i −0.753458 + 1.25681i
\(731\) 429.459i 0.587496i
\(732\) −86.1532 107.792i −0.117696 0.147257i
\(733\) 581.088i 0.792753i 0.918088 + 0.396376i \(0.129732\pi\)
−0.918088 + 0.396376i \(0.870268\pi\)
\(734\) −1049.86 504.883i −1.43033 0.687852i
\(735\) 496.590 + 45.7147i 0.675633 + 0.0621968i
\(736\) 495.604 624.945i 0.673375 0.849110i
\(737\) 84.6717i 0.114887i
\(738\) 247.915 + 119.224i 0.335929 + 0.161550i
\(739\) 1439.44i 1.94782i 0.226941 + 0.973909i \(0.427128\pi\)
−0.226941 + 0.973909i \(0.572872\pi\)
\(740\) −641.895 + 422.835i −0.867426 + 0.571399i
\(741\) −179.850 −0.242713
\(742\) 132.314 275.136i 0.178321 0.370803i
\(743\) 813.610 1.09503 0.547517 0.836794i \(-0.315573\pi\)
0.547517 + 0.836794i \(0.315573\pi\)
\(744\) −886.273 + 203.808i −1.19123 + 0.273935i
\(745\) 327.671 + 30.1644i 0.439827 + 0.0404892i
\(746\) 33.0806 68.7882i 0.0443439 0.0922093i
\(747\) 48.7559 0.0652689
\(748\) −119.470 149.477i −0.159719 0.199835i
\(749\) 14.5488 0.0194243
\(750\) 408.276 + 360.731i 0.544368 + 0.480975i
\(751\) 798.583i 1.06336i −0.846945 0.531680i \(-0.821561\pi\)
0.846945 0.531680i \(-0.178439\pi\)
\(752\) −178.020 + 787.850i −0.236729 + 1.04767i
\(753\) 231.866i 0.307923i
\(754\) 131.967 274.413i 0.175022 0.363944i
\(755\) −7.24500 + 78.7011i −0.00959603 + 0.104240i
\(756\) 129.660 + 162.226i 0.171508 + 0.214585i
\(757\) 365.494i 0.482819i 0.970423 + 0.241409i \(0.0776097\pi\)
−0.970423 + 0.241409i \(0.922390\pi\)
\(758\) 379.028 788.155i 0.500036 1.03978i
\(759\) 180.152i 0.237355i
\(760\) −375.415 + 50.6976i −0.493968 + 0.0667074i
\(761\) 304.781 0.400500 0.200250 0.979745i \(-0.435824\pi\)
0.200250 + 0.979745i \(0.435824\pi\)
\(762\) −488.978 235.152i −0.641704 0.308599i
\(763\) −284.410 −0.372752
\(764\) 638.699 510.483i 0.835994 0.668171i
\(765\) 28.1035 305.283i 0.0367366 0.399063i
\(766\) 1318.47 + 634.061i 1.72125 + 0.827756i
\(767\) 125.085 0.163083
\(768\) 503.684 + 239.869i 0.655839 + 0.312329i
\(769\) 611.986 0.795821 0.397911 0.917424i \(-0.369735\pi\)
0.397911 + 0.917424i \(0.369735\pi\)
\(770\) 30.6611 51.1443i 0.0398196 0.0664211i
\(771\) 518.683i 0.672741i
\(772\) 76.0044 60.7468i 0.0984513 0.0786876i
\(773\) 300.029i 0.388136i 0.980988 + 0.194068i \(0.0621683\pi\)
−0.980988 + 0.194068i \(0.937832\pi\)
\(774\) −228.128 109.708i −0.294739 0.141741i
\(775\) −238.082 +